1
|
Selden CR, LaBrie R, Ganley LC, Crocker DR, Peleg O, Perry DC, Reich HG, Sasaki M, Thibodeau PS, Isanta-Navarro J. Is our understanding of aquatic ecosystems sufficient to quantify ecologically driven climate feedbacks? GLOBAL CHANGE BIOLOGY 2024; 30:e17351. [PMID: 38837306 DOI: 10.1111/gcb.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.
Collapse
Affiliation(s)
- Corday R Selden
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Richard LaBrie
- Interdisciplinary Environmental Research Centre, TU Bergakademie Freiberg, Freiberg, Germany
| | - Laura C Ganley
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, USA
| | - Daniel R Crocker
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Ohad Peleg
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Danielle C Perry
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hannah G Reich
- Department of Biological Sciences, Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Mansfield, Connecticut, USA
| | - Patricia S Thibodeau
- School of Marine and Environmental Programs, University of New England, Biddeford, Maine, USA
| | | |
Collapse
|
2
|
Stevens BLF, Peacock EE, Crockford ET, Shalapyonok A, Neubert MG, Sosik HM. Distinct responses to warming within picoplankton communities across an environmental gradient. GLOBAL CHANGE BIOLOGY 2024; 30:e17316. [PMID: 38767231 DOI: 10.1111/gcb.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Picophytoplankton are a ubiquitous component of marine plankton communities and are expected to be favored by global increases in seawater temperature and stratification associated with climate change. Eukaryotic and prokaryotic picophytoplankton have distinct ecology, and global models predict that the two groups will respond differently to future climate scenarios. At a nearshore observatory on the Northeast US Shelf, however, decades of year-round monitoring have shown these two groups to be highly synchronized in their responses to environmental variability. To reconcile the differences between regional and global predictions for picophytoplankton dynamics, we here investigate the picophytoplankton community across the continental shelf gradient from the nearshore observatory to the continental slope. We analyze flow cytometry data from 22 research cruises, comparing the response of picoeukaryote and Synechococcus communities to environmental variability across time and space. We find that the mechanisms controlling picophytoplankton abundance differ across taxa, season, and distance from shore. Like the prokaryote, Synechococcus, picoeukaryote division rates are limited nearshore by low temperatures in winter and spring, and higher temperatures offshore lead to an earlier spring bloom. Unlike Synechococcus, picoeukaryote concentration in summer decreases dramatically in offshore surface waters and exhibits deeper subsurface maxima. The offshore picoeukaryote community appears to be nutrient limited in the summer and subject to much greater loss rates than Synechococcus. This work both produces and demonstrates the necessity of taxon- and site-specific knowledge for accurately predicting the responses of picophytoplankton to ongoing environmental change.
Collapse
Affiliation(s)
- Bethany L F Stevens
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Emily E Peacock
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - E Taylor Crockford
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Alexi Shalapyonok
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Beckett SJ, Demory D, Coenen AR, Casey JR, Dugenne M, Follett CL, Connell P, Carlson MCG, Hu SK, Wilson ST, Muratore D, Rodriguez-Gonzalez RA, Peng S, Becker KW, Mende DR, Armbrust EV, Caron DA, Lindell D, White AE, Ribalet F, Weitz JS. Disentangling top-down drivers of mortality underlying diel population dynamics of Prochlorococcus in the North Pacific Subtropical Gyre. Nat Commun 2024; 15:2105. [PMID: 38453897 PMCID: PMC10920773 DOI: 10.1038/s41467-024-46165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations. We find that incorporating photosynthetic growth with viral- and predator-induced mortality is sufficient to recapitulate daily oscillations of Prochlorococcus abundances with baseline community abundances. In doing so, we infer that grazers in this environment function as the predominant top-down factor despite high standing viral particle densities. The model-data fits also reveal the ecological relevance of light-dependent viral traits and non-canonical factors to cellular loss. Finally, we leverage sensitivity analyses to demonstrate how variation in life history traits across distinct oceanic contexts, including variation in viral adsorption and grazer clearance rates, can transform the quantitative and even qualitative importance of top-down controls in shaping Prochlorococcus population dynamics.
Collapse
Affiliation(s)
- Stephen J Beckett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - David Demory
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Sorbonne Université, CNRS, USR 3579, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Ashley R Coenen
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - John R Casey
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mathilde Dugenne
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Sorbonne Université, CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche-sur-Mer (LOV), Villefranche-sur-Mer, France
| | - Christopher L Follett
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Paige Connell
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Biology Department, San Diego Mesa College, San Diego, CA, USA
| | - Michael C G Carlson
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Sarah K Hu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Samuel T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Muratore
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Adobe, San Jose, CA, USA
| | - Kevin W Becker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Daniel R Mende
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Angelicque E White
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
- Institut de Biologie, École Normale Supérieure, Paris, France.
| |
Collapse
|
4
|
Thompson AW, Nyerges G, Lamberson KM, Sutherland KR. Ubiquitous filter feeders shape open ocean microbial community structure and function. PNAS NEXUS 2024; 3:pgae091. [PMID: 38505693 PMCID: PMC10949910 DOI: 10.1093/pnasnexus/pgae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
The mechanism of mortality plays a large role in how microorganisms in the open ocean contribute to global energy and nutrient cycling. Salps are ubiquitous pelagic tunicates that are a well-known mortality source for large phototrophic microorganisms in coastal and high-latitude systems, but their impact on the immense populations of smaller prokaryotes in the tropical and subtropical open ocean gyres is not well quantified. We used robustly quantitative techniques to measure salp clearance and enrichment of specific microbial functional groups in the North Pacific Subtropical Gyre, one of the largest ecosystems on Earth. We discovered that salps are a previously unknown predator of the globally abundant nitrogen fixer Crocosphaera; thus, salps restrain new nitrogen delivery to the marine ecosystem. We show that the ocean's two numerically dominant cells, Prochlorococcus and SAR11, are not consumed by salps, which offers a new explanation for the dominance of small cells in open ocean systems. We also identified a double bonus for Prochlorococcus, wherein it not only escapes salp predation but the salps also remove one of its major mixotrophic predators, the prymnesiophyte Chrysochromulina. When we modeled the interaction between salp mesh and particles, we found that cell size alone could not account for these prey selection patterns. Instead, the results suggest that alternative mechanisms, such as surface property, shape, nutritional quality, or even prey behavior, determine which microbial cells are consumed by salps. Together, these results identify salps as a major factor in shaping the structure, function, and ecology of open ocean microbial communities.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Györgyi Nyerges
- Department of Biology, Pacific University, Forest Grove, OR 97116, USA
| | - Kylee M Lamberson
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
5
|
Grone J, Poirier C, Abbott K, Wittmers F, Jaeger GS, Mahadevan A, Worden AZ. A single Prochlorococcus ecotype dominates the tropical Bay of Bengal with ultradian growth. Environ Microbiol 2024; 26:e16605. [PMID: 38517690 DOI: 10.1111/1462-2920.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/24/2024]
Abstract
The Bay of Bengal (BoB) spans >2.2 million km2 in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well-characterized. We analysed the BoB regions during the summer monsoon. Prochlorococcus ranged up to 3.14 × 105 cells mL-1 in the surface mixed layer, averaging 1.74 ± 0.46 × 105 in the upper 10 m and consistently higher than Synechococcus and eukaryotic phytoplankton. V1-V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 ± 1% of Prochlorococcus amplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 ± 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapid Prochlorococcus growth between 1.5 and 3.1 div day-1, based on cell cycle analysis, as confirmed by abundance-based estimates of 2.1 div day-1. Accumulation of Prochlorococcus produced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicate Prochlorococcus growth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production.
Collapse
Affiliation(s)
- Jonathan Grone
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kathleen Abbott
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | | - Amala Mahadevan
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
6
|
Bao Y, Ma Y, Liu W, Li X, Li Y, Zhou P, Feng Y, Delgado-Baquerizo M. Innovative strategy for the conservation of a millennial mausoleum from biodeterioration through artificial light management. NPJ Biofilms Microbiomes 2023; 9:69. [PMID: 37739940 PMCID: PMC10516906 DOI: 10.1038/s41522-023-00438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Artificial lights can cause critical microbial biodeterioration of heritage monuments by promoting the outbreak of phototrophic microbiomes when they are used for touristic viewing. Here, with the ultimate aim of providing innovative solutions for the conservation and visiting of such monuments, we conducted a pioneering two-year in situ manipulative experiment to evaluate the impacts of different artificial light wavelengths (i.e., blue, green and red lights compared to white light) on the phototrophic microbiome of a millennial Chinese imperial mausoleum. Our results show that artificial light can shape the ecophysiological features of the phototrophic bacteriome in this monument and reduce its potential for further biodeterioration. In general, Cyanobacteria dominated (42.0% of the total relative abundance) the phototrophic bacteriome of this cultural relic; however, they were also very sensitive to the choice of artificial light. Compared to white light, monochromatic light, especially green light, reduced Cyanobacteria abundances (18.6%) by decreasing photosynthetic pigment abundances (42.9%); decreased the abundances of heterotrophic species belonging to Proteobacteria (4.5%) and the proportion of genes (6.1%) associated with carbon (i.e., carbon fixation), nitrogen (i.e., denitrification), and sulfur (i.e., dissimilatory sulfate reduction) cycling; and further decreased organic acid (10.1-14.1%) production of the phototrophic bacteriome, which is known to be involved in biodeterioration. Taken together, our findings constitute a major advancement in understanding how light wavelengths influence the phototrophic microbiome in cultural relics, and we found that artificial lights with certain wavelengths (e.g., green light) can help long-term conservation while allowing tourism activities.
Collapse
Affiliation(s)
- Yuanyuan Bao
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China
| | - Yan Ma
- School of Architecture, Southeast University, 210096, Nanjing, PR China
| | - Wenjing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, 266237, Qingdao, PR China
| | - Xin Li
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China
| | - Yonghui Li
- School of Architecture, Southeast University, 210096, Nanjing, PR China.
| | - Peng Zhou
- Jiangning Cultural Heritage Protection Center, 211100, Nanjing, PR China
| | - Youzhi Feng
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China.
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, Jiangsu, PR China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| |
Collapse
|
7
|
Understanding opposing predictions of Prochlorococcus in a changing climate. Nat Commun 2023; 14:1445. [PMID: 36922531 PMCID: PMC10017810 DOI: 10.1038/s41467-023-36928-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Statistically derived species distribution models (SDMs) are increasingly used to predict ecological changes on a warming planet. For Prochlorococcus, the most abundant phytoplankton, an established statistical prediction conflicts with dynamical models as they predict large, opposite, changes in abundance. We probe the SDM at various spatial-temporal scales, showing that light and temperature fail to explain both temporal fluctuations and sharp spatial transitions. Strong correlations between changes in temperature and population emerge only at very large spatial scales, as transects pass through transitions between regions of high and low abundance. Furthermore, a two-state model based on a temperature threshold matches the original SDM in the surface ocean. We conclude that the original SDM has little power to predict changes when Prochlorococcus is already abundant, which resolves the conflict with dynamical models. Our conclusion suggests that SDMs should prove efficacy across multiple spatial-temporal scales before being trusted in a changing ocean.
Collapse
|
8
|
Wang C, Dong Y, Denis M, Wei Y, Li H, Zheng S, Zhang W, Xiao T. Diel variations in planktonic ciliate community structure in the northern South China Sea and tropical Western Pacific. Sci Rep 2023; 13:3843. [PMID: 36890185 PMCID: PMC9995376 DOI: 10.1038/s41598-023-30973-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Though diel variations are geographically widespread phenomena among phytoplankton and zooplankton, knowledge is limited regarding diel variations in planktonic ciliate (microzooplankton) community structure. In this study, we analyzed diel variations in community structure of planktonic ciliates in the northern South China Sea (nSCS) and tropical Western Pacific (tWP). Hydrological characteristics during day and night were slightly different over both the nSCS and tWP, while ciliate average abundance at night was clearly higher than in the day in the upper 200 m. In both the nSCS and tWP, abundance proportions of large size-fraction (> 30 μm) aloricate ciliates at night were higher than in the day. While for tintinnids, abundance proportion of large lorica oral diameter at night were lower than in the day. The relationship between environmental factors and ciliate abundance pointed out that depth and temperature were main factors influencing aloricate ciliate and tintinnid in both day and night. For some dominant tintinnid species, chlorophyll a was another important factor influencing their diel vertical distribution. Our results provide fundamental data for better understanding the mechanisms of planktonic ciliate community diel variation in the tropical Western Pacific Ocean.
Collapse
Affiliation(s)
- Chaofeng Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yi Dong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Michel Denis
- Aix Marseille Université, Université de Toulon, CNRS/INSU, IRD, Institut Méditerranéen d'Océanologie (MIO), 13288, Marseille Cedex 09, France
| | - Yuanyuan Wei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Haibo Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shan Zheng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
9
|
Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene. THE ISME JOURNAL 2023; 17:252-262. [PMID: 36357781 PMCID: PMC9860041 DOI: 10.1038/s41396-022-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Cyanopodoviruses affect the mortality and population dynamics of the unicellular picocyanobacteria Prochlorococcus and Synechococcus, the dominant primary producers in the oceans. Known cyanopodoviruses all contain the DNA polymerase gene (DNA pol) that is important for phage DNA replication and widely used in field quantification and diversity studies. However, we isolated 18 cyanopodoviruses without identifiable DNA pol. They form a new MPP-C clade that was separated from the existing MPP-A, MPP-B, and P-RSP2 clades. The MPP-C phages have the smallest genomes (37.3-37.9 kb) among sequenced cyanophages, and show longer latent periods than the MPP-B phages. Metagenomic reads of both clades are highly abundant in surface waters, but the MPP-C phages show higher relative abundance in surface waters than in deeper waters, while MPP-B phages have higher relative abundance in deeper waters. Our study reveals that cyanophages with distinct genomic contents and infection kinetics can exhibit different depth profiles in the oceans.
Collapse
|
10
|
Larkin AA, Hagstrom GI, Brock ML, Garcia NS, Martiny AC. Basin-scale biogeography of Prochlorococcus and SAR11 ecotype replication. THE ISME JOURNAL 2023; 17:185-194. [PMID: 36273241 PMCID: PMC9589681 DOI: 10.1038/s41396-022-01332-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00-22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - George I Hagstrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Melissa L Brock
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023; 186:47-62.e16. [PMID: 36608657 DOI: 10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.
Collapse
Affiliation(s)
- Thomas Hackl
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, the Netherlands.
| | - Raphaël Laurenceau
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Markus J Ankenbrand
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; University of Würzburg, Center for Computational and Theoretical Biology, 97070 Würzburg, Germany
| | - Christina Bliem
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Zev Cariani
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaina Thomas
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Keven D Dooley
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Aldo A Arellano
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Shane L Hogle
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Paul Berube
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Gabriel E Leventhal
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Ahmed A Zayed
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Matthew B Sullivan
- Department of Microbiology & Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Sallie W Chisholm
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023. [DOI: doi.org/10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Henderikx-Freitas F, Allen JG, Lansdorp BM, White AE. Diel variations in the estimated refractive index of bulk oceanic particles. OPTICS EXPRESS 2022; 30:44141-44159. [PMID: 36523096 DOI: 10.1364/oe.469565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The index of refraction (n) of particles is an important parameter in optical models that aims to extract particle size and carbon concentrations from light scattering measurements. An inadequate choice of n can critically affect the characterization and interpretation of optically-derived parameters, including those from satellite-based models which provide the current view of how biogeochemical processes vary over the global ocean. Yet, little is known about how n varies over time and space to inform such models. Particularly, in situ estimates of n for bulk water samples and at diel-resolving time scales are rare. Here, we demonstrate a method to estimate n using simultaneously and independently collected particulate beam attenuation coefficients, particle size distribution data, and a Mie theory model. We apply this method to surface waters of the North Pacific Subtropical Gyre (NPSG) at hourly resolution. Clear diel cycles in n were observed, marked by minima around local sunrise and maxima around sunset, qualitatively consistent with several laboratory-based estimates of n for specific phytoplankton species. A sensitivity analysis showed that the daily oscillation in n amplitude was somewhat insensitive to broad variations in method assumptions, ranging from 11.3 ± 4.3% to 16.9 ± 2.9%. Such estimates are crucial for improvement of algorithms that extract the particle size and production from bulk optical measurements, and could potentially help establish a link between n variations and changes in cellular composition of in situ particles.
Collapse
|
14
|
Muñoz-Marín MDC, Duhamel S, Björkman KM, Magasin JD, Díez J, Karl DM, García-Fernández JM. Differential Timing for Glucose Assimilation in Prochlorococcus and Coexistent Microbial Populations in the North Pacific Subtropical Gyre. Microbiol Spectr 2022; 10:e0246622. [PMID: 36098532 PMCID: PMC9602893 DOI: 10.1128/spectrum.02466-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The marine cyanobacterium Prochlorococcus can utilize glucose as a source of carbon. However, the relative importance of inorganic and organic carbon assimilation and the timing of glucose assimilation are still poorly understood in these numerically dominant cyanobacteria. Here, we investigated whole microbial community and group-specific primary production and glucose assimilation using incubations with radioisotopes combined with flow cytometry cell sorting. We also studied changes in the microbial community structure in response to glucose enrichments and analyzed the transcription of Prochlorocccus genes involved in carbon metabolism and photosynthesis. Our results showed a diel variation for glucose assimilation in Prochlorococcus, with maximum assimilation at midday and minimum at midnight (~2-fold change), which was different from that of the total microbial community. This suggests that the timing in glucose assimilation in Prochlorococcus is coupled to photosynthetic light reactions producing energy, it being more convenient for Prochlorococcus to show maximum glucose uptake precisely when the rest of microbial populations have their minimum glucose uptake. Many transcriptional responses to glucose enrichment occurred after 12- and 24-h periods, but community composition did not change. High-light Prochlorococcus strains were the most impacted by glucose addition, with transcript-level increases observed for genes in pathways for glucose metabolism, such as the pentose phosphate pathway, the Entner-Doudoroff pathway, glycolysis, respiration, and glucose transport. While Prochlorococcus C assimilation from glucose represented less than 0.1% of the bacterium's photosynthetic C fixation, increased assimilation during the day and glcH gene upregulation upon glucose enrichment indicate an important role of mixotrophic C assimilation by natural populations of Prochlorococcus. IMPORTANCE Several studies have demonstrated that Prochlorococcus, the most abundant photosynthetic organism on Earth, can assimilate organic molecules, such as amino acids, amino sugars, ATP, phosphonates, and dimethylsulfoniopropionate. This autotroph can also assimilate small amounts of glucose, supporting the hypothesis that Prochlorococcus is mixotrophic. Our results show, for the first time, a diel variability in glucose assimilation by natural populations of Prochlorococcus with maximum assimilation during midday. Based on our previous results, this indicates that Prochlorococcus could maximize glucose uptake by using ATP made during the light reactions of photosynthesis. Furthermore, Prochlorococcus showed a different timing of glucose assimilation from the total population, which may offer considerable fitness advantages over competitors "temporal niches." Finally, we observed transcriptional changes in some of the genes involved in carbon metabolism, suggesting that Prochlorococcus can use both pathways previously proposed in cyanobacteria to metabolize glucose.
Collapse
Affiliation(s)
- María del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory of Columbia University, Division of Biology and Paleo Environment, Palisades, New York, USA
| | - Karin M. Björkman
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, C-MORE Hale, Honolulu, Hawaii, USA
| | - Jonathan D. Magasin
- Ocean Sciences Department, University of California, Santa Cruz, California, USA
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - David M. Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, C-MORE Hale, Honolulu, Hawaii, USA
| | - José M. García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
15
|
Boudriga I, Thyssen M, Zouari A, Garcia N, Tedetti M, Bel Hassen M. Ultraphytoplankton community structure in subsurface waters along a North-South Mediterranean transect. MARINE POLLUTION BULLETIN 2022; 182:113977. [PMID: 35973245 DOI: 10.1016/j.marpolbul.2022.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Here we assessed the subsurface ultraphytoplanktonic (< 10 μm) community along a North-South round-trip Mediterranean transect as part of a MERITE-HIPPOCAMPE cruise campaign in April-May 2019. Temperature, salinity, and nutrient concentrations in subsurface waters (2-5 m depth) were also measured along the transect. The subsurface ultraphytoplankton community structure was resolved with a spatial resolution of few kilometers and temporal resolution of 30-min intervals using automated pulse shape recording flow cytometry. The subsurface waters were clustered into seven areas based on temperature and salinity characteristics. Synechococcus were by far the most abundant group in all prospected zones, and nanoeukaryotes were the main biomass component, representing up to 51 % of ultraphytoplanktonic carbon biomass. Apparent net primary productivity (NPP) followed a decreasing gradient along the transect from north to south and was mostly sustained by Synechococcus in all zones. These findings are likely to have implications in terms of the trophic transfer of contaminants in planktonic food webs, as they highlight the potential role of nanoplankton in contaminants bioaccumulation processes and the potential role of Synechococcus in a likely transfer via grazing activities.
Collapse
Affiliation(s)
- Ismail Boudriga
- Institut National des Sciences et Technologies de la Mer (INSTM), 28 rue 2 mars 1934, Salammbô 2025, Tunisia.
| | - Melilotus Thyssen
- Aix Marseille Uni., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Amel Zouari
- Institut National des Sciences et Technologies de la Mer (INSTM), 28 rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Nicole Garcia
- Aix Marseille Uni., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Marc Tedetti
- Aix Marseille Uni., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Malika Bel Hassen
- Institut National des Sciences et Technologies de la Mer (INSTM), 28 rue 2 mars 1934, Salammbô 2025, Tunisia
| |
Collapse
|
16
|
Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol 2022; 7:570-580. [PMID: 35365792 PMCID: PMC8975747 DOI: 10.1038/s41564-022-01088-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2-4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10-100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans.
Collapse
|
17
|
Eigemann F, Rahav E, Grossart HP, Aharonovich D, Sher D, Vogts A, Voss M. Phytoplankton exudates provide full nutrition to a subset of accompanying heterotrophic bacteria via carbon, nitrogen and phosphorus allocation. Environ Microbiol 2022; 24:2467-2483. [PMID: 35146867 DOI: 10.1111/1462-2920.15933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Marine bacteria rely on phytoplankton exudates as carbon sources (DOCp). Yet, it is unclear to what extent phytoplankton exudates also provide nutrients such as phytoplankton-derived N and P (DONp, DOPp). We address these questions by mesocosm exudate addition experiments with spent media from the ubiquitous pico-cyanobacterium Prochlorococcus to bacterial communities in contrasting ecosystems in the Eastern Mediterranean - a coastal and an open-ocean, oligotrophic station with and without on-top additions of inorganic nutrients. Inorganic nutrient addition did not lower the incorporation of exudate DONp, nor did it reduce alkaline phosphatase activity, suggesting that bacterial communities are able to exclusively cover their nitrogen and phosphorus demands with organic forms provided by phytoplankton exudates. Approximately half of the cells in each ecosystem took up detectable amounts of Prochlorococcus-derived C and N, yet based on 16S rRNA sequencing different bacterial genera were responsible for the observed exudate utilization patterns. In the coastal community, several phylotypes of Aureimarina, Psychrosphaera and Glaciecola responded positively to the addition of phytoplankton exudates, whereas phylotypes of Pseudoalteromonas increased and dominated the open-ocean communities. Together, our results strongly indicate that phytoplankton exudates provide coastal and open-ocean bacterial communities with organic carbon, nitrogen and phosphorus, and that phytoplankton exudate serve a full-fledged meal for the accompanying bacterial community in the nutrient-poor eastern Mediterranean. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Falk Eigemann
- Leibniz-Institute for Baltic Sea Research Warnemünde.,Water quality engineering, Technical University of Berlin
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa
| | | | | | - Daniel Sher
- Leon H. Charney School of Marine Sciences, University Haifa
| | - Angela Vogts
- Leibniz-Institute for Baltic Sea Research Warnemünde
| | - Maren Voss
- Leibniz-Institute for Baltic Sea Research Warnemünde
| |
Collapse
|
18
|
Morán XAG, García FC, Røstad A, Silva L, Al-Otaibi N, Irigoien X, Calleja ML. Diel dynamics of dissolved organic matter and heterotrophic prokaryotes reveal enhanced growth at the ocean's mesopelagic fish layer during daytime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150098. [PMID: 34508930 DOI: 10.1016/j.scitotenv.2021.150098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Contrary to epipelagic waters, where biogeochemical processes closely follow the light and dark periods, little is known about diel cycles in the ocean's mesopelagic realm. Here, we monitored the dynamics of dissolved organic matter (DOM) and planktonic heterotrophic prokaryotes every 2 h for one day at 0 and 550 m (a depth occupied by vertically migrating fishes during light hours) in oligotrophic waters of the central Red Sea. We additionally performed predator-free seawater incubations of samples collected from the same site both at midnight and at noon. Comparable in situ variability in microbial biomass and dissolved organic carbon concentration suggests a diel supply of fresh DOM in both layers. The presence of fishes in the mesopelagic zone during daytime likely promoted a sustained, longer growth of larger prokaryotic cells. The specific growth rates were consistently higher in the noon experiments from both depths (surface: 0.34 vs. 0.18 d-1, mesopelagic: 0.16 vs. 0.09 d-1). Heterotrophic prokaryotes in the mesopelagic layer were also more efficient at converting extant DOM into new biomass. These results suggest that the ocean's twilight zone receives a consistent diurnal supply of labile DOM from the diel vertical migration of fishes, enabling an unexpectedly active community of heterotrophic prokaryotes.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia.
| | - Francisca C García
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia; Environment and Sustainability Institute, University of Exeter, TR10 9FE Penryn, United Kingdom
| | - Anders Røstad
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia
| | - Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia
| | - Najwa Al-Otaibi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia; Department of Biology, College of Science, Taif University, Al-Hawiya 888, Saudi Arabia
| | | | - Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia; Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
19
|
Mattern JP, Glauninger K, Britten GL, Casey JR, Hyun S, Wu Z, Armbrust EV, Harchaoui Z, Ribalet F. A Bayesian approach to modeling phytoplankton population dynamics from size distribution time series. PLoS Comput Biol 2022; 18:e1009733. [PMID: 35030163 PMCID: PMC8794270 DOI: 10.1371/journal.pcbi.1009733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/27/2022] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
The rates of cell growth, division, and carbon loss of microbial populations are key parameters for understanding how organisms interact with their environment and how they contribute to the carbon cycle. However, the invasive nature of current analytical methods has hindered efforts to reliably quantify these parameters. In recent years, size-structured matrix population models (MPMs) have gained popularity for estimating division rates of microbial populations by mechanistically describing changes in microbial cell size distributions over time. Motivated by the mechanistic structure of these models, we employ a Bayesian approach to extend size-structured MPMs to capture additional biological processes describing the dynamics of a marine phytoplankton population over the day-night cycle. Our Bayesian framework is able to take prior scientific knowledge into account and generate biologically interpretable results. Using data from an exponentially growing laboratory culture of the cyanobacterium Prochlorococcus, we isolate respiratory and exudative carbon losses as critical parameters for the modeling of their population dynamics. The results suggest that this modeling framework can provide deeper insights into microbial population dynamics provided by size distribution time-series data.
Collapse
Affiliation(s)
- Jann Paul Mattern
- Ocean Sciences Department, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Kristof Glauninger
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Gregory L. Britten
- Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R. Casey
- Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Oceanography, University of Hawai‘i at Manoa, Honolulu, Hawaii, United States of America
| | - Sangwon Hyun
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, California, United States of America
| | - Zhen Wu
- Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - E. Virginia Armbrust
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Zaid Harchaoui
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Li L, Wu C, Huang D, Ding C, Wei Y, Sun J. Integrating Stochastic and Deterministic Process in the Biogeography of N 2-Fixing Cyanobacterium Candidatus Atelocyanobacterium Thalassa. Front Microbiol 2021; 12:654646. [PMID: 34745020 PMCID: PMC8566894 DOI: 10.3389/fmicb.2021.654646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
UCYN-A is one of the most widespread and important marine diazotrophs. Its unusual distribution in both cold/warm and coastal/oceanic waters challenges current understanding about what drives the biogeography of diazotrophs. This study assessed the community assembly processes of the nitrogen-fixing cyanobacterium UCYN-A, developing a framework of assembly processes underpinning the microbial biogeography and diversity. High-throughput sequencing and a qPCR approach targeting the nifH gene were used to investigate three tropical seas: the Bay of Bengal, the Western Pacific Ocean, and the South China Sea. Based on the neutral community model and two types of null models calculating the β-nearest taxon index and the normalized stochasticity ratio, we found that stochastic assembly processes could explain 66-92% of the community assembly; thus, they exert overwhelming influence on UCYN-A biogeography and diversity. Among the deterministic processes, temperature and coastal/oceanic position appeared to be the principal environmental factors driving UCYN-A diversity. In addition, a close linkage between assembly processes and UCYN-A abundance/diversity/drivers can provide clues for the unusual global distribution of UCYN-A.
Collapse
Affiliation(s)
- Liuyang Li
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Wu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Danyue Huang
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Changling Ding
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
21
|
Clayton S, Palevsky HI, Thompson L, Quay PD. Synoptic Mesoscale to Basin Scale Variability in Biological Productivity and Chlorophyll in the Kuroshio Extension Region. JOURNAL OF GEOPHYSICAL RESEARCH. OCEANS 2021; 126:e2021JC017782. [PMID: 35865352 PMCID: PMC9286389 DOI: 10.1029/2021jc017782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 06/15/2023]
Abstract
The Kuroshio current separates from the Japanese coast to become the eastward flowing Kuroshio Extension (KE) characterized by a strong latitudinal density front, high levels of mesoscale (eddy) energy, and high chlorophyll a (Chl). While satellite measurements of Chl show evidence of the impact of mesoscale eddies on the standing stock of phytoplankton, there have been very limited synoptic, spatially resolved in situ estimates of productivity in this region. Here, we present underway measurements of oxygen/argon supersaturation (ΔO2/Ar), a tracer of net biological productivity, for the KE made in spring, summer, and early autumn. We find large seasonal differences in the relationships between ΔO2/Ar, Chl, and sea level anomaly (SLA), a proxy for local thermocline depth deviations driven by mesoscale eddies derived from satellite observations. We show that the KE is a pronounced hotspot of high ΔO2/Ar in spring, but corresponding surface Chl values are low and have no correlation with ΔO2/Ar. In summer, there is a hotspot of productivity associated with the Oyashio front, where ΔO2/Ar and Chl are strongly positively correlated. In autumn, ΔO2/Ar and Chl are consistently low throughout the region and also positively correlated. By combining our analysis of the in situ ΔO2/Ar data with complementary Argo, BGC-Argo, repeat hydrography, and SLA observations, we infer the combination of physical and biological controls that drive the observed distributions of ΔO2/Ar and Chl. We find that the KE and Oyashio currents both act to supply nutrients laterally, fueling regions of high productivity in spring and summer, respectively.
Collapse
Affiliation(s)
- Sophie Clayton
- Department of Ocean and Earth SciencesOld Dominion UniversityNorfolkVAUSA
| | | | | | - Paul D. Quay
- School of OceanographyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
22
|
Cael BB, Dutkiewicz S, Henson S. Abrupt shifts in 21st-century plankton communities. SCIENCE ADVANCES 2021; 7:eabf8593. [PMID: 34714679 PMCID: PMC8555899 DOI: 10.1126/sciadv.abf8593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/10/2021] [Indexed: 05/28/2023]
Abstract
Marine microbial communities sustain ocean food webs and mediate global elemental cycles. These communities will change with climate; these changes can be gradual or foreseeable but likely have much more substantial consequences when sudden and unpredictable. In a complex virtual marine microbial ecosystem, we find that climate change–driven shifts over the 21st century are often abrupt, large in amplitude and extent, and unpredictable using standard early warning signals. Phytoplankton with unique resource needs, especially fast-growing species such as diatoms, are more prone to abrupt shifts. Abrupt shifts in biomass, productivity, and community structure are concentrated in Atlantic and Pacific subtropics. Abrupt changes in environmental variables such as temperature and nutrients rarely precede these ecosystem shifts, indicating that rapid community restructuring can occur in response to gradual environmental changes, particularly in nutrient supply rate ratios.
Collapse
Affiliation(s)
- B. B. Cael
- National Oceanography Centre, Southampton, UK
| | | | | |
Collapse
|
23
|
Groussman RD, Coesel SN, Durham BP, Armbrust EV. Diel-Regulated Transcriptional Cascades of Microbial Eukaryotes in the North Pacific Subtropical Gyre. Front Microbiol 2021; 12:682651. [PMID: 34659137 PMCID: PMC8511712 DOI: 10.3389/fmicb.2021.682651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Open-ocean surface waters host a diverse community of single-celled eukaryotic plankton (protists) consisting of phototrophs, heterotrophs, and mixotrophs. The productivity and biomass of these organisms oscillate over diel cycles, and yet the underlying transcriptional processes are known for few members of the community. Here, we examined a 4-day diel time series of transcriptional abundance profiles for the protist community (0.2-100 μm in cell size) in the North Pacific Subtropical Gyre near Station ALOHA. De novo assembly of poly-A+ selected metatranscriptomes yielded over 30 million contigs with taxonomic and functional annotations assigned to 54 and 25% of translated contigs, respectively. The completeness of the resulting environmental eukaryotic taxonomic bins was assessed, and 48 genera were further evaluated for diel patterns in transcript abundances. These environmental transcriptome bins maintained reproducible temporal partitioning of total gene family abundances, with haptophyte and ochrophyte genera generally showing the greatest diel partitioning of their transcriptomes. The haptophyte Phaeocystis demonstrated the highest proportion of transcript diel periodicity, while most other protists had intermediate levels of periodicity regardless of their trophic status. Dinoflagellates, except for the parasitoid genus Amoebophrya, exhibit the fewest diel oscillations of transcript abundances. Diel-regulated gene families were enriched in key metabolic pathways; photosynthesis, carbon fixation, and fatty acid biosynthesis gene families had peak times concentrated around dawn, while gene families involved in protein turnover (proteasome and protein processing) are most active during the high intensity daylight hours. TCA cycle, oxidative phosphorylation and fatty acid degradation predominantly peaked near dusk. We identified temporal pathway enrichments unique to certain taxa, including assimilatory sulfate reduction at dawn in dictyophytes and signaling pathways at early evening in haptophytes, pointing to possible taxon-specific channels of carbon and nutrients through the microbial community. These results illustrate the synchrony of transcriptional regulation to the diel cycle and how the protist community of the North Pacific Subtropical Gyre structures their transcriptomes to guide the daily flux of matter and energy through the gyre ecosystem.
Collapse
Affiliation(s)
- Ryan D. Groussman
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Sacha N. Coesel
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Bryndan P. Durham
- School of Oceanography, University of Washington, Seattle, WA, United States
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
24
|
Abstract
Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-to-night modulation of bubble-bursting dynamics as a possible cause of the SSA cycle. Sea spray aerosol (SSA) are an important way through which oceans can influence the atmosphere’s radiative properties. Here, the authors present measurements taken over a 42,000 km ship cruise in the Atlantic and Pacific Ocean and show that SSA number concentrations vary over a 24-hour cycle, possibly linked to surface water bubble-bursting dynamics.
Collapse
|
25
|
Landa M, Turk-Kubo KA, Cornejo-Castillo FM, Henke BA, Zehr JP. Critical Role of Light in the Growth and Activity of the Marine N 2-Fixing UCYN-A Symbiosis. Front Microbiol 2021; 12:666739. [PMID: 34025621 PMCID: PMC8139342 DOI: 10.3389/fmicb.2021.666739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022] Open
Abstract
The unicellular N2-fixing cyanobacteria UCYN-A live in symbiosis with haptophytes in the Braarudosphaera bigelowii lineage. Maintaining N2-fixing symbioses between two unicellular partners requires tight coordination of multiple biological processes including cell growth and division and, in the case of the UCYN-A symbiosis, N2 fixation of the symbiont and photosynthesis of the host. In this system, it is thought that the host photosynthesis supports the high energetic cost of N2 fixation, and both processes occur during the light period. However, information on this coordination is very limited and difficult to obtain because the UCYN-A symbiosis has yet to be available in culture. Natural populations containing the UCYN-A2 symbiosis were manipulated to explore the effects of alterations of regular light and dark periods and inhibition of host photosynthesis on N2 fixation (single cell N2 fixation rates), nifH gene transcription, and UCYN-A2 cell division (fluorescent in situ hybridization and nifH gene abundances). The results showed that the light period is critical for maintenance of regular patterns of gene expression, N2 fixation and symbiont replication and cell division. This study suggests a crucial role for the host as a producer of fixed carbon, rather than light itself, in the regulation and implementation of these cellular processes in UCYN-A.
Collapse
Affiliation(s)
- Marine Landa
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | | - Britt A Henke
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
26
|
Particulate Metabolites and Transcripts Reflect Diel Oscillations of Microbial Activity in the Surface Ocean. mSystems 2021; 6:6/3/e00896-20. [PMID: 33947808 PMCID: PMC8269247 DOI: 10.1128/msystems.00896-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Light fuels photosynthesis and organic matter production by primary producers in the sunlit ocean. The quantity and quality of the organic matter produced influence community function, yet in situ measurements of metabolites, the products of cellular metabolism, over the diel cycle are lacking. We evaluated community-level biochemical consequences of oscillations of light in the North Pacific Subtropical Gyre by quantifying 79 metabolites in particulate organic matter from 15 m every 4 h over 8 days. Total particulate metabolite concentration peaked at dusk and represented up to 2% of total particulate organic carbon (POC). The concentrations of 55/79 (70%) individual metabolites exhibited significant 24-h periodicity, with daily fold changes from 1.6 to 12.8, often greater than those of POC and flow cytometry-resolvable biomass, which ranged from 1.2 to 2.8. Paired metatranscriptome analysis revealed the taxa involved in production and consumption of a subset of metabolites. Primary metabolites involved in anabolism and redox maintenance had significant 24-h periodicity and diverse organisms exhibited diel periodicity in transcript abundance associated with these metabolites. Compounds with osmotic properties displayed the largest oscillations in concentration, implying rapid turnover and supporting prior evidence of functions beyond cell turgor maintenance. The large daily oscillation of trehalose paired with metatranscriptome and culture data showed that trehalose is produced by the nitrogen-fixing cyanobacterium Crocosphaera, likely to store energy for nighttime metabolism. Together, paired measurements of particulate metabolites and transcripts resolve strategies that microbes use to manage daily energy and redox oscillations and highlight dynamic metabolites with cryptic roles in marine microbial ecosystems.IMPORTANCE Fueled by light, phytoplankton produce the organic matter that supports ocean ecosystems and carbon sequestration. Ocean change impacts microbial metabolism with repercussions for biogeochemical cycling. As the small molecule products of cellular metabolism, metabolites often change rapidly in response to environmental conditions and form the basis of energy and nutrient management and storage within cells. By pairing measurements of metabolites and gene expression in the stratified surface ocean, we reveal strategies of microbial energy management over the day-night cycle and hypothesize that oscillating metabolites are important substrates for dark respiration by phytoplankton. These high-resolution diel measurements of in situ metabolite concentrations form the basis for future work into the specific roles these compounds play in marine microbial communities.
Collapse
|
27
|
Selective Uptake of Pelagic Microbial Community Members by Caribbean Reef Corals. Appl Environ Microbiol 2021; 87:AEM.03175-20. [PMID: 33674432 PMCID: PMC8091028 DOI: 10.1128/aem.03175-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/21/2021] [Indexed: 11/30/2022] Open
Abstract
We identify interactions between coral grazing behavior and the growth rates and cell abundances of pelagic microbial groups found surrounding a Caribbean reef. During incubation experiments with three reef corals, reductions in microbial cell abundance differed according to coral species and suggest specific coral or microbial mechanisms are at play. Coral reefs are possible sinks for microbes; however, the removal mechanisms at play are not well understood. Here, we characterize pelagic microbial groups at the CARMABI reef (Curaçao) and examine microbial consumption by three coral species: Madracis mirabilis, Porites astreoides, and Stephanocoenia intersepta. Flow cytometry analyses of water samples collected from a depth of 10 m identified 6 microbial groups: Prochlorococcus, three groups of Synechococcus, photosynthetic eukaryotes, and heterotrophic bacteria. Minimum growth rates (μ) for Prochlorococcus, all Synechococcus groups, and photosynthetic eukaryotes were 0.55, 0.29, and 0.45 μ day−1, respectively, and suggest relatively high rates of productivity despite low nutrient conditions on the reef. During a series of 5-h incubations with reef corals performed just after sunset or prior to sunrise, reductions in the abundance of photosynthetic picoeukaryotes, Prochlorococcus and Synechococcus cells, were observed. Of the three Synechococcus groups, one decreased significantly during incubations with each coral and the other two only with M. mirabilis. Removal of carbon from the water column is based on coral consumption rates of phytoplankton and averaged between 138 ng h−1 and 387 ng h−1, depending on the coral species. A lack of coral-dependent reduction in heterotrophic bacteria, differences in Synechococcus reductions, and diurnal variation in reductions of Synechococcus and Prochlorococcus, coinciding with peak cell division, point to selective feeding by corals. Our study indicates that bentho-pelagic coupling via selective grazing of microbial groups influences carbon flow and supports heterogeneity of microbial communities overlying coral reefs. IMPORTANCE We identify interactions between coral grazing behavior and the growth rates and cell abundances of pelagic microbial groups found surrounding a Caribbean reef. During incubation experiments with three reef corals, reductions in microbial cell abundance differed according to coral species and suggest specific coral or microbial mechanisms are at play. Peaks in removal rates of Prochlorococcus and Synechococcus cyanobacteria appear highest during postsunset incubations and coincide with microbial cell division. Grazing rates and effort vary across coral species and picoplankton groups, possibly influencing overall microbial composition and abundance over coral reefs. For reef corals, use of such a numerically abundant source of nutrition may be advantageous, especially under environmentally stressful conditions when symbioses with dinoflagellate algae break down.
Collapse
|
28
|
|
29
|
Dutkiewicz S, Boyd PW, Riebesell U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. GLOBAL CHANGE BIOLOGY 2021; 27:1196-1213. [PMID: 33342048 PMCID: PMC7986797 DOI: 10.1111/gcb.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/01/2023]
Abstract
Climate-change-induced alterations of oceanic conditions will lead to the ecological niches of some marine phytoplankton species disappearing, at least regionally. How will such losses affect the ecosystem and the coupled biogeochemical cycles? Here, we couch this question in terms of ecological redundancy (will other species be able to fill the ecological roles of the extinct species) and biogeochemical redundancy (can other species replace their biogeochemical roles). Prior laboratory and field studies point to a spectrum in the degree of redundancy. We use a global three-dimensional computer model with diverse planktonic communities to explore these questions further. The model includes 35 phytoplankton types that differ in size, biogeochemical function and trophic strategy. We run two series of experiments in which single phytoplankton types are either partially or fully eliminated. The niches of the targeted types were not completely reoccupied, often with a reduction in the transfer of matter from autotrophs to heterotrophs. Primary production was often decreased, but sometimes increased due to reduction in grazing pressure. Complex trophic interactions (such as a decrease in the stocks of a predator's grazer) led to unexpected reshuffling of the community structure. Alterations in resource utilization may cause impacts beyond the regions where the type went extinct. Our results suggest a lack of redundancy, especially in the 'knock on' effects on higher trophic levels. Redundancy appeared lowest for types on the edges of trait space (e.g. smallest) or with unique competitive strategies. Though highly idealized, our modelling findings suggest that the results from laboratory or field studies often do not adequately capture the ramifications of functional redundancy. The modelled, often counterintuitive, responses-via complex food web interactions and bottom-up versus top-down controls-indicate that changes in planktonic community will be key determinants of future ocean global change ecology and biogeochemistry.
Collapse
Affiliation(s)
- Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Global Change ScienceMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Philip W. Boyd
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| |
Collapse
|
30
|
Ofaim S, Sulheim S, Almaas E, Sher D, Segrè D. Dynamic Allocation of Carbon Storage and Nutrient-Dependent Exudation in a Revised Genome-Scale Model of Prochlorococcus. Front Genet 2021; 12:586293. [PMID: 33633777 PMCID: PMC7900632 DOI: 10.3389/fgene.2021.586293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/14/2021] [Indexed: 12/02/2022] Open
Abstract
Microbial life in the oceans impacts the entire marine ecosystem, global biogeochemistry and climate. The marine cyanobacterium Prochlorococcus, an abundant component of this ecosystem, releases a significant fraction of the carbon fixed through photosynthesis, but the amount, timing and molecular composition of released carbon are still poorly understood. These depend on several factors, including nutrient availability, light intensity and glycogen storage. Here we combine multiple computational approaches to provide insight into carbon storage and exudation in Prochlorococcus. First, with the aid of a new algorithm for recursive filling of metabolic gaps (ReFill), and through substantial manual curation, we extended an existing genome-scale metabolic model of Prochlorococcus MED4. In this revised model (iSO595), we decoupled glycogen biosynthesis/degradation from growth, thus enabling dynamic allocation of carbon storage. In contrast to standard implementations of flux balance modeling, we made use of forced influx of carbon and light into the cell, to recapitulate overflow metabolism due to the decoupling of photosynthesis and carbon fixation from growth during nutrient limitation. By using random sampling in the ensuing flux space, we found that storage of glycogen or exudation of organic acids are favored when the growth is nitrogen limited, while exudation of amino acids becomes more likely when phosphate is the limiting resource. We next used COMETS to simulate day-night cycles and found that the model displays dynamic glycogen allocation and exudation of organic acids. The switch from photosynthesis and glycogen storage to glycogen depletion is associated with a redistribution of fluxes from the Entner–Doudoroff to the Pentose Phosphate pathway. Finally, we show that specific gene knockouts in iSO595 exhibit dynamic anomalies compatible with experimental observations, further demonstrating the value of this model as a tool to probe the metabolic dynamic of Prochlorococcus.
Collapse
Affiliation(s)
- Shany Ofaim
- Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, United States.,Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Snorre Sulheim
- Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, United States.,Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Daniel Sher
- Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Daniel Segrè
- Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, United States.,Department of Biomedical Engineering, Boston University, Boston, MA, United States.,Department of Physics, Boston University, Boston, MA, United States.,Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
31
|
Predetermined clockwork microbial worlds: Current understanding of aquatic microbial diel response from model systems to complex environments. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:163-191. [PMID: 32948266 DOI: 10.1016/bs.aambs.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the photic zone of aquatic ecosystems, microorganisms with different metabolisms and their viruses form complex interactions and food webs. Within these interactions, phototrophic microorganisms such as eukaryotic microalgae and cyanobacteria interact directly with sunlight, and thereby generate circadian rhythms. Diel cycling originally generated in microbial phototrophs is directly transmitted toward heterotrophic microorganisms utilizing the photosynthetic products as they are excreted or exuded. Such diel cycling seems to be indirectly propagated toward heterotrophs as a result of complex biotic interactions. For example, cell death of phototrophic microorganisms induced by viral lysis and protistan grazing provides additional resources of dissolved organic matter to the microbial community, and so generates diel cycling in other heterotrophs with different nutrient dependencies. Likewise, differences in the diel transmitting pathway via complex interactions among heterotrophs, and between heterotrophs and their viruses, may also generate higher variation and time lag diel rhythms in different heterotrophic taxa. Thus, sunlight and photosynthesis not only contribute energy and carbon supply, but also directly or indirectly control diel cycling of the microbial community through complex interactions in the photic zone of aquatic ecosystems.
Collapse
|
32
|
Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, Beckett SJ, Shitrit D, Weitz JS, Armbrust EV, Lindell D. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME JOURNAL 2020; 15:41-54. [PMID: 32918065 PMCID: PMC7853090 DOI: 10.1038/s41396-020-00752-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Long-term stability of picocyanobacteria in the open oceans is maintained by a balance between synchronous division and death on daily timescales. Viruses are considered a major source of microbial mortality, however, current methods to measure infection have significant methodological limitations. Here we describe a method that pairs flow-cytometric sorting with a PCR-based polony technique to simultaneously screen thousands of taxonomically resolved individual cells for intracellular virus DNA, enabling sensitive, high-throughput, and direct quantification of infection by different virus lineages. Under controlled conditions with picocyanobacteria-cyanophage models, the method detected infection throughout the lytic cycle and discriminated between varying infection levels. In North Pacific subtropical surface waters, the method revealed that only a small percentage of Prochlorococcus (0.35–1.6%) were infected, predominantly by T4-like cyanophages, and that infection oscillated 2-fold in phase with the diel cycle. This corresponds to 0.35–4.8% of Prochlorococcus mortality daily. Cyanophages were 2–4-fold more abundant than Prochlorococcus, indicating that most encounters did not result in infection and suggesting infection is mitigated via host resistance, reduced phage infectivity and inefficient adsorption. This method will enable quantification of infection for key microbial taxa across oceanic regimes and will help determine the extent that viruses shape microbial communities and ecosystem level processes.
Collapse
Affiliation(s)
- Noor Mruwat
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michael C G Carlson
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Svetlana Goldin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Shay Kirzner
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yotam Hulata
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen J Beckett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dror Shitrit
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
33
|
Prochlorococcus Cells Rely on Microbial Interactions Rather than on Chlorotic Resting Stages To Survive Long-Term Nutrient Starvation. mBio 2020; 11:mBio.01846-20. [PMID: 32788385 PMCID: PMC7439483 DOI: 10.1128/mbio.01846-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability of microorganisms to withstand long periods of nutrient starvation is key to their survival and success under highly fluctuating conditions that are common in nature. Therefore, one would expect this trait to be prevalent among organisms in the nutrient-poor open ocean. Here, we show that this is not the case for Prochlorococcus, a globally abundant and ecologically important marine cyanobacterium. Instead, Prochlorococcus relies on co-occurring heterotrophic bacteria to survive extended phases of nutrient and light starvation. Our results highlight the power of microbial interactions to drive major biogeochemical cycles in the ocean and elsewhere with consequences at the global scale. Many microorganisms produce resting cells with very low metabolic activity that allow them to survive phases of prolonged nutrient or energy stress. In cyanobacteria and some eukaryotic phytoplankton, the production of resting stages is accompanied by a loss of photosynthetic pigments, a process termed chlorosis. Here, we show that a chlorosis-like process occurs under multiple stress conditions in axenic laboratory cultures of Prochlorococcus, the dominant phytoplankton linage in large regions of the oligotrophic ocean and a global key player in ocean biogeochemical cycles. In Prochlorococcus strain MIT9313, chlorotic cells show reduced metabolic activity, measured as C and N uptake by Nanoscale secondary ion mass spectrometry (NanoSIMS). However, unlike many other cyanobacteria, chlorotic Prochlorococcus cells are not viable and do not regrow under axenic conditions when transferred to new media. Nevertheless, cocultures with a heterotrophic bacterium, Alteromonas macleodii HOT1A3, allowed Prochlorococcus to survive nutrient starvation for months. We propose that reliance on co-occurring heterotrophic bacteria, rather than the ability to survive extended starvation as resting cells, underlies the ecological success of Prochlorococcus.
Collapse
|
34
|
Henderikx Freitas F, Dugenne M, Ribalet F, Hynes A, Barone B, Karl DM, White AE. Diel variability of bulk optical properties associated with the growth and division of small phytoplankton in the North Pacific Subtropical Gyre. APPLIED OPTICS 2020; 59:6702-6716. [PMID: 32749375 DOI: 10.1364/ao.394123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation (cp) and backscattering (bbp) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in cp and bbp to daytime particle growth and division of cells, with particles <7µm driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacterium Crocosphaera (∼4-7µm) to be an important driver of cp at the time of sampling, whereas Prochlorococcus dynamics (∼0.5µm) were essential to reproducing temporal variability in bbp. This study is a step towards improved characterization of the particle size range represented by in situ bulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.
Collapse
|
35
|
Fowler BL, Neubert MG, Hunter-Cevera KR, Olson RJ, Shalapyonok A, Solow AR, Sosik HM. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. Proc Natl Acad Sci U S A 2020; 117:12215-12221. [PMID: 32414929 PMCID: PMC7275697 DOI: 10.1073/pnas.1918439117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.
Collapse
Affiliation(s)
- Bethany L Fowler
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | | | - Robert J Olson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Alexi Shalapyonok
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Andrew R Solow
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;
| |
Collapse
|
36
|
Chen Y, Zeng Q. Temporal transcriptional patterns of cyanophage genes suggest synchronized infection of cyanobacteria in the oceans. MICROBIOME 2020; 8:68. [PMID: 32430017 PMCID: PMC7238727 DOI: 10.1186/s40168-020-00842-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Based on the peak expression times during infection, early, middle, and late genes have been characterized in viruses (cyanophages) that infect the unicellular cyanobacterium Prochlorococcus. Laboratory experiments show that some cyanophages can only replicate in the light and thus exhibit diurnal infection rhythms under light-dark cycles. Field evidence also suggests synchronized infection of Prochlorococcus by cyanophages in the oceans, which should result in progressive expression of cyanophage early, middle, and late genes. However, distinct temporal expression patterns have not been observed in cyanophage field populations. RESULTS In this study, we reanalyzed a previous metatranscriptomic dataset collected in the North Pacific Subtropical Gyre. In this dataset, it was previously shown that aggregate transcripts from cyanophage scaffolds display diurnal transcriptional rhythms with transcript abundances decreasing at night. By mapping metatranscriptomic reads to individual viral genes, we identified periodically expressed genes from putative viruses infecting the cyanobacteria Prochlorococcus and Synechococcus, heterotrophic bacteria, and algae. Of the 41 cyanophage genes, 35 were from cyanomyoviruses. We grouped the periodically expressed cyanomyovirus genes into early, middle, and late genes based on the conserved temporal expression patterns of their orthologs in cyanomyovirus laboratory cultures. We found that the peak expression times of late genes in cyanophage field populations were significantly later than those of early and middle genes, which were similar to the temporal expression patterns of synchronized cyanophage laboratory cultures. CONCLUSIONS The significantly later peak expression times of late genes in cyanomyovirus field populations suggest that cyanophage infection of Prochlorococcus is synchronized in the North Pacific Subtropical Gyre. The night-time peak expression of late genes also suggests synchronized lysis of Prochlorococcus at night, which might result in synchronized release of dissolved organic matter to the marine food web. Video abstract.
Collapse
Affiliation(s)
- Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST Shenzhen Research Institute, Shenzhen, China.
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
37
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
38
|
Coenen AR, Hu SK, Luo E, Muratore D, Weitz JS. A Primer for Microbiome Time-Series Analysis. Front Genet 2020; 11:310. [PMID: 32373155 PMCID: PMC7186479 DOI: 10.3389/fgene.2020.00310] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.
Collapse
Affiliation(s)
- Ashley R. Coenen
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Sarah K. Hu
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, United States
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, United States
| | - Daniel Muratore
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Joshua S. Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
39
|
Weber L, Apprill A. Diel, daily, and spatial variation of coral reef seawater microbial communities. PLoS One 2020; 15:e0229442. [PMID: 32160233 PMCID: PMC7065756 DOI: 10.1371/journal.pone.0229442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Reef organisms influence microorganisms within the surrounding seawater, yet the spatial and temporal dynamics of seawater microbial communities located in proximity to corals are rarely investigated. To better understand reef seawater microbial community dynamics over time and space, we collected small-volume seawater samples during the day and night over a 72 hour period from three locations that differed in spatial distance from 5 Porites astreoides coral colonies on a shallow reef in St. John, U.S. Virgin Islands: near-coral (sampled 5 cm horizontally from each colony), reef-depth (sampled 2 m above each colony) and surface seawater (sampled 1 m from the seawater surface). At all time points and locations, we quantified abundances of microbial cells, sequenced small subunit rRNA genes of bacterial and archaeal communities, and measured inorganic nutrient concentrations. Prochlorococcus and Synechococcus cells were consistently elevated at night compared to day and these abundances changed over time, corresponding with temperature, nitrite, and silicate concentrations. During the day, bacterial and archaeal alpha diversity was significantly higher in reef-depth and near-coral seawater compared to the surface seawater, signifying that the reef influences the diversity of the seawater microorganisms. At night, alpha diversity decreased across all samples, suggesting that photosynthesis may favor a more taxonomically diverse community. While Prochlorococcus exhibited consistent temporal rhythmicity, additional taxa were enriched in reef seawater at night compared to day or in reef-depth compared to surface seawater based on their normalized sequence counts. There were some significant differences in nutrient concentrations and cell abundances between reef-depth and near-coral seawater but no clear trends. This study demonstrates that temporal variation supersedes small-scale spatial variation in proximity to corals in reef seawater microbial communities. As coral reefs continue to change in benthic composition worldwide, monitoring microbial composition in response to temporal changes and environmental fluctuations will help discern normal variability from longer lasting changes attributed to anthropogenic stressors and global climate change.
Collapse
Affiliation(s)
- Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- MIT-WHOI Joint PhD Program in Biological Oceanography, Woods Hole, MA, United States of America
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- * E-mail:
| |
Collapse
|
40
|
Bižić M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M, Muro-Pastor AM, Eckert W, Urich T, Keppler F, Grossart HP. Aquatic and terrestrial cyanobacteria produce methane. SCIENCE ADVANCES 2020; 6:eaax5343. [PMID: 31998836 PMCID: PMC6962044 DOI: 10.1126/sciadv.aax5343] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/19/2019] [Indexed: 05/08/2023]
Abstract
Evidence is accumulating to challenge the paradigm that biogenic methanogenesis, considered a strictly anaerobic process, is exclusive to archaea. We demonstrate that cyanobacteria living in marine, freshwater, and terrestrial environments produce methane at substantial rates under light, dark, oxic, and anoxic conditions, linking methane production with light-driven primary productivity in a globally relevant and ancient group of photoautotrophs. Methane production, attributed to cyanobacteria using stable isotope labeling techniques, was enhanced during oxygenic photosynthesis. We suggest that the formation of methane by cyanobacteria contributes to methane accumulation in oxygen-saturated marine and limnic surface waters. In these environments, frequent cyanobacterial blooms are predicted to further increase because of global warming potentially having a direct positive feedback on climate change. We conclude that this newly identified source contributes to the current natural methane budget and most likely has been producing methane since cyanobacteria first evolved on Earth.
Collapse
Affiliation(s)
- M. Bižić
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, D-16775 Stechlin, Germany
- Corresponding author. (M.B.); (H.-P.G.)
| | - T. Klintzsch
- Institute of Earth Sciences, Biogeochemistry Group, Heidelberg University, Heidelberg, Germany
| | - D. Ionescu
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, D-16775 Stechlin, Germany
| | - M. Y. Hindiyeh
- Department of Water and Environmental Engineering, German Jordanian University, Amman, Jordan
| | - M. Günthel
- Department of Biosciences, Swansea University, SA2 8PP Swansea, UK
- Medical University of Gdańsk, Department of International Research Agenda 3P–Medicine, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - A. M. Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - W. Eckert
- Israel Oceanographic and Limnological Research, Yigal Allon Kinneret Limnological Laboratory, Migdal 14650, Israel
| | - T. Urich
- Institute of Microbiology, Center for Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - F. Keppler
- Institute of Earth Sciences, Biogeochemistry Group, Heidelberg University, Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, 69120 Heidelberg, Germany
| | - H.-P. Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, D-16775 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
- Corresponding author. (M.B.); (H.-P.G.)
| |
Collapse
|
41
|
Morimoto D, Tominaga K, Nishimura Y, Yoshida N, Kimura S, Sako Y, Yoshida T. Cooccurrence of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 2019; 85:e01170-19. [PMID: 31324627 PMCID: PMC6715842 DOI: 10.1128/aem.01170-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Viruses play important roles in regulating the abundance and composition of bacterial populations in aquatic ecosystems. The bloom-forming toxic cyanobacterium Microcystis aeruginosa is predicted to interact with diverse cyanoviruses, resulting in Microcystis population diversification. However, current knowledge of the genomes from these viruses and their infection programs is limited to those of Microcystis virus Ma-LMM01. Here, we performed a time series sampling at a small pond in Japan during a Microcystis bloom and then investigated the genomic information and transcriptional dynamics of Microcystis-interacting viruses using metagenomic and metatranscriptomic approaches. We identified 15 viral genomic fragments classified into three groups, groups I (including Ma-LMM01), II (high abundance and transcriptional activity), and III (new lineages). According to the phylogenetic distribution of Microcystis strains possessing spacers against each viral group, the group II-original viruses interacted with all three phylogenetically distinct Microcystis population types (phylotypes), whereas the groups I and III-original viruses interacted with only one or two phylotypes, indicating the cooccurrence of broad- (group II) and narrow (groups I and III)-host-range viruses in the bloom. These viral fragments showed the highest transcriptional levels during daytime regardless of their genomic differences. Interestingly, M. aeruginosa expressed antiviral defense genes in the environment, unlike what was seen with an Ma-LMM01 infection in a previous culture experiment. Given that broad-host-range viruses often induce antiviral responses within alternative hosts, our findings suggest that such antiviral responses might inhibit viral multiplication, mainly that of broad-host-range viruses like those in group II.IMPORTANCE The bloom-forming toxic cyanobacterium Microcystis aeruginosa is thought to have diversified its population through the interactions between host and viruses in antiviral defense systems. However, current knowledge of viral genomes and infection programs is limited to those of Microcystis virus Ma-LMM01, which was a narrow host range in which it can escape from the highly abundant host defense systems. Our metagenomic approaches unveiled the cooccurrence of narrow- and broad-host-range Microcystis viruses, which included fifteen viral genomic fragments from Microcystis blooms that were classified into three groups. Interestingly, Microcystis antiviral defense genes were expressed against viral infection in the environment, unlike what was seen in a culture experiment with Ma-LMM01. Given that viruses with a broad host range often induce antiviral responses within alternative hosts, our findings suggest that antiviral responses inhibit viral reproduction, especially that of broad-range viruses like those in group II. This paper augments our understanding of the interactions between M. aeruginosa and its viruses and fills an important knowledge gap.
Collapse
Affiliation(s)
- Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Tominaga
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Naohiro Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeko Kimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Shiga, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep 2019; 9:2044. [PMID: 30765793 PMCID: PMC6376012 DOI: 10.1038/s41598-019-38507-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Oligotrophic and productive areas of the ocean differ in plankton community composition and biomass transfer efficiency. Here, we describe the plankton community along a latitudinal transect in the tropical and subtropical Atlantic Ocean. Prochlorococcus dominated the autotrophic community at the surface and mixed layer of oligotrophic stations, replaced by phototrophic picoeukaryotes and Synechococcus in productive waters. Depth-integrated biomass of microzooplankton was higher than mesozooplankton at oligotrophic stations, showing similar biomasses in productive waters. Dinoflagellates dominated in oligotrophic waters but ciliates dominated upwelling regions. In oligotrophic areas, microzooplankton consumed ca. 80% of the production, but ca. 66% in upwelling zones. Differences in microzooplankton and phytoplankton communities explain microzooplankton diel feeding rhythms: higher grazing rates during daylight in oligotrophic areas and diffuse grazing patterns in productive waters. Oligotrophic areas were more efficient at recycling and using nutrients through phytoplankton, while the energy transfer efficiency from nutrients to mesozooplankton appeared more efficient in productive waters. Our results support the classic paradigm of a shorter food web, and more efficient energy transfer towards upper food web levels in productive regions, but a microbially dominated, and very efficient, food web in oligotrophic regions. Remarkably, both models of food web exist under very high microzooplankton herbivory.
Collapse
Affiliation(s)
- Laia Armengol
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain.
| | - Albert Calbet
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Gara Franchy
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain
| | - Adriana Rodríguez-Santos
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain
| | - Santiago Hernández-León
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
43
|
Uncertainties in the Geostationary Ocean Color Imager (GOCI) Remote Sensing Reflectance for Assessing Diurnal Variability of Biogeochemical Processes. REMOTE SENSING 2019. [DOI: 10.3390/rs11030295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Short-term (sub-diurnal) biological and biogeochemical processes cannot be fully captured by the current suite of polar-orbiting satellite ocean color sensors, as their temporal resolution is limited to potentially one clear image per day. Geostationary sensors, such as the Geostationary Ocean Color Imager (GOCI) from the Republic of Korea, allow the study of these short-term processes because their orbit permit the collection of multiple images throughout each day for any area within the sensor’s field of regard. Assessing the capability to detect sub-diurnal changes in in-water properties caused by physical and biogeochemical processes characteristic of open ocean and coastal ocean ecosystems, however, requires an understanding of the uncertainties introduced by the instrument and/or geophysical retrieval algorithms. This work presents a study of the uncertainties during the daytime period for an ocean region with characteristically low-productivity with the assumption that only small and undetectable changes occur in the in-water properties due to biogeochemical processes during the daytime period. The complete GOCI mission data were processed using NASA’s SeaDAS/l2gen package. The assumption of homogeneity of the study region was tested using three-day sequences and diurnal statistics. This assumption was found to hold based on the minimal diurnal and day-to-day variability in GOCI data products. Relative differences with respect to the midday value were calculated for each hourly observation of the day in order to investigate what time of the day the variability is greater. Also, the influence of the solar zenith angle in the retrieval of remote sensing reflectances and derived products was examined. Finally, we determined that the uncertainties in water-leaving “remote-sensing” reflectance (Rrs) for the 412, 443, 490, 555, 660 and 680 nm bands on GOCI are 8.05 × 10−4, 5.49 × 10−4, 4.48 × 10−4, 2.51 × 10−4, 8.83 × 10−5, and 1.36 × 10−4 sr−1, respectively, and 1.09 × 10−2 mg m−3 for the chlorophyll-a concentration (Chl-a), 2.09 × 10−3 m−1 for the absorption coefficient of chromophoric dissolved organic matter at 412 nm (ag (412)), and 3.7 mg m−3 for particulate organic carbon (POC). These Rrs values can be considered the threshold values for detectable changes of the in-water properties due to biological, physical or biogeochemical processes from GOCI.
Collapse
|
44
|
Berthelot H, Duhamel S, L'Helguen S, Maguer JF, Wang S, Cetinić I, Cassar N. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME JOURNAL 2018; 13:651-662. [PMID: 30323264 DOI: 10.1038/s41396-018-0285-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/09/2018] [Accepted: 09/08/2018] [Indexed: 12/16/2022]
Abstract
Nitrogen (N) is a limiting nutrient in vast regions of the world's oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3-), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3- represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3- uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3- uptake within groups facilitates adaptation to the fluctuating availability of NO3- in the environment.
Collapse
Affiliation(s)
- Hugo Berthelot
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France.
| | - Solange Duhamel
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY, 10964, USA
| | - Stéphane L'Helguen
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Jean-Francois Maguer
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Seaver Wang
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Ivona Cetinić
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Code 616, Greenbelt, MD, USA.,GESTAR/Universities Space Research Association, Columbia, MD, USA
| | - Nicolas Cassar
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France. .,Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
45
|
Ma X, Coleman ML, Waldbauer JR. Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine cyanobacteria. Environ Microbiol 2018; 20:3001-3011. [PMID: 30047191 DOI: 10.1111/1462-2920.14338] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 11/29/2022]
Abstract
Dissolved organic matter (DOM) plays a central role in the microbial ecology and biogeochemistry of aquatic environments, yet little is known about how the mechanism of DOM release from its ultimate source, primary producer biomass, affects the molecular composition of the inputs to the dissolved pool. Here we used a model marine phytoplankton, the picocyanobacterium Synechococcus WH7803, to compare the composition of DOM released by three mechanisms: exudation, mechanical cell lysis and infection by the lytic phage S-SM1. A broad, untargeted analytical approach reveals the complexity of this freshly sourced DOM, and comparative analysis between DOM produced by the different mechanisms suggests that exudation and viral lysis are sources of unsaturated, oxygen-rich and possibly novel biomolecules. Furthermore, viral lysis of WH7803 by S-SM1 releases abundant peptides derived from specific proteolysis of the major light-harvesting protein phycoerythrin, raising the possibility that phage infection of these abundant cyanobacteria could be a significant source of high molecular weight dissolved organic nitrogen compounds.
Collapse
Affiliation(s)
- Xiufeng Ma
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
46
|
Volpert A, Graff van Creveld S, Rosenwasser S, Vardi A. Diurnal fluctuations in chloroplast GSH redox state regulate susceptibility to oxidative stress and cell fate in a bloom-forming diatom. JOURNAL OF PHYCOLOGY 2018; 54:329-341. [PMID: 29505088 DOI: 10.1111/jpy.12638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light-dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox-sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle-specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH ) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark-dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re-oxidation was observed upon re-illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light-dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light-dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.
Collapse
Affiliation(s)
- Adi Volpert
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shiri Graff van Creveld
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shilo Rosenwasser
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Assaf Vardi
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
47
|
Heterotroph Interactions Alter Prochlorococcus Transcriptome Dynamics during Extended Periods of Darkness. mSystems 2018; 3:mSystems00040-18. [PMID: 29854954 PMCID: PMC5974335 DOI: 10.1128/msystems.00040-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes evolve within complex ecological communities where biotic interactions impact both individual cells and the environment as a whole. Here we examine how cellular regulation in the marine cyanobacterium Prochlorococcus is influenced by a heterotrophic bacterium, Alteromonas macleodii, under different light conditions. We monitored the transcriptome of Prochlorococcus, grown either alone or in coculture, across a diel light:dark cycle and under the stress of extended darkness-a condition that cells would experience when mixed below the ocean's euphotic zone. More Prochlorococcus transcripts exhibited 24-h periodic oscillations in coculture than in pure culture, both over the normal diel cycle and after the shift to extended darkness. This demonstrates that biotic interactions, and not just light, can affect timing mechanisms in Prochlorococcus, which lacks a self-sustaining circadian oscillator. The transcriptomes of replicate pure cultures of Prochlorococcus lost their synchrony within 5 h of extended darkness and reflected changes in stress responses and metabolic functions consistent with growth cessation. In contrast, when grown with Alteromonas, replicate Prochlorococcus transcriptomes tracked each other for at least 13 h in the dark and showed signs of continued biosynthetic and metabolic activity. The transcriptome patterns suggest that the heterotroph may be providing energy or essential biosynthetic substrates to Prochlorococcus in the form of organic compounds, sustaining this autotroph when it is deprived of solar energy. Our findings reveal conditions where mixotrophic metabolism may benefit marine cyanobacteria and highlight new impacts of community interactions on basic Prochlorococcus cellular processes. IMPORTANCEProchlorococcus is the most abundant photosynthetic organism on the planet. These cells play a central role in the physiology of surrounding heterotrophs by supplying them with fixed organic carbon. It is becoming increasingly clear, however, that interactions with heterotrophs can affect autotrophs as well. Here we show that such interactions have a marked impact on the response of Prochlorococcus to the stress of extended periods of darkness, as reflected in transcriptional dynamics. These data suggest that diel transcriptional rhythms within Prochlorococcus, which are generally considered to be strictly under the control of light quantity, quality, and timing, can also be influenced by biotic interactions. Together, these findings provide new insights into the importance of microbial interactions on Prochlorococcus physiology and reveal conditions where heterotroph-derived compounds may support autotrophs-contrary to the canonical autotroph-to-heterotroph trophic paradigm.
Collapse
|
48
|
Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME JOURNAL 2018; 12:1287-1295. [PMID: 29382948 PMCID: PMC5932082 DOI: 10.1038/s41396-018-0052-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
Viruses infecting microorganisms are ubiquitous and abundant in the ocean. However, it is unclear when and where the numerous viral particles we observe in the sea are produced and whether they are active. To address these questions, we performed time-series analyses of viral metagenomes and microbial metatranscriptomes collected over a period of 24 h at a Japanese coastal site. Through mapping the metatranscriptomic reads on three sets of viral genomes ((i) 878 contigs of Osaka Bay viromes (OBV), (ii) 1766 environmental viral genomes from marine viromes, and (iii) 2429 reference viral genomes), we revealed that all the local OBV contigs were transcribed in the host fraction. This indicates that the majority of viral populations detected in viromes are active, and suggests that virions are rapidly diluted as a result of diffusion, currents, and mixing. Our data further revealed a peak of cyanophage gene expression in the afternoon/dusk followed by an increase of genomes from their virions at night and less-coherent infectious patterns for viruses putatively infecting various groups of heterotrophs. This suggests that cyanophages drive the diel release of cyanobacteria-derived organic matter into the environment and viruses of heterotrophic bacteria might have adapted to the population-specific life cycles of hosts.
Collapse
|
49
|
Hazan O, Silverman J, Sisma-Ventura G, Ozer T, Gertman I, Shoham-Frider E, Kress N, Rahav E. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters. FRONTIERS IN MARINE SCIENCE 2018. [PMID: 0 DOI: 10.3389/fmars.2018.00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
50
|
Abstract
Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.
Collapse
Affiliation(s)
- Allison R Moreno
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697;
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697;
- Department of Earth System Science, University of California, Irvine, California 92697
| |
Collapse
|