1
|
Kaita S, Morishita Y, Kobayashi K, Nomura H. Histamine H 3 receptor inverse agonists/antagonists influence intra-regional cortical activity and inter-regional synchronization during resting state: an exploratory cortex-wide imaging study in mice. Mol Brain 2024; 17:88. [PMID: 39605021 PMCID: PMC11603655 DOI: 10.1186/s13041-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The histaminergic system plays a key role in modulating learning and memory, wakefulness, and energy balance. Histamine H3 receptors constitutively inhibit the synthesis and release of histamine and other neurotransmitters. Therefore, H3 receptor inverse agonists/antagonists increase the synthesis and release of these neurotransmitters, enhancing cognitive functions, including memory consolidation and retrieval. Spontaneous neural activity across the cerebral cortex is essential for cognitive function, including memory consolidation. Abnormal spontaneous activity has, in fact, been associated with cognitive dysfunctions and psychiatric disorders. Given the cognitive improvement achieved with the use of H3 receptor inverse agonists/antagonists, we examined the effects of two inverse agonists/antagonists - thioperamide and pitolisant - on spontaneous cortical activity, using in vivo wide-field Ca2+ imaging. Changes in cortical activity, across multiple cortical regions and in inter-regional connectivity, from pre- to post-administration were evaluated using a linear support vector machine decoder. Thioperamide and pitolisant both modified the amplitude distribution of calcium events across multiple cortical regions, including a reduction in the frequency of low-amplitude calcium events in the somatosensory cortex. Graph theory analysis revealed increases in centrality measures in the somatosensory cortex with the use of both thioperamide and pitolisant, indicative of their importance in the organization of cortical networks. These findings indicate that H3 receptor inverse agonists/antagonists influence intra-regional cortical activity and inter-regional synchronization of activity in the cerebral cortex during the resting state.
Collapse
Affiliation(s)
- Sentaro Kaita
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yoshikazu Morishita
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Hiroshi Nomura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
2
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [PMID: 39511365 PMCID: PMC11543854 DOI: 10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Acute severe stress may induce fear memory and anxiety. Their mechanisms are expectedly revealed to explore therapeutic strategies. We have investigated the recruitment of associative memory cells that encode stress signals to cause fear memory and anxiety by multidisciplinary approaches. In addition to fear memory and anxiety, the social stress by the resident/intruder paradigm leads to synapse interconnections between somatosensory S1-Tr and auditory cortical neurons in intruder mice. These S1-Tr cortical neurons become to receive convergent synapse innervations newly from the auditory cortex and innately from the thalamus as well as encode the stress signals including battle sound and somatic pain, i.e., associative memory neurons. Neuroligin-3 mRNA knockdown in the S1-Tr cortex precludes the recruitment of associative memory neurons and the onset of fear memory and anxiety. The stress-induced recruitment of associative memory cells in sensory cortices for stress-relevant fear memory and anxiety is based on neuroligin-3-mediated new synapse formation.
Collapse
Affiliation(s)
- Bingchen Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huajuan Xiao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [DOI: :10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
|
4
|
Wu X, Zhu X, Pan Y, Gu X, Liu X, Chen S, Zhang Y, Xu T, Xu N, Sun S. Amygdala neuronal dyshomeostasis via 5-HT receptors mediates mood and cognitive defects in Alzheimer's disease. Aging Cell 2024; 23:e14187. [PMID: 38716507 PMCID: PMC11320345 DOI: 10.1111/acel.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 08/15/2024] Open
Abstract
Behavioral changes or neuropsychiatric symptoms (NPSs) are common features in dementia and are associated with accelerated cognitive impairment and earlier deaths. However, how NPSs are intertwined with cognitive decline remains elusive. In this study, we identify that the basolateral amygdala (BLA) is a key brain region that is associated with mood disorders and memory decline in the AD course. During the process from pre- to post-onset in AD, the dysfunction of parvalbumin (PV) interneurons and pyramidal neurons in the amygdala leads to hyperactivity of pyramidal neurons in the basal state and insensitivity to external stimuli. We further demonstrate that serotonin (5-HT) receptors in distinct neurons synergistically regulate the BLA microcircuit of AD rather than 5-HT levels, in which both restrained inhibitory inputs by excessive 5-HT1AR signaling in PV interneurons and depolarized pyramidal neurons via upregulated 5-HT2AR contribute to aberrant neuronal hyperactivity. Downregulation of these two 5-HT receptors simultaneously enables neurons to resist β-amyloid peptides (Aβ) neurotoxicity and ameliorates the mood and cognitive defects. Therefore, our study reveals a crucial role of 5-HT receptors for regulating neuronal homeostasis in AD pathogenesis, and this would provide early intervention and potential targets for AD cognitive decline.
Collapse
Affiliation(s)
- Xin‐Rong Wu
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao‐Na Zhu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan‐Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Gu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xian‐Dong Liu
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Si Chen
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Zhang
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tian‐Le Xu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Nan‐Jie Xu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
- Songjiang Hospital and Songjiang Research InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Emotions and Affective DisordersShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Suya Sun
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Nomura H. [Histamine signaling restores retrieval of forgotten memories]. Nihon Yakurigaku Zasshi 2021; 156:292-296. [PMID: 34470934 DOI: 10.1254/fpj.21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Histamine is a biological amine that functions as a neurotransmitter in the brain to regulate arousal, appetite, and cognitive functions. Many pharmacological studies using histamine receptor agonists and antagonists have found that histamine promotes memory consolidation and retrieval. More recently, we have revealed that the activation of the brain histaminergic system by H3R antagonists/inverse agonists restores retrieval of forgotten long-term memory in mice and humans. The recovery of memory retrieval may involve histamine-induced excitatory effects. Histamine may increase neuronal excitability throughout the neural circuit, including both neurons that are and are not recruited into the memory trace, similar to noise added to the neural circuits for memory retrieval. Stochastic resonance can explain how adding noise to the circuit enhances memory retrieval. Memory is processed not only by consolidation and retrieval, but also by various processes such as maintenance, reconsolidation, extinction, and reinstatement. Further studies that separately analyze the memory processes are needed to elucidate the whole picture of the effects of histamine on learning and memory. Regarding the human histaminergic system, alterations in histamine signaling have been reported in several neuropsychiatric disorders, and these changes have been suggested to be involved in cognitive dysfunction in patients with the neuropsychiatric disorders. Therefore, the drugs that modulate histamine signaling, including H3R antagonists/inverse agonists, may be effective in the treatment of cognitive dysfunction, including Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Cognitive Function and Pathology, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
8
|
Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev 2021; 127:334-352. [PMID: 33964307 DOI: 10.1016/j.neubiorev.2021.04.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The acquisition of fear associative memory requires brain processes of coordinated neural activity within the amygdala, prefrontal cortex (PFC), hippocampus, thalamus and brainstem. After fear consolidation, a suppression of fear memory in the absence of danger is crucial to permit adaptive coping behavior. Acquisition and maintenance of fear extinction critically depend on amygdala-PFC projections. The robust correspondence between the brain networks encompassed cortical and subcortical hubs involved into fear processing in humans and in other species underscores the potential utility of comparing the modulation of brain circuitry in humans and animals, as a crucial step to inform the comprehension of fear mechanisms and the development of treatments for fear-related disorders. The present review is aimed at providing a comprehensive description of the literature on recent clinical and experimental researches regarding the noninvasive brain stimulation and optogenetics. These innovative manipulations applied over specific hubs of fear matrix during fear acquisition, consolidation, reconsolidation and extinction allow an accurate characterization of specific brain circuits and their peculiar interaction within the specific fear processing.
Collapse
|
9
|
Iwasaki S, Ikegaya Y. Contextual Fear Memory Retrieval Is Vulnerable to Hippocampal Noise. Cereb Cortex 2020; 31:785-794. [DOI: 10.1093/cercor/bhaa257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023] Open
Abstract
Abstract
Memory retrieval depends on reactivation of memory engram cells. Inadvertent activation of these cells is expected to cause memory-retrieval failure, but little is known about how noisy activity of memory-irrelevant neurons impacts mnemonic processes. Here, we report that optogenetic nonselective activation of only tens of hippocampal CA1 cells (∼0.01% of the total cells in the CA1 pyramidal cell layer) impairs contextual fear memory recall. Memory recall failure was associated with altered neuronal reactivation in the basolateral amygdala. These results indicate that hippocampal memory retrieval requires strictly regulated activation of a specific neuron ensemble and is easily disrupted by the introduction of noisy CA1 activity, suggesting that reactivating memory engram cells as well as silencing memory-irrelevant neurons are both crucial for memory retrieval.
Collapse
Affiliation(s)
- Satoshi Iwasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Munshi R, Qadri SM, Pralle A. Transient Magnetothermal Neuronal Silencing Using the Chloride Channel Anoctamin 1 (TMEM16A). Front Neurosci 2018; 12:560. [PMID: 30154692 PMCID: PMC6103273 DOI: 10.3389/fnins.2018.00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Determining the role and necessity of specific neurons in a network calls for precisely timed, reversible removal of these neurons from the circuit via remotely triggered transient silencing. Previously, we have shown that alternating magnetic field mediated heating of magnetic nanoparticles, bound to neurons, expressing temperature-sensitive cation channels TRPV1 remotely activates these neurons, evoking behavioral responses in mice. Here, we demonstrate how to apply magnetic nanoparticle heating to silence target neurons. Rat hippocampal neuronal cultures were transfected to express the temperature gated chloride channel, anoctamin 1 (TMEM16A). Spontaneous firing was suppressed within seconds of alternating magnetic field application to anoctamin 1 (TMEM16A) channel expressing, magnetic nanoparticle decorated neurons. Five seconds of magnetic field application leads to 12 s of silencing, with a latency of 2 s and an average suppression ratio of more than 80%. Immediately following the silencing period spontaneous activity resumed. The method provides a promising avenue for tether free, remote, transient neuronal silencing in vivo for both scientific and therapeutic applications.
Collapse
Affiliation(s)
| | | | - Arnd Pralle
- Department of Physics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
11
|
Specific disruption of contextual memory recall by sparse additional activity in the dentate gyrus. Neurobiol Learn Mem 2017; 145:190-198. [PMID: 29031808 DOI: 10.1016/j.nlm.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/06/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
The dentate gyrus (DG) of the hippocampus is essential for contextual and spatial memory processing. While lesion or silencing of the DG impairs contextual memory encoding and recall, overly activated DG also prevents proper memory retrieval. Abnormally elevated activity in the DG is repeatedly reported in amnesic mild cognitive impairment (aMCI) patients or aged adults. Although the correlation between memory failure and abnormally active hippocampus is clear, their causal relationship or the underlying nature of such interfering activity is not well understood. Using optogenetics aided by a carefully controlled adeno-associated virus infection system, we were able to examine the differential effects of abnormally activated hippocampus on mice motor behavior and memory function, depending on the extent of the stimulation. Optogenetic stimulation of massive proportion of dorsal DG cells resulted in memory retrieval impairment, but also induced increase in general locomotion. Random additional activity in a sparse population of dorsal DG neurons, however, interfered with contextual memory recall without inducing hyperactivity. Our findings thus establish the causal role of elevated DG activity on memory recall failure, suggesting such aberrant DG activity may contribute to amnesic symptoms in aMCI patients and aged adults.
Collapse
|
12
|
McCullough KM, Morrison FG, Ressler KJ. Bridging the Gap: Towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiol Learn Mem 2016; 135:27-39. [PMID: 27470092 PMCID: PMC5123437 DOI: 10.1016/j.nlm.2016.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/15/2022]
Abstract
Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders.
Collapse
Affiliation(s)
- K M McCullough
- Department of Psychiatry and Behavioral Sciences and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Graduate Program in Neuroscience, Emory University, Atlanta, Georgia; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States.
| | - F G Morrison
- Department of Psychiatry and Behavioral Sciences and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Graduate Program in Neuroscience, Emory University, Atlanta, Georgia; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - K J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| |
Collapse
|