1
|
Saha S, Chen Y, Russi S, Marchany-Rivera D, Cohen A, Perry SL. Scalable fabrication of an array-type fixed-target device for automated room temperature X-ray protein crystallography. Sci Rep 2025; 15:334. [PMID: 39747265 PMCID: PMC11696357 DOI: 10.1038/s41598-024-83341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
X-ray crystallography is one of the leading tools to analyze the 3-D structure, and therefore, function of proteins and other biological macromolecules. Traditional methods of mounting individual crystals for X-ray diffraction analysis can be tedious and result in damage to fragile protein crystals. Furthermore, the advent of multi-crystal and serial crystallography methods explicitly require the mounting of larger numbers of crystals. To address this need, we have developed a device that facilitates the straightforward mounting of protein crystals for diffraction analysis, and that can be easily manufactured at scale. Inspired by grid-style devices that have been reported in the literature, we have developed an X-ray compatible microfluidic device that can be used to trap protein crystals in an array configuration, while also providing excellent optical transparency, a low X-ray background, and compatibility with the robotic sample handling and environmental controls used at synchrotron macromolecular crystallography beamlines. At the Stanford Synchrotron Radiation Lightsource (SSRL), these capabilities allow for fully remote-access data collection at controlled humidity conditions. Furthermore, we have demonstrated continuous manufacturing of these devices via roll-to-roll fabrication to enable cost-effective and efficient large-scale production.
Collapse
Affiliation(s)
- Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yaozu Chen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Silvia Russi
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Aina Cohen
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Manna A, Sonker M, Koh D, Steiger M, Ansari A, Hu H, Quereda-Moraleda I, Grieco A, Doppler D, de Sanctis D, Basu S, Orlans J, Rose SL, Botha S, Martin-Garcia JM, Ros A. Cyclic Olefin Copolymer-Based Fixed-Target Sample Delivery Device for Protein X-ray Crystallography. Anal Chem 2024; 96:20371-20381. [PMID: 39679637 PMCID: PMC11696833 DOI: 10.1021/acs.analchem.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Serial macromolecular X-ray crystallography plays an important role in elucidating protein structures and consequently progressing the field of targeted therapeutics. The use of pulsed beams at different repetition frequencies requires the development of various sample-conserving injection strategies to minimize sample wastage between X-ray exposures. Fixed-target sample delivery methods that use solid support to hold the crystals in the X-ray beam path are gaining interest as a sample-conserving delivery system for X-ray crystallography with high crystal hit rates. Here, we present a novel fixed-target microfluidic system for delivering protein microcrystals to X-ray beams for diffraction data collection and structure determination. The fixed-target design consists of 3 symmetric sections arranged in an area of 1 in. × 1 in. with up to 18,000 crystal traps per device. Each trap is targeted to hold one crystal up to 50 μm in size in the largest dimension. The device has been fabricated using cyclic olefin copolymer (COC) for high-quality diffraction data collection with low background scattering induced through the fixed-target material. The newly developed fixed-target device is designed for vacuum compatibility which will enable the use in vacuum experimental chambers of X-ray radiation sources including the newly developed, first-of-its-kind compact X-ray light source (CXLS), which is currently in commissioning at Arizona State University. To assess the validity of the COC device, serial crystallography experiments were performed on the model protein lysozyme at the new European Synchrotron Radiation Facility-Extremely Brilliant Source (ESRF-EBS) beamline ID29. A 1.6 Å crystal structure of the protein was solved, demonstrating that, in general, the COC device can be used to generate high-quality data from macromolecular crystals at the CXLS and synchrotron radiation sources, which holds enormous potential for advancing the field of protein structure determination by fixed-target X-ray crystallography.
Collapse
Affiliation(s)
- Abhik Manna
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Domin Koh
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Steiger
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Adil Ansari
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Hu
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Isabel Quereda-Moraleda
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alice Grieco
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Diandra Doppler
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Shibom Basu
- European
Molecular Biology Laboratory, 38042 Grenoble, France
| | - Julien Orlans
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Samuel L. Rose
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Sabine Botha
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Jose Manuel Martin-Garcia
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser. Proc Natl Acad Sci U S A 2024; 121:e2318527121. [PMID: 39190355 PMCID: PMC11388330 DOI: 10.1073/pnas.2318527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
4
|
Mendez D, Holton JM, Lyubimov AY, Hollatz S, Mathews II, Cichosz A, Martirosyan V, Zeng T, Stofer R, Liu R, Song J, McPhillips S, Soltis M, Cohen AE. Deep residual networks for crystallography trained on synthetic data. Acta Crystallogr D Struct Biol 2024; 80:26-43. [PMID: 38164955 PMCID: PMC10833344 DOI: 10.1107/s2059798323010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis.
Collapse
Affiliation(s)
- Derek Mendez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, UC San Francisco, San Francisco, CA 94158, USA
| | - Artem Y. Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sabine Hollatz
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aleksander Cichosz
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Vardan Martirosyan
- Department of Mathematics, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Teo Zeng
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ryan Stofer
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ruobin Liu
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Scott McPhillips
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mike Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
5
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA Polymerase II substrate binding and metal coordination at 3.0 Å using a free-electron laser. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559052. [PMID: 37790421 PMCID: PMC10543002 DOI: 10.1101/2023.09.22.559052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Catalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive. Here we present the free electron laser (FEL) structure of a matched ATP-bound Pol II, revealing the full active site interaction network at the highest resolution to date, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structure indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/bridge helix (BH) interactions induce conformational changes that could propel translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the hyperactive Rpb1 T834P bridge helix mutant reveals rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston MA 02115 USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| |
Collapse
|
6
|
Gu KK, Liu Z, Narayanasamy SR, Shelby ML, Chan N, Coleman MA, Frank M, Kuhl TL. All polymer microfluidic chips-A fixed target sample delivery workhorse for serial crystallography. BIOMICROFLUIDICS 2023; 17:051302. [PMID: 37840537 PMCID: PMC10576627 DOI: 10.1063/5.0167164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective. The fixed target is easy to use, maintains sample hydration, and can be readily modified to allow a broad range of sample types and different beamline requirements. Recent innovations demonstrate the potential of such microfluidic-based fixed targets to be an all-around "workhorse" for serial crystallography measurements. This Perspective will summarize recent advancements in microfluidic fixed targets for serial crystallography, examine needs for future development, and guide users in designing, choosing, and utilizing a fixed-target sample delivery device for their system.
Collapse
Affiliation(s)
- Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas Chan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | | | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
7
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
8
|
Lee K, Kim J, Baek S, Park J, Park S, Lee JL, Chung WK, Cho Y, Nam KH. Combination of an inject-and-transfer system for serial femtosecond crystallography. J Appl Crystallogr 2022; 55:813-822. [PMID: 35979068 PMCID: PMC9348887 DOI: 10.1107/s1600576722005556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/22/2022] [Indexed: 09/03/2024] Open
Abstract
Serial femtosecond crystallography (SFX) enables the determination of room-temperature crystal structures of macromolecules with minimized radiation damage and provides time-resolved molecular dynamics by pump-probe or mix-and-inject experiments. In SFX, a variety of sample delivery methods with unique advantages have been developed and applied. The combination of existing sample delivery methods can enable a new approach to SFX data collection that combines the advantages of the individual methods. This study introduces a combined inject-and-transfer system (BITS) method for sample delivery in SFX experiments: a hybrid injection and fixed-target scanning method. BITS allows for solution samples to be reliably deposited on ultraviolet ozone (UVO)-treated polyimide films, at a minimum flow rate of 0.5 nl min-1, in both vertical and horizontal scanning modes. To utilize BITS in SFX experiments, lysozyme crystal samples were embedded in a viscous lard medium and injected at flow rates of 50-100 nl min-1 through a syringe needle onto a UVO-treated polyimide film, which was mounted on a fixed-target scan stage. The crystal samples deposited on the film were raster scanned with an X-ray free electron laser using a motion stage in both horizontal and vertical directions. Using the BITS method, the room-temperature structure of lysozyme was successfully determined at a resolution of 2.1 Å, and thus BITS could be utilized in future SFX experiments.
Collapse
Affiliation(s)
- Keondo Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihan Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangwon Baek
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Wan Kyun Chung
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
9
|
Abstract
The X-ray free-electron laser of the Pohang Accelerator Laboratory (PAL-XFEL) was opened to users in 2017. Since then, significant progress has been made in PAL-XFEL operation and beamline experiments. This includes increasing the FEL pulse energy, increasing the FEL photon energy, generating self-seeding FEL, and trials of two-color operation. In the beamline, new instruments or endstations have been added or are being prepared. Overall, beamline operation has been stabilized since its initiation, which has enabled excellent scientific results through efficient user experiments. In this paper, we describe details of the recent progress of the PAL-XFEL.
Collapse
|
10
|
Gilbile D, Shelby ML, Lyubimov AY, Wierman JL, Monteiro DCF, Cohen AE, Russi S, Coleman MA, Frank M, Kuhl TL. Plug-and-play polymer microfluidic chips for hydrated, room temperature, fixed-target serial crystallography. LAB ON A CHIP 2021; 21:4831-4845. [PMID: 34821226 PMCID: PMC8915944 DOI: 10.1039/d1lc00810b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The practice of serial X-ray crystallography (SX) depends on efficient, continuous delivery of hydrated protein crystals while minimizing background scattering. Of the two major types of sample delivery devices, fixed-target devices offer several advantages over widely adopted jet injectors, including: lower sample consumption, clog-free delivery, and the ability to control on-chip crystal density to improve hit rates. Here we present our development of versatile, inexpensive, and robust polymer microfluidic chips for routine and reliable room temperature serial measurements at both synchrotrons and X-ray free electron lasers (XFELs). Our design includes highly X-ray-transparent enclosing thin film layers tuned to minimize scatter background, adaptable sample flow layers tuned to match crystal size, and a large sample area compatible with both raster scanning and rotation based serial data collection. The optically transparent chips can be used both for in situ protein crystallization (to eliminate crystal handling) or crystal slurry loading, with prepared samples stable for weeks in a humidified environment and for several hours in ambient conditions. Serial oscillation crystallography, using a multi-crystal rotational data collection approach, at a microfocus synchrotron beamline (SSRL, beamline 12-1) was used to benchmark the performance of the chips. High-resolution structures (1.3-2.7 Å) were collected from five different proteins - hen egg white lysozyme, thaumatin, bovine liver catalase, concanavalin-A (type VI), and SARS-CoV-2 nonstructural protein NSP5. Overall, our modular fabrication approach enables precise control over the cross-section of materials in the X-ray beam path and facilitates chip adaption to different sample and beamline requirements for user-friendly, straightforward diffraction measurements at room temperature.
Collapse
Affiliation(s)
- Deepshika Gilbile
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| | - Megan L Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Diana C F Monteiro
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Matthias Frank
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Martiel I, Beale JH, Karpik A, Huang CY, Vera L, Olieric N, Wranik M, Tsai CJ, Mühle J, Aurelius O, John J, Högbom M, Wang M, Marsh M, Padeste C. Versatile microporous polymer-based supports for serial macromolecular crystallography. Acta Crystallogr D Struct Biol 2021; 77:1153-1167. [PMID: 34473086 PMCID: PMC8411977 DOI: 10.1107/s2059798321007324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - John H. Beale
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Agnieszka Karpik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Laura Vera
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Natacha Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Maximilian Wranik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Ching-Ju Tsai
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jonas Mühle
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Oskar Aurelius
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - May Marsh
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
12
|
Smith CA. Making sense of SFX data: standards for data and structure validation for a non-standard experiment that has come of age. IUCRJ 2021; 8:482-484. [PMID: 34257999 PMCID: PMC8256701 DOI: 10.1107/s2052252521006552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SFX diffraction data collection at XFELs is becoming more accessible. To extract the most useful biological information from these non-standard experiments, standards for SFX data analysis and structure validation must be redefined.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, and Department of Chemistry, Stanford University, Menlo Park, CA, USA
| |
Collapse
|
13
|
Gorel A, Schlichting I, Barends TRM. Discerning best practices in XFEL-based biological crystallography - standards for nonstandard experiments. IUCRJ 2021; 8:532-543. [PMID: 34258002 PMCID: PMC8256713 DOI: 10.1107/s205225252100467x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a novel tool in structural biology. In contrast to conventional crystallography, SFX relies on merging partial intensities acquired with X-ray beams of often randomly fluctuating properties from a very large number of still diffraction images of generally randomly oriented microcrystals. For this reason, and possibly due to limitations of the still evolving data-analysis programs, XFEL-derived SFX data are typically of a lower quality than 'standard' crystallographic data. In contrast with this, the studies performed at XFELs often aim to investigate issues that require precise high-resolution data, for example to determine structures of intermediates at low occupancy, which often display very small conformational changes. This is a potentially dangerous combination and underscores the need for a critical evaluation of procedures including data-quality standards in XFEL-based structural biology. Here, such concerns are addressed.
Collapse
Affiliation(s)
- Alexander Gorel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| |
Collapse
|
14
|
Advancements in macromolecular crystallography: from past to present. Emerg Top Life Sci 2021; 5:127-149. [PMID: 33969867 DOI: 10.1042/etls20200316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Protein Crystallography or Macromolecular Crystallography (MX) started as a new discipline of science with the pioneering work on the determination of the protein crystal structures by John Kendrew in 1958 and Max Perutz in 1960. The incredible achievements in MX are attributed to the development of advanced tools, methodologies, and automation in every aspect of the structure determination process, which have reduced the time required for solving protein structures from years to a few days, as evident from the tens of thousands of crystal structures of macromolecules available in PDB. The advent of brilliant synchrotron sources, fast detectors, and novel sample delivery methods has shifted the paradigm from static structures to understanding the dynamic picture of macromolecules; further propelled by X-ray Free Electron Lasers (XFELs) that explore the femtosecond regime. The revival of the Laue diffraction has also enabled the understanding of macromolecules through time-resolved crystallography. In this review, we present some of the astonishing method-related and technological advancements that have contributed to the progress of MX. Even with the rapid evolution of several methods for structure determination, the developments in MX will keep this technique relevant and it will continue to play a pivotal role in gaining unprecedented atomic-level details as well as revealing the dynamics of biological macromolecules. With many exciting developments awaiting in the upcoming years, MX has the potential to contribute significantly to the growth of modern biology by unraveling the mechanisms of complex biological processes as well as impacting the area of drug designing.
Collapse
|
15
|
Analysis of Multi-Hit Crystals in Serial Synchrotron Crystallography Experiments Using High-Viscosity Injectors. CRYSTALS 2021. [DOI: 10.3390/cryst11010049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serial Synchrotron Crystallography (SSX) is rapidly emerging as a promising technique for collecting data for time-resolved structural studies or for performing room temperature micro-crystallography measurements using micro-focused beamlines. SSX is often performed using high frame rate detectors in combination with continuous sample scanning or high-viscosity or liquid jet injectors. When performed using ultra-bright X-ray Free Electron Laser (XFEL) sources serial crystallography typically involves a process known as ’diffract-and-destroy’ where each crystal is measured just once before it is destroyed by the intense XFEL pulse. In SSX, however, particularly when using high-viscosity injectors (HVIs) such as Lipidico, the crystal can be intercepted multiple times by the X-ray beam prior to exiting the interaction region. This has a number of important consequences for SSX including whether these multiple-hits can be incorporated into the data analysis or whether they need to be excluded due to the potential impact of radiation damage. Here, we investigate the occurrence and characteristics of multiple hits on single crystals using SSX with lipidico. SSX data are collected from crystals as they tumble within a high viscous stream of silicone grease flowing through a micro-focused X-ray beam. We confirmed that, using the Eiger 16M, we are able to collect up to 42 frames of data from the same single crystal prior to it leaving the X-ray interaction region. The frequency and occurrence of multiple hits may be controlled by varying the sample flow rate and X-ray beam size. Calculations of the absorbed dose confirm that these crystals are likely to undergo radiation damage but that nonetheless incorporating multiple hits into damage-free data should lead to a significant reduction in the number of crystals required for structural analysis when compared to just looking at a single diffraction pattern from each crystal.
Collapse
|
16
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
17
|
Zhu L, Chen X, Abola EE, Jing L, Liu W. Serial Crystallography for Structure-Based Drug Discovery. Trends Pharmacol Sci 2020; 41:830-839. [PMID: 32950259 PMCID: PMC7572805 DOI: 10.1016/j.tips.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Rational drug discovery has greatly accelerated the development of safer and more efficacious therapeutics, assisted significantly by insights from experimentally determined 3D structures of ligands in complex with their targets. Serial crystallography (SX) with X-ray free-electron lasers has enabled structural determination using micrometer- or nanometer-size crystals. This technology, applied in the past decade to solve structures of notoriously difficult-to-study drug targets at room temperature, has now been adapted for use in synchrotron radiation facilities. Ultrashort time scales allow time-resolved characterization of dynamic structural changes and pave the road to study the molecular mechanisms by 'molecular movie.' This article summarizes the latest progress in SX technology and deliberates its demanding applications in future structure-based drug discovery.
Collapse
Affiliation(s)
- Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaoyu Chen
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Enrique E Abola
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Liang Jing
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
18
|
Nam KH. Lard Injection Matrix for Serial Crystallography. Int J Mol Sci 2020; 21:ijms21175977. [PMID: 32825186 PMCID: PMC7504126 DOI: 10.3390/ijms21175977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Serial crystallography (SX) using X-ray free electron laser or synchrotron X-ray allows for the determination of structures, at room temperature, with reduced radiation damage. Moreover, it allows for the study of structural dynamics of macromolecules using a time-resolved pump-probe, as well as mix-and-inject experiments. Delivering a crystal sample using a viscous medium decreases sample consumption by lowering the flow rate while being extruded from the injector or syringe as compared to a liquid jet injector. Since the environment of crystal samples varies, continuous development of the delivery medium is important for extended SX applications. Herein, I report the preparation and characterization of a lard-based sample delivery medium for SX. This material was obtained using heat treatment, and then the soluble impurities were removed through phase separation. The lard injection medium was highly stable and could be injected via a syringe needle extruded at room temperature with a flow rate < 200 nL/min. Serial millisecond crystallography experiments were performed using lard, and the room temperature structures of lysozyme and glucose isomerase embedded in lard at 1.75 and 1.80 Å, respectively, were determined. The lard medium showed X-ray background scattering similar or relatively lower than shortenings and lipidic cubic phase; therefore, it can be used as sample delivery medium in SX experiments.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
19
|
Lee K, Lee D, Baek S, Park J, Lee SJ, Park S, Chung WK, Lee JL, Cho HS, Cho Y, Nam KH. Viscous-medium-based crystal support in a sample holder for fixed-target serial femtosecond crystallography. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720008663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Serial femtosecond crystallography (SFX) enables the determination of the room-temperature crystal structure of macromolecules, as well as providing time-resolved molecular dynamics data in pump–probe experiments. Fixed-target SFX (FT-SFX) can minimize sample consumption and physical effects on crystals during sample delivery. In FT-SFX studies, having a sample holder that can stably fix crystal samples is one of the key elements required for efficient data collection. Hence, development of sample holders from new materials capable of supporting various crystal sizes and shapes may expand the applications of FT-SFX. Here, a viscous-media-based crystal support in a sample holder for FT-SFX is introduced. Crystal samples were embedded in viscous media, namely gelatin and agarose, which were enclosed in a polyimide film. In the vertically placed sample holder, 10–15%(w/v) viscous gelatin and 1–4%(w/v) agarose gel stably supported crystals between two polyimide films, thereby preventing the crystals from descending owing to gravity. Using this method, FT-SFX experiments were performed with glucose isomerase and lysozyme embedded in gelatin and agarose, respectively. The room-temperature crystal structures of glucose isomerase and lysozyme were successfully determined at 1.75 and 1.80 Å resolutions, respectively. The glucose isomerase and lysozyme diffraction analyses were not impeded by excessive background scattering from the viscous media. This method is useful for delivering crystal samples of various sizes and shapes in FT-SFX experiments.
Collapse
|
20
|
Thompson MC, Yeates TO, Rodriguez JA. Advances in methods for atomic resolution macromolecular structure determination. F1000Res 2020; 9:F1000 Faculty Rev-667. [PMID: 32676184 PMCID: PMC7333361 DOI: 10.12688/f1000research.25097.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances have dramatically increased the power and scope of structural biology. New developments in high-resolution cryo-electron microscopy, serial X-ray crystallography, and electron diffraction have been especially transformative. Here we highlight some of the latest advances and current challenges at the frontiers of atomic resolution methods for elucidating the structures and dynamical properties of macromolecules and their complexes.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| |
Collapse
|
21
|
Fontecilla-Camps JC, Bricogne G. Jean-Luc Ferrer (1964–2020): structural biologist, beamline instrumentation innovator and entrepreneur. Acta Crystallogr D Struct Biol 2020. [DOI: 10.1107/s2059798320007081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Abstract
We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems.
Collapse
Affiliation(s)
- Federica Frati
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| | | | - Frank M. F. de Groot
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| |
Collapse
|
23
|
Polysaccharide-Based Injection Matrix for Serial Crystallography. Int J Mol Sci 2020; 21:ijms21093332. [PMID: 32397185 PMCID: PMC7247560 DOI: 10.3390/ijms21093332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Serial crystallography (SX) provides an opportunity to observe the molecular dynamics of macromolecular structures at room temperature via pump-probe studies. The delivery of crystals embedded in a viscous medium via an injector or syringe is widely performed in synchrotrons or X-ray free-electron laser facilities with low repetition rates. Various viscous media have been developed; however, there are cases in which the delivery material undesirably interacts chemically or biologically with specific protein samples, or changes the stability of the injection stream, depending on the crystallization solution. Therefore, continued discovery and characterization of new delivery media is necessary for expanding future SX applications. Here, the preparation and characterization of new polysaccharide (wheat starch (WS) and alginate)-based sample delivery media are introduced for SX. Crystals embedded in a WS or alginate injection medium showed a stable injection stream at a flow rate of < 200 nL/min and low-level X-ray background scattering similar to other hydrogels. Using these media, serial millisecond crystallography (SMX) was performed, and the room temperature crystal structures of glucose isomerase and lysozyme were determined at 1.9–2.0 Å resolutions. WS and alginate will allow an expanded application of sample delivery media in SX experiments.
Collapse
|
24
|
Lee D, Park S, Lee K, Kim J, Park G, Nam KH, Baek S, Chung WK, Lee JL, Cho Y, Park J. Application of a high-throughput microcrystal delivery system to serial femtosecond crystallography. J Appl Crystallogr 2020; 53:477-485. [PMID: 32280322 PMCID: PMC7133064 DOI: 10.1107/s1600576720002423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 01/26/2023] Open
Abstract
Microcrystal delivery methods are pivotal in the use of serial femtosecond crystallography (SFX) to resolve the macromolecular structures of proteins. Here, the development of a novel technique and instruments for efficiently delivering microcrystals for SFX are presented. The new method, which relies on a one-dimensional fixed-target system that includes a microcrystal container, consumes an extremely low amount of sample compared with conventional two-dimensional fixed-target techniques at ambient temperature. This novel system can deliver soluble microcrystals without highly viscous carrier media and, moreover, can be used as a microcrystal growth device for SFX. Diffraction data collection utilizing this advanced technique along with a real-time visual servo scan system has been successfully demonstrated for the structure determination of proteinase K microcrystals at 1.85 Å resolution.
Collapse
Affiliation(s)
- Donghyeon Lee
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Sehan Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| | - Keondo Lee
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Jangwoo Kim
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| | - Gisu Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| | - Ki Hyun Nam
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea
| | - Sangwon Baek
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Wan Kyun Chung
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
| | - Jaehyun Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigok-ro 127 beongil, Pohang, 37673, Republic of Korea
| |
Collapse
|
25
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
26
|
Martiel I, Mozzanica A, Opara NL, Panepucci E, Leonarski F, Redford S, Mohacsi I, Guzenko V, Ozerov D, Padeste C, Schmitt B, Pedrini B, Wang M. X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:329-339. [PMID: 32153271 PMCID: PMC7064105 DOI: 10.1107/s1600577519016758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/14/2019] [Indexed: 05/06/2023]
Abstract
Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Aldo Mozzanica
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Nadia L. Opara
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel 4058, Switzerland
- SwissNanoscience Institute, University of Basel, Basel 4056, Switzerland
| | - Ezequiel Panepucci
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Filip Leonarski
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Sophie Redford
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Istvan Mohacsi
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Vitaliy Guzenko
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Bernd Schmitt
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Bill Pedrini
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| |
Collapse
|
27
|
Study of Thermal Effect in the Interaction of Nanosecond Capillary Discharge Extreme Ultraviolet Laser with Copper. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interaction of Extreme Ultraviolet (EUV) laser with matters is an attractive subject since novel phenomena always occur under the effect of high energy photons. In this paper, the thermal effect involved in the interaction of a capillary discharge 46.9 nm laser with copper was studied theoretically and experimentally. The temperature variation of the laser-irradiated region of copper was calculated. According to the results, the copper surface was ablated obviously and presented the trace of melting, evaporation, and resolidification, which suggested the thermal effect occurred on the surface during the laser irradiation.
Collapse
|
28
|
Artz JH, Zadvornyy OA, Mulder DW, Keable SM, Cohen AE, Ratzloff MW, Williams SG, Ginovska B, Kumar N, Song J, McPhillips SE, Davidson CM, Lyubimov AY, Pence N, Schut GJ, Jones AK, Soltis SM, Adams MWW, Raugei S, King PW, Peters JW. Tuning Catalytic Bias of Hydrogen Gas Producing Hydrogenases. J Am Chem Soc 2019; 142:1227-1235. [PMID: 31816235 PMCID: PMC8653774 DOI: 10.1021/jacs.9b08756] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.
Collapse
Affiliation(s)
- Jacob H. Artz
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Oleg A. Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - David W. Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Stephen M. Keable
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael W. Ratzloff
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - S. Garrett Williams
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Neeraj Kumar
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Scott E. McPhillips
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Catherine M. Davidson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Artem Y. Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Gerrit J. Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Anne K. Jones
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - S. Michael Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Simone Raugei
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Paul W. King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
29
|
Zhao F, Zhang B, Yan E, Sun B, Wang Z, He J, Yin D. A guide to sample delivery systems for serial crystallography. FEBS J 2019; 286:4402-4417. [PMID: 31618529 DOI: 10.1111/febs.15099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Feng‐Zhu Zhao
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Bin Zhang
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Er‐Kai Yan
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Bo Sun
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Zhi‐Jun Wang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Jian‐Hua He
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
| | - Da‐Chuan Yin
- School of Life Sciences Northwestern Polytechnical University Xi'an China
- Shenzhen Research Institute Northwestern Polytechnical University Shenzhen China
| |
Collapse
|
30
|
Abstract
Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.
Collapse
Affiliation(s)
- A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M.O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
31
|
Khakurel KP, Angelov B, Andreasson J. Macromolecular Nanocrystal Structural Analysis with Electron and X-Rays: A Comparative Review. Molecules 2019; 24:E3490. [PMID: 31561479 PMCID: PMC6804143 DOI: 10.3390/molecules24193490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023] Open
Abstract
Crystallography has long been the unrivaled method that can provide the atomistic structural models of macromolecules, using either X-rays or electrons as probes. The methodology has gone through several revolutionary periods, driven by the development of new sources, detectors, and other instrumentation. Novel sources of both X-ray and electrons are constantly emerging. The increase in brightness of these sources, complemented by the advanced detection techniques, has relaxed the traditionally strict need for large, high quality, crystals. Recent reports suggest high-quality diffraction datasets from crystals as small as a few hundreds of nanometers can be routinely obtained. This has resulted in the genesis of a new field of macromolecular nanocrystal crystallography. Here we will make a brief comparative review of this growing field focusing on the use of X-rays and electrons sources.
Collapse
Affiliation(s)
- Krishna P Khakurel
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
32
|
Svensson O, Gilski M, Nurizzo D, Bowler MW. A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples. IUCRJ 2019; 6:822-831. [PMID: 31576216 PMCID: PMC6760449 DOI: 10.1107/s2052252519008017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/04/2019] [Indexed: 05/12/2023]
Abstract
The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology.
Collapse
Affiliation(s)
- Olof Svensson
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Maciej Gilski
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, F-38042 Grenoble, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Matthew W. Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, F-38042 Grenoble, France
| |
Collapse
|
33
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
34
|
Nylon mesh-based sample holder for fixed-target serial femtosecond crystallography. Sci Rep 2019; 9:6971. [PMID: 31061502 PMCID: PMC6502819 DOI: 10.1038/s41598-019-43485-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/25/2019] [Indexed: 11/08/2022] Open
Abstract
Fixed-target serial femtosecond crystallography (FT-SFX) was an important advance in crystallography by dramatically reducing sample consumption, while maintaining the benefits of SFX for obtaining crystal structures at room temperature without radiation damage. Despite a number of advantages, preparation of a sample holder for the sample delivery in FT-SFX with the use of many crystals in a single mount at ambient temperature is challenging as it can be complicated and costly, and thus, development of an efficient sample holder is essential. In this study, we introduced a nylon mesh-based sample holder enclosed by a polyimide film. This sample holder can be rapidly manufactured using a commercially available nylon mesh with pores of a desired size at a low cost without challenging technology. Furthermore, this simple device is highly efficient in data acquisition. We performed FT-SFX using a nylon mesh-based sample holder and collected over 130,000 images on a single sample holder using a 30 Hz X-ray pulse for 1.2 h. We determined the crystal structures of lysozyme and glucose isomerase using the nylon mesh at 1.65 and 1.75 Å, respectively. The nylon mesh exposed to X-rays produced very low levels of background scattering at 3.75 and 4.30 Å, which are negligible for data analysis. Our method provides a simple and rapid but highly efficient way to deliver samples for FT-SFX.
Collapse
|
35
|
Górzny M, Opara N, Guzenko V, Cadarso V, Schift H, Li X, Padeste C. Microfabricated silicon chip as lipid membrane sample holder for serial protein crystallography. MICRO AND NANO ENGINEERING 2019. [DOI: 10.1016/j.mne.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity. Proc Natl Acad Sci U S A 2019; 116:9333-9339. [PMID: 31019074 PMCID: PMC6511015 DOI: 10.1073/pnas.1814999116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While cellular dNTPases display broad activity toward dNTPs (e.g., SAMHD1), Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. Here, we present methods for highly efficient, fixed-target X-ray free-electron laser data collection, which is broadly applicable to multiple crystal systems including RNA polymerase II complexes, and the free Ec-dGTPase enzyme. Structures of free and bound Ec-dGTPase shed light on the mechanisms of dGTP selectivity, highlighted by a dynamic active site where conformational changes are coupled to dGTP binding. Moreover, despite no sequence homology between Ec-dGTPase and SAMHD1, both enzymes share similar active-site architectures; however, dGTPase residues at the end of the substrate-binding pocket provide dGTP specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP. Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson–Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding.
Collapse
|
37
|
Sierra RG, Batyuk A, Sun Z, Aquila A, Hunter MS, Lane TJ, Liang M, Yoon CH, Alonso-Mori R, Armenta R, Castagna JC, Hollenbeck M, Osier TO, Hayes M, Aldrich J, Curtis R, Koglin JE, Rendahl T, Rodriguez E, Carbajo S, Guillet S, Paul R, Hart P, Nakahara K, Carini G, DeMirci H, Dao EH, Hayes BM, Rao YP, Chollet M, Feng Y, Fuller FD, Kupitz C, Sato T, Seaberg MH, Song S, van Driel TB, Yavas H, Zhu D, Cohen AE, Wakatsuki S, Boutet S. The Macromolecular Femtosecond Crystallography Instrument at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:346-357. [PMID: 30855242 PMCID: PMC6412173 DOI: 10.1107/s1600577519001577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/28/2019] [Indexed: 05/21/2023]
Abstract
The Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS) is the seventh and newest instrument at the world's first hard X-ray free-electron laser. It was designed with a primary focus on structural biology, employing the ultrafast pulses of X-rays from LCLS at atmospheric conditions to overcome radiation damage limitations in biological measurements. It is also capable of performing various time-resolved measurements. The MFX design consists of a versatile base system capable of supporting multiple methods, techniques and experimental endstations. The primary techniques supported are forward scattering and crystallography, with capabilities for various spectroscopic methods and time-resolved measurements. The location of the MFX instrument allows for utilization of multiplexing methods, increasing user access to LCLS by running multiple experiments simultaneously.
Collapse
Affiliation(s)
- Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Zhibin Sun
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas J. Lane
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Rebecca Armenta
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jean-Charles Castagna
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Michael Hollenbeck
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ted O. Osier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matt Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jeff Aldrich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robin Curtis
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jason E. Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Theodore Rendahl
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Evan Rodriguez
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sergio Carbajo
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Serge Guillet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Rob Paul
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Philip Hart
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Kazutaka Nakahara
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Hasan DeMirci
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- BioSciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - E. Han Dao
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Brandon M. Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yashas P. Rao
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yiping Feng
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Franklin D. Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Takahiro Sato
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew H. Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Tim B. van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Hasan Yavas
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Soichi Wakatsuki
- BioSciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, Menlo Park, CA 94305, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
38
|
Wierman JL, Paré-Labrosse O, Sarracini A, Besaw JE, Cook MJ, Oghbaey S, Daoud H, Mehrabi P, Kriksunov I, Kuo A, Schuller DJ, Smith S, Ernst OP, Szebenyi DME, Gruner SM, Miller RJD, Finke AD. Fixed-target serial oscillation crystallography at room temperature. IUCRJ 2019; 6:305-316. [PMID: 30867928 PMCID: PMC6400179 DOI: 10.1107/s2052252519001453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/25/2019] [Indexed: 05/18/2023]
Abstract
A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10° s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.
Collapse
Affiliation(s)
| | - Olivier Paré-Labrosse
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Jessica E. Besaw
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | | | - Saeed Oghbaey
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Hazem Daoud
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | | - Anling Kuo
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Scott Smith
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
| | - Oliver P. Ernst
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sol M. Gruner
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | |
Collapse
|
39
|
Uervirojnangkoorn M, Lyubimov AY, Zhou Q, Weis WI, Brunger AT. Resolving indexing ambiguities in X-ray free-electron laser diffraction patterns. Acta Crystallogr D Struct Biol 2019; 75:234-241. [PMID: 30821711 PMCID: PMC6400252 DOI: 10.1107/s2059798318013177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/17/2018] [Indexed: 11/23/2022] Open
Abstract
Processing X-ray free-electron laser (XFEL) diffraction images poses challenges, as an XFEL pulse is powerful enough to destroy or damage the diffracting volume and thereby yields only one diffraction image per volume. Moreover, the crystal is stationary during the femtosecond pulse, so reflections are generally only partially recorded. Therefore, each XFEL diffraction image must be scaled individually and, ideally, corrected for partiality prior to merging. An additional complication may arise owing to indexing ambiguities when the symmetry of the Bravais lattice is higher than that of the space group, or when the unit-cell dimensions are similar to each other. Here, an automated method is presented that diagnoses these indexing ambiguities based on the Brehm-Diederichs algorithm [Brehm & Diederichs (2014), Acta Cryst. D70, 101-109] and produces a consistent indexing choice for the large majority of diffraction images. This method was applied to an XFEL diffraction data set measured from crystals of the neuronal SNARE-complexin-1-synaptotagmin-1 complex. After correcting the indexing ambiguities, substantial improvements were observed in the merging statistics and the atomic model refinement R values. This method should be a useful addition to the arsenal of tools for the processing of XFEL diffraction data sets.
Collapse
Affiliation(s)
| | - Artem Y. Lyubimov
- Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Photon Science, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Photon Science, Stanford University, Stanford, CA 94305, USA
| | - Axel T. Brunger
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Photon Science, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Martiel I, Müller-Werkmeister HM, Cohen AE. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr D Struct Biol 2019; 75:160-177. [PMID: 30821705 PMCID: PMC6400256 DOI: 10.1107/s2059798318017953] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 11/11/2022] Open
Abstract
Highly efficient data-collection methods are required for successful macromolecular crystallography (MX) experiments at X-ray free-electron lasers (XFELs). XFEL beamtime is scarce, and the high peak brightness of each XFEL pulse destroys the exposed crystal volume. It is therefore necessary to combine diffraction images from a large number of crystals (hundreds to hundreds of thousands) to obtain a final data set, bringing about sample-refreshment challenges that have previously been unknown to the MX synchrotron community. In view of this experimental complexity, a number of sample delivery methods have emerged, each with specific requirements, drawbacks and advantages. To provide useful selection criteria for future experiments, this review summarizes the currently available sample delivery methods, emphasising the basic principles and the specific sample requirements. Two main approaches to sample delivery are first covered: (i) injector methods with liquid or viscous media and (ii) fixed-target methods using large crystals or using microcrystals inside multi-crystal holders or chips. Additionally, hybrid methods such as acoustic droplet ejection and crystal extraction are covered, which combine the advantages of both fixed-target and injector approaches.
Collapse
Affiliation(s)
- Isabelle Martiel
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Henrike M. Müller-Werkmeister
- Institute of Chemistry – Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
41
|
Grünbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 2019; 75:178-191. [PMID: 30821706 PMCID: PMC6400261 DOI: 10.1107/s205979831801567x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.
Collapse
Affiliation(s)
- Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Basu S, Kaminski JW, Panepucci E, Huang CY, Warshamanage R, Wang M, Wojdyla JA. Automated data collection and real-time data analysis suite for serial synchrotron crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:244-252. [PMID: 30655492 PMCID: PMC6337882 DOI: 10.1107/s1600577518016570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/21/2018] [Indexed: 05/03/2023]
Abstract
At the Swiss Light Source macromolecular crystallography (MX) beamlines the collection of serial synchrotron crystallography (SSX) diffraction data is facilitated by the recent DA+ data acquisition and analysis software developments. The SSX suite allows easy, efficient and high-throughput measurements on a large number of crystals. The fast continuous diffraction-based two-dimensional grid scan method allows initial location of microcrystals. The CY+ GUI utility enables efficient assessment of a grid scan's analysis output and subsequent collection of multiple wedges of data (so-called minisets) from automatically selected positions in a serial and automated way. The automated data processing (adp) routines adapted to the SSX data collection mode provide near real time analysis for data in both CBF and HDF5 formats. The automatic data merging (adm) is the latest extension of the DA+ data analysis software routines. It utilizes the sxdm (SSX data merging) package, which provides automatic online scaling and merging of minisets and allows identification of a minisets subset resulting in the best quality of the final merged data. The results of both adp and adm are sent to the MX MongoDB database and displayed in the web-based tracker, which provides the user with on-the-fly feedback about the experiment.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jakub W. Kaminski
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Ezequiel Panepucci
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
43
|
Casadei CM, Nass K, Barty A, Hunter MS, Padeste C, Tsai CJ, Boutet S, Messerschmidt M, Sala L, Williams GJ, Ozerov D, Coleman M, Li XD, Frank M, Pedrini B. Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCRJ 2019; 6:34-45. [PMID: 30713701 PMCID: PMC6327180 DOI: 10.1107/s2052252518014641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Serial femtosecond crystallography of two-dimensional membrane-protein crystals at X-ray free-electron lasers has the potential to address the dynamics of functionally relevant large-scale motions, which can be sterically hindered in three-dimensional crystals and suppressed in cryocooled samples. In previous work, diffraction data limited to a two-dimensional reciprocal-space slice were evaluated and it was demonstrated that the low intensity of the diffraction signal can be overcome by collecting highly redundant data, thus enhancing the achievable resolution. Here, the application of a newly developed method to analyze diffraction data covering three reciprocal-space dimensions, extracting the reciprocal-space map of the structure-factor amplitudes, is presented. Despite the low resolution and completeness of the data set, it is shown by molecular replacement that the reconstructed amplitudes carry meaningful structural information. Therefore, it appears that these intrinsic limitations in resolution and completeness from two-dimensional crystal diffraction may be overcome by collecting highly redundant data along the three reciprocal-space axes, thus allowing the measurement of large-scale dynamics in pump-probe experiments.
Collapse
Affiliation(s)
| | - Karol Nass
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mark S. Hunter
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | | | - Ching-Ju Tsai
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sébastien Boutet
- Linac Coherent Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Messerschmidt
- Linac Coherent Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Leonardo Sala
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Garth J. Williams
- Linac Coherent Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- NSLS-II, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973, USA
| | - Dmitry Ozerov
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Matthew Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Xiao-Dan Li
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Bill Pedrini
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
44
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Yamaguchi K. Theoretical Elucidation of Geometrical Structures of the CaMn4O5 Cluster in Oxygen Evolving Complex of Photosystem II Scope and Applicability of Estimation Formulae of Structural Deformations via the Mixed-Valence and Jahn–Teller Effects. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Doak RB, Nass Kovacs G, Gorel A, Foucar L, Barends TRM, Grünbein ML, Hilpert M, Kloos M, Roome CM, Shoeman RL, Stricker M, Tono K, You D, Ueda K, Sherrell DA, Owen RL, Schlichting I. Crystallography on a chip - without the chip: sheet-on-sheet sandwich. Acta Crystallogr D Struct Biol 2018; 74:1000-1007. [PMID: 30289410 PMCID: PMC6173051 DOI: 10.1107/s2059798318011634] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022] Open
Abstract
Crystallography chips are fixed-target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor-microfabrication techniques to yield an array of wells or through-holes in which single microcrystals can be lodged for raster-scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high-throughput sample presentation for serial diffraction data collection at synchrotron or X-ray free-electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip-less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet-on-sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre-sized crystals at an XFEL. The approach is also well suited to time-resolved pump-probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X-ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.
Collapse
Affiliation(s)
- R. Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Alexander Gorel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Lutz Foucar
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Mario Hilpert
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Marco Kloos
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Christopher M. Roome
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Robert L. Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Miriam Stricker
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, England
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Ren Z, Ayhan M, Bandara S, Bowatte K, Kumarapperuma I, Gunawardana S, Shin H, Wang C, Zeng X, Yang X. Crystal-on-crystal chips for in situ serial diffraction at room temperature. LAB ON A CHIP 2018; 18:2246-2256. [PMID: 29952383 PMCID: PMC6057835 DOI: 10.1039/c8lc00489g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology - first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution. Since room-temperature diffraction experiments naturally demand a large quantity of purified protein, sample economy is critically important for all steps of serial crystallography from crystallization, crystal delivery to data collection. Here we report the development and applications of "crystal-on-crystal" devices to facilitate large-scale in situ serial diffraction experiments on protein crystals of all sizes - large, small, or microscopic. We show that the monocrystalline quartz as a substrate material prevents vapor loss during crystallization and significantly reduces background X-ray scattering. These devices can be readily adopted at XFEL and synchrotron beamlines, which enable efficient delivery of hundreds to millions of crystals to the X-ray beam, with an overall protein consumption per dataset comparable to that of cryocrystallography.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
- Renz Research, Inc., Westmont, IL 60559, USA
- Corresponding authors: and
| | - Medine Ayhan
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sepalika Bandara
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kalinga Bowatte
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Indika Kumarapperuma
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Semini Gunawardana
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Heewhan Shin
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Cong Wang
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiaoli Zeng
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiaojing Yang
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, The University of Illinois at Chicago, Chicago, IL 60607, USA
- Corresponding authors: and
| |
Collapse
|
47
|
An iterative refinement method combining detector geometry optimization and diffraction model refinement in serial femtosecond crystallography. RADIATION DETECTION TECHNOLOGY AND METHODS 2018. [DOI: 10.1007/s41605-017-0034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Gicquel Y, Schubert R, Kapis S, Bourenkov G, Schneider T, Perbandt M, Betzel C, Chapman HN, Heymann M. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography. J Vis Exp 2018. [PMID: 29757285 PMCID: PMC6100780 DOI: 10.3791/57133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.
Collapse
Affiliation(s)
- Yannig Gicquel
- Center for Free Electron Laser Science, DESY; Department of Physics, University of Hamburg
| | - Robin Schubert
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg; Integrated Biology Infrastructure Life-Science Facility at the European XFEL (XBI)
| | - Svetlana Kapis
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg
| | | | | | - Markus Perbandt
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg
| | - Christian Betzel
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg; Integrated Biology Infrastructure Life-Science Facility at the European XFEL (XBI)
| | - Henry N Chapman
- Center for Free Electron Laser Science, DESY; Department of Physics, University of Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg
| | - Michael Heymann
- Center for Free Electron Laser Science, DESY; Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry;
| |
Collapse
|
49
|
Barnes CO, Gristick HB, Freund NT, Escolano A, Lyubimov AY, Hartweger H, West AP, Cohen AE, Nussenzweig MC, Bjorkman PJ. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun 2018; 9:1251. [PMID: 29593217 PMCID: PMC5871869 DOI: 10.1038/s41467-018-03632-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332gp120 glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332gp120 glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18's binding orientation provides additional contacts with N392gp120 and N386gp120 glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb-glycan interactions critical for using V3/N332gp120 bNAbs therapeutically and targeting their epitope for immunogen design.
Collapse
Affiliation(s)
- Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Department of Clinical Immunology and Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
50
|
Abstract
Macromolecular crystals are prone to a number of pathologies that result from aberrant molecular packing. Two common pathologies encountered in macromolecular crystals are rigid-body disorder and twinning. When a crystal displays one of these pathologies, its diffraction pattern is altered in a way that generally complicates structure determination. The severity of the underlying abnormalities varies from case to case, and sometimes the resulting alterations to the diffraction pattern are immediately obvious, while at other times they may go entirely unnoticed. Structure determination from a crystal that suffers from disorder or twinning may or may not be possible, depending on the specific nature of the pathology, and on how the data are handled. This chapter provides an introduction to these pathologies, with an emphasis on providing guidelines for identifying and overcoming them when they pose a threat to successful structure determination.
Collapse
|