1
|
Reinhard M, Skoien D, Spies JA, Garcia-Esparza AT, Matson BD, Corbett J, Tian K, Safranek J, Granados E, Strader M, Gaffney KJ, Alonso-Mori R, Kroll T, Sokaras D. Solution phase high repetition rate laser pump x-ray probe picosecond hard x-ray spectroscopy at the Stanford Synchrotron Radiation Lightsource. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:054304. [PMID: 37901682 PMCID: PMC10613086 DOI: 10.1063/4.0000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kβ main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dean Skoien
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | - Jeff Corbett
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kai Tian
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James Safranek
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Matthew Strader
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kelly J. Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | |
Collapse
|
2
|
Bacellar C, Rouxel JR, Ingle RA, Mancini GF, Kinschel D, Cannelli O, Zhao Y, Cirelli C, Knopp G, Szlachetko J, Lima FA, Menzi S, Ozerov D, Pamfilidis G, Kubicek K, Khakhulin D, Gawelda W, Rodriguez-Fernandez A, Biednov M, Bressler C, Arrell CA, Johnson PJM, Milne CJ, Chergui M. Ultrafast Energy Transfer from Photoexcited Tryptophan to the Haem in Cytochrome c. J Phys Chem Lett 2023; 14:2425-2432. [PMID: 36862109 DOI: 10.1021/acs.jpclett.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report femtosecond Fe K-edge absorption (XAS) and nonresonant X-ray emission (XES) spectra of ferric cytochrome C (Cyt c) upon excitation of the haem (>300 nm) or mixed excitation of the haem and tryptophan (<300 nm). The XAS and XES transients obtained in both excitation energy ranges show no evidence for electron transfer processes between photoexcited tryptophan (Trp) and the haem, but rather an ultrafast energy transfer, in agreement with previous ultrafast optical fluorescence and transient absorption studies. The reported (J. Phys. Chem. B 2011, 115 (46), 13723-13730) decay times of Trp fluorescence in ferrous (∼350 fs) and ferric (∼700 fs) Cyt c are among the shortest ever reported for Trp in a protein. The observed time scales cannot be rationalized in terms of Förster or Dexter energy transfer mechanisms and call for a more thorough theoretical investigation.
Collapse
Affiliation(s)
- Camila Bacellar
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jérémy R Rouxel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- Univ Lyon, UJM-Saint-Etienne, CNRS, Graduate School Optics Institute, Laboratoire Hubert Curien, UMR 5516, Saint-Etienne F-42023, France
| | - Rebecca A Ingle
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Giulia F Mancini
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- 2Laboratory for Ultrafast X-ray and Electron Microscopy, Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100 Pavia PV, Italy
| | - Dominik Kinschel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| | - Oliviero Cannelli
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| | - Yang Zhao
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| | - Claudio Cirelli
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | | | - Samuel Menzi
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Dmitry Ozerov
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | | | | | | | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | | | - Mykola Biednov
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
| | | | | | | | - Christopher J Milne
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Bacellar C, Kinschel D, Cannelli O, Sorokin B, Katayama T, Mancini GF, Rouxel JR, Obara Y, Nishitani J, Ito H, Ito T, Kurahashi N, Higashimura C, Kudo S, Cirelli C, Knopp G, Nass K, Johnson PJM, Wach A, Szlachetko J, Lima FA, Milne CJ, Yabashi M, Suzuki T, Misawa K, Chergui M. Femtosecond X-ray spectroscopy of haem proteins. Faraday Discuss 2021; 228:312-328. [PMID: 33565544 DOI: 10.1039/d0fd00131g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Boris Sorokin
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jeremy R Rouxel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yuki Obara
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hironori Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Terumasa Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Kurahashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, 7-1, Chiyoda, 102-8554 Tokyo, Japan
| | - Chika Higashimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shotaro Kudo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | | | - Anna Wach
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | | | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kazuhiko Misawa
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Shelby ML, Wildman A, Hayes D, Mara MW, Lestrange PJ, Cammarata M, Balducci L, Artamonov M, Lemke HT, Zhu D, Seideman T, Hoffman BM, Li X, Chen LX. Interplays of electron and nuclear motions along CO dissociation trajectory in myoglobin revealed by ultrafast X-rays and quantum dynamics calculations. Proc Natl Acad Sci U S A 2021; 118:e2018966118. [PMID: 33782122 PMCID: PMC8040624 DOI: 10.1073/pnas.2018966118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ultrafast structural dynamics with different spatial and temporal scales were investigated during photodissociation of carbon monoxide (CO) from iron(II)-heme in bovine myoglobin during the first 3 ps following laser excitation. We used simultaneous X-ray transient absorption (XTA) spectroscopy and X-ray transient solution scattering (XSS) at an X-ray free electron laser source with a time resolution of 80 fs. Kinetic traces at different characteristic X-ray energies were collected to give a global picture of the multistep pathway in the photodissociation of CO from heme. In order to extract the reaction coordinates along different directions of the CO departure, XTA data were collected with parallel and perpendicular relative polarizations of the laser pump and X-ray probe pulse to isolate the contributions of electronic spin state transition, bond breaking, and heme macrocycle nuclear relaxation. The time evolution of the iron K-edge X-ray absorption near edge structure (XANES) features along the two major photochemical reaction coordinates, i.e., the iron(II)-CO bond elongation and the heme macrocycle doming relaxation were modeled by time-dependent density functional theory calculations. Combined results from the experiments and computations reveal insight into interplays between the nuclear and electronic structural dynamics along the CO photodissociation trajectory. Time-resolved small-angle X-ray scattering data during the same process are also simultaneously collected, which show that the local CO dissociation causes a protein quake propagating on different spatial and temporal scales. These studies are important for understanding gas transport and protein deligation processes and shed light on the interplay of active site conformational changes and large-scale protein reorganization.
Collapse
Affiliation(s)
- Megan L Shelby
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Andrew Wildman
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Dugan Hayes
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60437
| | - Michael W Mara
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | | | - Marco Cammarata
- Institut de Physique de Rennes, Université de Rennes, 35042 Rennes CEDEX, France
| | - Lodovico Balducci
- Institut de Physique de Rennes, Université de Rennes, 35042 Rennes CEDEX, France
| | - Maxim Artamonov
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Henrik T Lemke
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208;
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA 98195;
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208;
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60437
| |
Collapse
|
5
|
Rankine CD, Penfold TJ. Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics. J Phys Chem A 2021; 125:4276-4293. [DOI: 10.1021/acs.jpca.0c11267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C. D. Rankine
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - T. J. Penfold
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
6
|
Miller NA, Kaneshiro AK, Konar A, Alonso-Mori R, Britz A, Deb A, Glownia JM, Koralek JD, Mallik L, Meadows JH, Michocki LB, van Driel TB, Koutmos M, Padmanabhan S, Elías-Arnanz M, Kubarych KJ, Marsh ENG, Penner-Hahn JE, Sension RJ. The Photoactive Excited State of the B 12-Based Photoreceptor CarH. J Phys Chem B 2020; 124:10732-10738. [PMID: 33174757 DOI: 10.1021/acs.jpcb.0c09428] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have used transient absorption spectroscopy in the UV-visible and X-ray regions to characterize the excited state of CarH, a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light. With visible excitation, a nanosecond-lifetime photoactive excited state is formed with unit quantum yield. The time-resolved X-ray absorption near edge structure difference spectrum of this state demonstrates that the excited state of AdoCbl in CarH undergoes only modest structural expansion around the central cobalt, a behavior similar to that observed for methylcobalamin rather than for AdoCbl free in solution. We propose a new mechanism for CarH photoreactivity involving formation of a triplet excited state. This allows the sensor to operate with high quantum efficiency and without formation of potentially dangerous side products. By stabilizing the excited electronic state, CarH controls reactivity of AdoCbl and enables slow reactions that yield nonreactive products and bypass bond homolysis and reactive radical species formation.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - April K Kaneshiro
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0600, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Alexander Britz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jake D Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Leena Mallik
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Joseph H Meadows
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Bacellar C, Kinschel D, Mancini GF, Ingle RA, Rouxel J, Cannelli O, Cirelli C, Knopp G, Szlachetko J, Lima FA, Menzi S, Pamfilidis G, Kubicek K, Khakhulin D, Gawelda W, Rodriguez-Fernandez A, Biednov M, Bressler C, Arrell CA, Johnson PJM, Milne CJ, Chergui M. Spin cascade and doming in ferric hemes: Femtosecond X-ray absorption and X-ray emission studies. Proc Natl Acad Sci U S A 2020; 117:21914-21920. [PMID: 32848065 PMCID: PMC7486745 DOI: 10.1073/pnas.2009490117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kβ X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Rouxel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Claudio Cirelli
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | | | - Samuel Menzi
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Georgios Pamfilidis
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | | | | | - Wojciech Gawelda
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Mykola Biednov
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
| | | | - Christopher A Arrell
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Philip J M Johnson
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Christopher J Milne
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
8
|
Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nat Commun 2020; 11:4145. [PMID: 32811825 PMCID: PMC7434878 DOI: 10.1038/s41467-020-17923-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kβ X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process. The change from low-spin hexacoordinated to high-spin pentacoordinated domed form in heam upon ligand detachment and the reverse process underlie the respiratory function. The authors, using femtosecond time-resolved X-ray emission spectroscopy, capture the transient states connecting the two forms in myoglobin-NO upon NO photoinduced detachment.
Collapse
|
9
|
Unke OT, Koner D, Patra S, Käser S, Meuwly M. High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab5922] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Wernet P. Chemical interactions and dynamics with femtosecond X-ray spectroscopy and the role of X-ray free-electron lasers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170464. [PMID: 30929622 PMCID: PMC6452048 DOI: 10.1098/rsta.2017.0464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
X-ray free-electron lasers with intense, tuneable and short-pulse X-ray radiation are transformative tools for the investigation of transition-metal complexes and metalloproteins. This becomes apparent in particular when combining the experimental observables from X-ray spectroscopy with modern theoretical tools for calculations of electronic structures and X-ray spectra from first principles. The combination gives new insights into how charge and spin densities change in chemical reactions and how they determine reactivity. This is demonstrated for the investigations of structural dynamics with metal K-edge absorption spectroscopy, spin states in excited-state dynamics with metal 3p-3d exchange interactions, the frontier-orbital interactions in dissociation and substitution reactions with metal-specific X-ray spectroscopy, and studies of metal oxidation states with femtosecond pulses for 'probe-before-destroy' spectroscopy. The role of X-ray free-electron lasers is addressed with thoughts about how they enable 'bringing back together' different aspects of the same problem and this is thought to go beyond a conventional review paper where these aspects are formulated in italic font type in a prequel, an interlude and in a sequel. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
|
11
|
Diamantis P, Hage KE, Meuwly M. Effect of Single-Point Mutations on Nitric Oxide Rebinding and the Thermodynamic Stability of Myoglobin. J Phys Chem B 2019; 123:1961-1972. [PMID: 30724565 DOI: 10.1021/acs.jpcb.8b11454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of single amino acid mutations on the rebinding dynamics of nitrogen monoxide (NO) to myoglobin is investigated using reactive molecular dynamics simulations. In particular, mutations of residues surrounding the heme-active site (Leu29, His64, Val68) were considered. Consistent with experiments, all mutations studied here have a significant effect on the kinetics of the NO-rebinding process, which consists of a rapid (several 10 ps) and a slow (100s of ps) time scale. For all modifications considered, the time scales and rebinding fractions agree to within a few percents with results from experiments by adjusting one single, physically meaningful, conformationally averaged quantity: the asymptotic energy separation between the NO-bound (2A) and photodissociated (4A) states. It is furthermore shown that the thermodynamic stability of wild-type versus mutant Mb for the ligand-free and ligand-bound variants of the protein can be described by the same computational model. Therefore, ligand kinetics and thermodynamics are related in a direct fashion akin to Φ-value analysis, which establishes a relationship between protein folding rates and thermal stability of proteins.
Collapse
Affiliation(s)
- Polydefkis Diamantis
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Krystel El Hage
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Markus Meuwly
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland.,Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
12
|
de Arruda EGR, Rocha BA, Barrionuevo MVF, Aðalsteinsson HM, Galdino FE, Loh W, Lima FA, Abbehausen C. The influence of ZnII coordination sphere and chemical structure over the reactivity of metallo-β-lactamase model compounds. Dalton Trans 2019; 48:2900-2916. [DOI: 10.1039/c8dt03905d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first coordination sphere influences the reactivity of metallo-β-lactamase monozinc model complexes.
Collapse
|
13
|
Meuwly M. Reactive molecular dynamics: From small molecules to proteins. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Markus Meuwly
- Department of Chemistry University of Basel Basel Switzerland
- Department of Chemistry Brown University Providence Rhode Island
| |
Collapse
|
14
|
Miller NA, Deb A, Alonso-Mori R, Glownia JM, Kiefer LM, Konar A, Michocki LB, Sikorski M, Sofferman DL, Song S, Toda MJ, Wiley TE, Zhu D, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast X-ray Absorption Near Edge Structure Reveals Ballistic Excited State Structural Dynamics. J Phys Chem A 2018; 122:4963-4971. [PMID: 29799204 DOI: 10.1021/acs.jpca.8b04223] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polarized ultrafast time-resolved X-ray absorption near edge structure (XANES) allows characterization of excited state dynamics following excitation. Excitation of vitamin B12, cyanocobalamin (CNCbl), in the αβ-band at 550 nm and the γ-band at 365 nm was used to uniquely resolve axial and equatorial contributions to the excited state dynamics. The structural evolution of the excited molecule is best described by a coherent ballistic trajectory on the excited state potential energy surface. Prompt expansion of the Co cavity by ca. 0.03 Å is followed by significant elongation of the axial bonds (>0.25 Å) over the first 190 fs. Subsequent contraction of the Co cavity in both axial and equatorial directions results in the relaxed S1 excited state structure within 500 fs of excitation.
Collapse
Affiliation(s)
| | | | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | | | | | | | - Marcin Sikorski
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | | | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Megan J Toda
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | | | - Diling Zhu
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | | | | | | |
Collapse
|
15
|
Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase. Sci Rep 2018; 8:5281. [PMID: 29588445 PMCID: PMC5869715 DOI: 10.1038/s41598-018-22944-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
The rebinding kinetics of NO after photodissociation from microperoxidase (Mp-9) is studied in different solvent environments. In mixed glycerol/water (G/W) mixtures the dissociating ligand rebinds with a yield close to 1 due to the cavities formed by the solvent whereas in pure water the ligand can diffuse into the solvent after photodissociation. In the G/W mixture, only geminate rebinding on the sub-picosecond and 5 ps time scales was found and the rebinding fraction is unity which compares well with available experiments. Contrary to that, simulations in pure water find two time scales – ~10 ps and ~200 ps - indicating that both, geminate rebinding and rebinding after diffusion of NO in the surrounding water contribute. The rebinding fraction is around 0.63 within 1 ns which is in stark contrast with experiment. Including ions (Na and Cl) at 0.15 M concentration in water leads to rebinding kinetics tending to that in the glycerol/water mixture and yields agreement with experiments. The effect of temperature is also probed and found to be non-negligible. The present simulations suggest that NO rebinding in Mp is primarily driven by thermal fluctuations which is consistent with recent resonance Raman spectroscopy experiments and simulations on MbNO.
Collapse
|
16
|
Lábas A, Menyhárd DK, Harvey JN, Oláh J. First Principles Calculation of the Reaction Rates for Ligand Binding to Myoglobin: The Cases of NO and CO. Chemistry 2018; 24:5350-5358. [PMID: 29285802 DOI: 10.1002/chem.201704867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Ligand binding by proteins is among the most fundamental processes in nature. Among these processes the binding of small gas molecules, such as O2 , CO and NO to heme proteins has traditionally received vivid interest, which was further boosted by their recently recognized significant role in gas sensing in the body. At the heart of the binding of these ligands to the heme group is the spinforbidden reaction between high-spin iron(II) and the ligand yielding a low-spin adduct. We use computational means to address the complete mechanism of CO and NO binding by myoglobin. Considering that it involves several steps occurring on different time scales, molecular dynamics simulations were performed to address the diffusion of the ligand through the enzyme, and DFT calculations in combination with statistical rate calculation to investigate the spin-forbidden reaction. The calculations yielded rate constants in qualitative agreement with experiments and revealed that the bottleneck of NO and CO binding is different; for NO, diffusion was found to be rate-limiting, whereas for CO, the spin-forbidden step is the slowest.
Collapse
Affiliation(s)
- Anikó Lábas
- Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1111, Budapest, Szent Gellért tér 4., Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, H-1117, Budapest, Pázmány Péter st. 1/A, Hungary
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, B-3001, Leuven Celestijnenlaan 200F- box 2404, Belgium
| | - Julianna Oláh
- Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1111, Budapest, Szent Gellért tér 4., Hungary
| |
Collapse
|
17
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
18
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
19
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
20
|
Su Z, Baskin JS, Zhou W, Thomas JM, Zewail AH. Ultrafast Elemental and Oxidation-State Mapping of Hematite by 4D Electron Microscopy. J Am Chem Soc 2017; 139:4916-4922. [DOI: 10.1021/jacs.7b00906] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zixue Su
- Physical
Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - J. Spencer Baskin
- Physical
Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Wuzong Zhou
- School
of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - John M. Thomas
- Department
of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Ahmed H. Zewail
- Physical
Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
21
|
Miller NA, Deb A, Alonso-Mori R, Garabato BD, Glownia JM, Kiefer LM, Koralek J, Sikorski M, Spears KG, Wiley TE, Zhu D, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B12. J Am Chem Soc 2017; 139:1894-1899. [DOI: 10.1021/jacs.6b11295] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nicholas A. Miller
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Brady D. Garabato
- Department
of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - James M. Glownia
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Laura M. Kiefer
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Jake Koralek
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Marcin Sikorski
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Kenneth G. Spears
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Theodore E. Wiley
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Diling Zhu
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Pawel M. Kozlowski
- Department
of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
- Department
of Food Sciences, Medical University of Gdansk, Al. Gen J. Hallera
107, 80-416 Gdansk, Poland
| | - Kevin J. Kubarych
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - James E. Penner-Hahn
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J. Sension
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
22
|
Soloviov M, Das AK, Meuwly M. Strukturelle Interpretation metastabiler Zustände in Myoglobin-NO. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maksym Soloviov
- Departement für Chemie; Universität Basel; Klingelbergstraße 80 4056 Basel Schweiz
| | - Akshaya K. Das
- Departement für Chemie; Universität Basel; Klingelbergstraße 80 4056 Basel Schweiz
| | - Markus Meuwly
- Departement für Chemie; Universität Basel; Klingelbergstraße 80 4056 Basel Schweiz
| |
Collapse
|
23
|
Soloviov M, Das AK, Meuwly M. Structural Interpretation of Metastable States in Myoglobin-NO. Angew Chem Int Ed Engl 2016; 55:10126-30. [DOI: 10.1002/anie.201604552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Akshaya K. Das
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Markus Meuwly
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| |
Collapse
|
24
|
Chergui M. Time-resolved X-ray spectroscopies of chemical systems: New perspectives. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:031001. [PMID: 27376102 PMCID: PMC4902826 DOI: 10.1063/1.4953104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.
Collapse
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS) , ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Carpenter BK, Harvey JN, Orr-Ewing AJ. The Study of Reactive Intermediates in Condensed Phases. J Am Chem Soc 2016; 138:4695-705. [DOI: 10.1021/jacs.6b01761] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barry K. Carpenter
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Jeremy N. Harvey
- Department
of Chemistry, KU Leuven, Celestijnen Laan 200F, B-3001 Heverlee, Belgium
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|