1
|
Apostol AJ, Bragagnolo NJ, Rodriguez CS, Audette GF. Structural insights into the disulfide isomerase and chaperone activity of TrbB of the F plasmid type IV secretion system. Curr Res Struct Biol 2024; 8:100156. [PMID: 39131116 PMCID: PMC11315126 DOI: 10.1016/j.crstbi.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Bacteria have evolved elaborate mechanisms to thrive in stressful environments. F-like plasmids in gram-negative bacteria encode for a multi-protein Type IV Secretion System (T4SSF) that is functional for bacterial proliferation and adaptation through the process of conjugation. The periplasmic protein TrbB is believed to have a stabilizing chaperone role in the T4SSF assembly, with TrbB exhibiting disulfide isomerase (DI) activity. In the current report, we demonstrate that the deletion of the disordered N-terminus of TrbBWT, resulting in a truncation construct TrbB37-161, does not affect its catalytic in vitro activity compared to the wild-type protein (p = 0.76). Residues W37-K161, which include the active thioredoxin motif, are sufficient for DI activity. The N-terminus of TrbBWT is disordered as indicated by a structural model of GST-TrbBWT based on ColabFold-AlphaFold2 and Small Angle X-Ray Scattering data and 1H-15N Heteronuclear Single Quantum Correlation (HSQC) spectroscopy of the untagged protein. This disordered region likely contributes to the protein's dynamicity; removal of this region results in a more stable protein based on 1H-15N HSQC and Circular Dichroism Spectroscopies. Lastly, size exclusion chromatography analysis of TrbBWT in the presence of TraW, a T4SSF assembly protein predicted to interact with TrbBWT, does not support the inference of a stable complex forming in vitro. This work advances our understanding of TrbB's structure and function, explores the role of structural disorder in protein dynamics in the context of a T4SSF accessory protein, and highlights the importance of redox-assisted protein folding in the T4SSF.
Collapse
Affiliation(s)
- Arnold J. Apostol
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Nicholas J. Bragagnolo
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Christina S. Rodriguez
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| |
Collapse
|
2
|
Richards A, Lupoli TJ. Peptide-based molecules for the disruption of bacterial Hsp70 chaperones. Curr Opin Chem Biol 2023; 76:102373. [PMID: 37516006 PMCID: PMC11217992 DOI: 10.1016/j.cbpa.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.
Collapse
Affiliation(s)
- Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
Addabbo RM, Hutchinson RB, Allaman HJ, Dalphin MD, Mecha MF, Liu Y, Staikos A, Cavagnero S. Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System. J Phys Chem B 2023; 127:3990-4014. [PMID: 37130318 PMCID: PMC10829761 DOI: 10.1021/acs.jpcb.2c08485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins are particularly prone to aggregation immediately after release from the ribosome, and it is therefore important to elucidate the role of chaperones during these key steps of protein life. The Hsp70 and trigger factor (TF) chaperone systems interact with nascent proteins during biogenesis and immediately post-translationally. It is unclear, however, whether these chaperones can prevent formation of soluble and insoluble aggregates. Here, we address this question by monitoring the solubility and structural accuracy of globin proteins biosynthesized in an Escherichia coli cell-free system containing different concentrations of the bacterial Hsp70 and TF chaperones. We find that Hsp70 concentrations required to grant solubility to newly synthesized proteins are extremely sensitive to client-protein sequence. Importantly, Hsp70 concentrations yielding soluble client proteins are insufficient to prevent formation of soluble aggregates. In fact, for some aggregation-prone protein variants, avoidance of soluble-aggregate formation demands Hsp70 concentrations that exceed cellular levels in E. coli. In all, our data highlight the prominent role of soluble aggregates upon nascent-protein release from the ribosome and show the limitations of the Hsp70 chaperone system in the case of highly aggregation-prone proteins. These results demonstrate the need to devise better strategies to prevent soluble-aggregate formation upon release from the ribosome.
Collapse
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Rachel B. Hutchinson
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Heather J. Allaman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| |
Collapse
|
4
|
Jiang Y, Chen HF. Performance evaluation of the balanced force field ff03CMAP for intrinsically disordered and ordered proteins. Phys Chem Chem Phys 2022; 24:29870-29881. [PMID: 36468450 DOI: 10.1039/d2cp04501j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) have been found to be closely associated with various human diseases. Because IDPs have no fixed tertiary structure under physiological conditions, current experimental methods, such as X-ray spectroscopy, NMR, and CryoEM, cannot capture all the dynamic conformations. Molecular dynamics simulation is an useful tool that is widely used to study the conformer distributions of IDPs and has become an important complementary tool for experimental methods. However, the accuracy of MD simulations directly depends on utilizing a precise force field. Recently a CMAP optimized force field based on the Amber ff03 force field (termed ff03CMAP herein) was developed for a balanced sampling of IDPs and folded proteins. In order to further evaluate the performance, more types of disordered and ordered proteins were used to test the ability for conformer sampling. The results showed that simulated chemical shifts, J-coupling, and Rg distribution with the ff03CMAP force field were in better agreement with NMR measurements and were more accurate than those with the ff03 force field. The sampling conformations by ff03CMAP were more diverse than those of ff03. At the same time, ff03CMAP could stabilize the conformers of the ordered proteins. These findings indicate that ff03CMAP can be widely used to sample diverse conformers for proteins, including the intrinsically disordered regions.
Collapse
Affiliation(s)
- Yuxin Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Center for Bioinformation Technology, 200240, Shanghai, China
| |
Collapse
|
5
|
Marzano NR, Paudel BP, van Oijen AM, Ecroyd H. Real-time single-molecule observation of chaperone-assisted protein folding. SCIENCE ADVANCES 2022; 8:eadd0922. [PMID: 36516244 PMCID: PMC9750156 DOI: 10.1126/sciadv.add0922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The ability of heat shock protein 70 (Hsp70) molecular chaperones to remodel the conformation of their clients is central to their biological function; however, questions remain regarding the precise molecular mechanisms by which Hsp70 machinery interacts with the client and how this contributes toward efficient protein folding. Here, we used total internal reflection fluorescence (TIRF) microscopy and single-molecule fluorescence resonance energy transfer (smFRET) to temporally observe the conformational changes that occur to individual firefly luciferase proteins as they are folded by the bacterial Hsp70 system. We observed multiple cycles of chaperone binding and release to an individual client during refolding and determined that high rates of chaperone cycling improves refolding yield. Furthermore, we demonstrate that DnaJ remodels misfolded proteins via a conformational selection mechanism, whereas DnaK resolves misfolded states via mechanical unfolding. This study illustrates that the temporal observation of chaperone-assisted folding enables the elucidation of key mechanistic details inaccessible using other approaches.
Collapse
Affiliation(s)
- Nicholas R. Marzano
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Bishnu P. Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
6
|
Nordquist EB, Clerico EM, Chen J, Gierasch LM. Computationally-Aided Modeling of Hsp70-Client Interactions: Past, Present, and Future. J Phys Chem B 2022; 126:6780-6791. [PMID: 36040440 PMCID: PMC10309085 DOI: 10.1021/acs.jpcb.2c03806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hsp70 molecular chaperones play central roles in maintaining a healthy cellular proteome. Hsp70s function by binding to short peptide sequences in incompletely folded client proteins, thus preventing them from misfolding and/or aggregating, and in many cases holding them in a state that is competent for subsequent processes like translocation across membranes. There is considerable interest in predicting the sites where Hsp70s may bind their clients, as the ability to do so sheds light on the cellular functions of the chaperone. In addition, the capacity of the Hsp70 chaperone family to bind to a broad array of clients and to identify accessible sequences that enable discrimination of those that are folded from those that are not fully folded, which is essential to their cellular roles, is a fascinating puzzle in molecular recognition. In this article we discuss efforts to harness computational modeling with input from experimental data to develop a predictive understanding of the promiscuous yet selective binding of Hsp70 molecular chaperones to accessible sequences within their client proteins. We trace how an increasing understanding of the complexities of Hsp70-client interactions has led computational modeling to new underlying assumptions and design features. We describe the trend from purely data-driven analysis toward increased reliance on physics-based modeling that deeply integrates structural information and sequence-based functional data with physics-based binding energies. Notably, new experimental insights are adding to our understanding of the molecular origins of "selective promiscuity" in substrate binding by Hsp70 chaperones and challenging the underlying assumptions and design used in earlier predictive models. Taking the new experimental findings together with exciting progress in computational modeling of protein structures leads us to foresee a bright future for a predictive understanding of selective-yet-promiscuous binding exploited by Hsp70 molecular chaperones; the resulting new insights will also apply to substrate binding by other chaperones and by signaling proteins.
Collapse
Affiliation(s)
- Erik B. Nordquist
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Eugenia M. Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Lila M. Gierasch
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
7
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
8
|
Jain S, Sekhar A. Elucidating the mechanisms underlying protein conformational switching using NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100034. [PMID: 35586549 PMCID: PMC7612731 DOI: 10.1016/j.jmro.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How proteins switch between various ligand-free and ligand-bound structures has been a key biophysical question ever since the postulation of the Monod-Wyman-Changeux and Koshland-Nemethy-Filmer models over six decades ago. The ability of NMR spectroscopy to provide structural and kinetic information on biomolecular conformational exchange places it in a unique position as an analytical tool to interrogate the mechanisms of biological processes such as protein folding and biomolecular complex formation. In addition, recent methodological developments in the areas of saturation transfer and relaxation dispersion have expanded the scope of NMR for probing the mechanics of transitions in systems where one or more states constituting the exchange process are sparsely populated and 'invisible' in NMR spectra. In this review, we highlight some of the strategies available from NMR spectroscopy for examining the nature of multi-site conformational exchange, using five case studies that have employed NMR, either in isolation, or in conjunction with other biophysical tools.
Collapse
|
9
|
Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease. Proc Natl Acad Sci U S A 2022; 119:e2203172119. [PMID: 35452308 PMCID: PMC9170070 DOI: 10.1073/pnas.2203172119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein aggregates are often toxic, leading to impaired cellular activities and disease. The human HtrA2 trimeric enzyme cleaves such aggregates, and mutations in HtrA2 are causative for various neurodegenerative disorders, such as Parkinson’s disease and essential tremor. The mechanism by which cleavage occurs has been studied using small peptides, but little information is available as to how HtrA2 protects cells from the pathologic effects of aggregation involving protein molecules that can form well-folded structures. Using solution NMR spectroscopy, we investigated the structural dynamics of the interaction between HtrA2 and a model protein substrate, demonstrating that HtrA2 preferentially binds to an unfolded substrate ensemble and providing insights into how HtrA2 function is regulated. The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)–based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation.
Collapse
|
10
|
Jin Y, Yu G, Yuwen T, Gao D, Wang G, Zhou Y, Jiang B, Zhang X, Li C, He L, Liu M. Molecular Insight into the Extracellular Chaperone Serum Albumin in Modifying the Folding Free Energy Landscape of Client Proteins. J Phys Chem Lett 2022; 13:2711-2717. [PMID: 35311276 DOI: 10.1021/acs.jpclett.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Serum albumin (SA) is the most abundant extracellular chaperone protein presenting in various bodily fluids. Recently, several studies have revealed molecular mechanisms of SA in preventing the amyloid formation of amyloidogenic proteins. However, our insight into the mechanism SA employed to sense and regulate the folding states of full-length native proteins is still limited. Addressing this question is technically challenging due to the intrinsic dynamic nature of both chaperones and clients. Here using nuclear magnetic resonance spectroscopy, we show SA modifies the folding free energy landscape of clients and subsequently alters the equilibria between different compact conformations of its clients, resulting in the increased populations of excited states of client proteins. This modulation of client protein conformation by SA can change the client protein activity in a way that cannot be interpreted on the basis of its ground state structure; therefore, our work provides an alternative insight of SA in retaining a balanced functional proteome.
Collapse
Affiliation(s)
- Yangzhuoyue Jin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gangjin Yu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tairan Yuwen
- Department of Pharmaceutical Analysis & State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Hebei 066004, China
| | - Guan Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Zhou
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
11
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
12
|
Guzman-Luna V, Fuchs AM, Allen AJ, Staikos A, Cavagnero S. An intrinsically disordered nascent protein interacts with specific regions of the ribosomal surface near the exit tunnel. Commun Biol 2021; 4:1236. [PMID: 34716402 PMCID: PMC8556260 DOI: 10.1038/s42003-021-02752-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
The influence of the ribosome on nascent chains is poorly understood, especially in the case of proteins devoid of signal or arrest sequences. Here, we provide explicit evidence for the interaction of specific ribosomal proteins with ribosome-bound nascent chains (RNCs). We target RNCs pertaining to the intrinsically disordered protein PIR and a number of mutants bearing a variable net charge. All the constructs analyzed in this work lack N-terminal signal sequences. By a combination chemical crosslinking and Western-blotting, we find that all RNCs interact with ribosomal protein L23 and that longer nascent chains also weakly interact with L29. The interacting proteins are spatially clustered on a specific region of the large ribosomal subunit, close to the exit tunnel. Based on chain-length-dependence and mutational studies, we find that the interactions with L23 persist despite drastic variations in RNC sequence. Importantly, we also find that the interactions are highly Mg+2-concentration-dependent. This work is significant because it unravels a novel role of the ribosome, which is shown to engage with the nascent protein chain even in the absence of signal or arrest sequences.
Collapse
Affiliation(s)
- Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Andrew M Fuchs
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Anna J Allen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Nielsen JT, Mulder FAA. CheSPI: chemical shift secondary structure population inference. JOURNAL OF BIOMOLECULAR NMR 2021; 75:273-291. [PMID: 34146207 DOI: 10.1007/s10858-021-00374-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
NMR chemical shifts (CSs) are delicate reporters of local protein structure, and recent advances in random coil CS (RCCS) prediction and interpretation now offer the compelling prospect of inferring small populations of structure from small deviations from RCCSs. Here, we present CheSPI, a simple and efficient method that provides unbiased and sensitive aggregate measures of local structure and disorder. It is demonstrated that CheSPI can predict even very small amounts of residual structure and robustly delineate subtle differences into four structural classes for intrinsically disordered proteins. For structured regions and proteins, CheSPI provides predictions for up to eight structural classes, which coincide with the well-known DSSP classification. The program is freely available, and can either be invoked from URL www.protein-nmr.org as a web implementation, or run locally from command line as a python program. CheSPI generates comprehensive numeric and graphical output for intuitive annotation and visualization of protein structures. A number of examples are provided.
Collapse
Affiliation(s)
- Jakob Toudahl Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
14
|
Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci 2021; 8:683132. [PMID: 34195228 PMCID: PMC8237284 DOI: 10.3389/fmolb.2021.683132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are the key instruments of bacterial protein homeostasis. Chaperones not only facilitate folding of client proteins, but also transport them, prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite this seemingly large variety, single chaperones can perform several of these functions even on multiple different clients, thus suggesting a single biophysical mechanism underlying. Numerous recently elucidated structures of bacterial chaperone–client complexes show that dynamic interactions between chaperones and their client proteins stabilize conformationally flexible non-native client states, which results in client protein denaturation. Based on these findings, we propose chaotropicity as a suitable biophysical concept to rationalize the generic activity of chaperones. We discuss the consequences of applying this concept in the context of ATP-dependent and -independent chaperones and their functional regulation.
Collapse
|
15
|
Lu J, Zhang X, Wu Y, Sheng Y, Li W, Wang W. Energy landscape remodeling mechanism of Hsp70-chaperone-accelerated protein folding. Biophys J 2021; 120:1971-1983. [PMID: 33745889 PMCID: PMC8204389 DOI: 10.1016/j.bpj.2021.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Hsp70 chaperone is one of the key protein machines responsible for the quality control of protein production in cells. Facilitating in vivo protein folding by counteracting misfolding and aggregation is the essence of its biological function. Although the allosteric cycle during its functional actions has been well characterized both experimentally and computationally, the mechanism by which Hsp70 assists protein folding is still not fully understood. In this work, we studied the Hsp70-mediated folding of model proteins with rugged energy landscape by using molecular simulations. Different from the canonical scenario of Hsp70 functioning, which assumes that folding of substrate proteins occurs spontaneously after releasing from chaperones, our results showed that the substrate protein remains in contacts with the chaperone during its folding process. The direct chaperone-substrate interactions in the open conformation of Hsp70 tend to shield the substrate sites prone to form non-native contacts, which therefore avoids the frustrated folding pathway, leading to a higher folding rate and less probability of misfolding. Our results suggest that in addition to the unfoldase and holdase functions widely addressed in previous studies, Hsp70 can facilitate the folding of its substrate proteins by remodeling the folding energy landscape and directing the folding processes, demonstrating the foldase scenario. These findings add new, to our knowledge, insights into the general molecular mechanisms of chaperone-mediated protein folding.
Collapse
Affiliation(s)
- Jiajun Lu
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoyi Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yichao Wu
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yuebiao Sheng
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Studying protein folding in health and disease using biophysical approaches. Emerg Top Life Sci 2021; 5:29-38. [PMID: 33660767 PMCID: PMC8138949 DOI: 10.1042/etls20200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Protein folding is crucial for normal physiology including development and healthy aging, and failure of this process is related to the pathology of diseases including neurodegeneration and cancer. Early thermodynamic and kinetic studies based on the unfolding and refolding equilibrium of individual proteins in the test tube have provided insight into the fundamental principles of protein folding, although the problem of predicting how any given protein will fold remains unsolved. Protein folding within cells is a more complex issue than folding of purified protein in isolation, due to the complex interactions within the cellular environment, including post-translational modifications of proteins, the presence of macromolecular crowding in cells, and variations in the cellular environment, for example in cancer versus normal cells. Development of biophysical approaches including fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) techniques and cellular manipulations including microinjection and insertion of noncanonical amino acids has allowed the study of protein folding in living cells. Furthermore, biophysical techniques such as single-molecule fluorescence spectroscopy and optical tweezers allows studies of simplified systems at the single molecular level. Combining in-cell techniques with the powerful detail that can be achieved from single-molecule studies allows the effects of different cellular components including molecular chaperones to be monitored, providing us with comprehensive understanding of the protein folding process. The application of biophysical techniques to the study of protein folding is arming us with knowledge that is fundamental to the battle against cancer and other diseases related to protein conformation or protein–protein interactions.
Collapse
|
17
|
Yang H, Mecha MF, Goebel CP, Cavagnero S. Enhanced nuclear-spin hyperpolarization of amino acids and proteins via reductive radical quenchers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106912. [PMID: 33524671 PMCID: PMC7925436 DOI: 10.1016/j.jmr.2021.106912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) has recently emerged as an effective tool for the hyperpolarization of aromatic amino acids in solution, either in isolation or within proteins. One factor limiting the maximum achievable signal-to-noise ratio in LC-photo-CIDNP is the progressive degradation of the target molecule and photosensitizer upon long-term optical irradiation. Fortunately, this effect does not cause spectral distortions but leads to a progressively smaller signal buildup upon long-term data-collection (e.g. 500 nM tryptophan on a 600 MHz spectrometer after ca. 200 scans). Given that it is generally desirable to minimize the extent of photodamage, we report that low-μM amounts of the reductive radical quenchers vitamin C (VC, i.e., ascorbic acid) or 2-mercaptoethylamine (MEA) enable LC-photo-CIDNP data to be acquired for significantly longer time than ever possible before. This approach increases the sensitivity of LC-photo-CIDNP by more than 100%, with larger enhancement factors achieved in experiments involving more transients. Our results are consistent with VC and MEA acting primarily by reducing transient free radicals of the NMR molecule of interest, thus attenuating the extent of photodamage. The benefits of this reductive radical-quencher approach are highlighted by the ability to collect long-term high-resolution 2D 1H-13C LC-photo-CIDNP data on a dilute sample of the drkN SH3 protein (5 μM).
Collapse
Affiliation(s)
- Hanming Yang
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Miranda F Mecha
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Collin P Goebel
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA.
| |
Collapse
|
18
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
19
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
20
|
Dalphin MD, Stangl AJ, Liu Y, Cavagnero S. KLR-70: A Novel Cationic Inhibitor of the Bacterial Hsp70 Chaperone. Biochemistry 2020; 59:1946-1960. [PMID: 32326704 DOI: 10.1021/acs.biochem.0c00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heat-shock factor Hsp70 and other molecular chaperones play a central role in nascent protein folding. Elucidating the task performed by individual chaperones within the complex cellular milieu, however, has been challenging. One strategy for addressing this goal has been to monitor protein biogenesis in the absence and presence of inhibitors of a specific chaperone, followed by analysis of folding outcomes under both conditions. In this way, the role of the chaperone of interest can be discerned. However, development of chaperone inhibitors, including well-known proline-rich antimicrobial peptides, has been fraught with undesirable side effects, including decreased protein expression yields. Here, we introduce KLR-70, a rationally designed cationic inhibitor of the Escherichia coli Hsp70 chaperone (also known as DnaK). KLR-70 is a 14-amino acid peptide bearing naturally occurring residues and engineered to interact with the DnaK substrate-binding domain. The interaction of KLR-70 with DnaK is enantioselective and is characterized by high affinity in a buffered solution. Importantly, KLR-70 does not significantly interact with the DnaJ and GroEL/ES chaperones, and it does not alter nascent protein biosynthesis yields across a wide concentration range. Some attenuation of the anti-DnaK activity of KLR-70, however, has been observed in the complex E. coli cell-free environment. Interestingly, the d enantiomer D-KLR-70, unlike its all-L KLR-70 counterpart, does not bind the DnaK and DnaJ chaperones, yet it strongly inhibits translation. This outcome suggests that the two enantiomers (KLR-70 and D-KLR-70) may serve as orthogonal inhibitors of chaperone binding and translation. In summary, KLR-70 is a novel chaperone inhibitor with high affinity and selectivity for bacterial Hsp70 and with considerable potential to help in parsing out the role of Hsp70 in nascent protein folding.
Collapse
Affiliation(s)
- Matthew D Dalphin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew J Stangl
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Addabbo RM, Dalphin MD, Mecha MF, Liu Y, Staikos A, Guzman-Luna V, Cavagnero S. Complementary Role of Co- and Post-Translational Events in De Novo Protein Biogenesis. J Phys Chem B 2020; 124:6488-6507. [DOI: 10.1021/acs.jpcb.0c03039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Yue Liu
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Lee J, Park SH, Cavagnero S, Lee JH. High-Resolution Diffusion Measurements of Proteins by NMR under Near-Physiological Conditions. Anal Chem 2020; 92:5073-5081. [PMID: 32163276 DOI: 10.1021/acs.analchem.9b05453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring the translational diffusion of proteins under physiological conditions can be very informative, especially when multiple diffusing species can be distinguished. Diffusion NMR or diffusion-ordered spectroscopy (DOSY) is widely used to study molecular diffusion, where protons are used as probes, which can be further edited by the proton-attached heteronuclei to provide additional resolution. For example, the combination of the backbone amide protons (1HN) to measure diffusion with the well-resolved 1H/15N correlations has afforded high-resolution DOSY experiments. However, significant amide-water proton exchange at physiological temperature and pH can affect the accuracy of diffusion data or cause complete loss of DOSY signals. Although aliphatic protons do not exchange with water protons, and thus are potential probes to measure diffusion rates, 1H/13C correlations are often in spectral overlap or masked by the water signal, which hampers the use of these correlations. In this report, a method was developed that separates the nuclei used for diffusion (α protons, 1Hα) and those used for detection (1H/15N and 13C'/15N correlations). This approach enables high-resolution diffusion measurements of polypeptides in a mixture of biomolecules, thereby providing a powerful tool to investigate coexisting species under physiologically relevant conditions.
Collapse
Affiliation(s)
- Jongchan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sho Hee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Jiang Y, Rossi P, Kalodimos CG. Structural basis for client recognition and activity of Hsp40 chaperones. Science 2020; 365:1313-1319. [PMID: 31604242 DOI: 10.1126/science.aax1280] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Hsp70 and Hsp40 chaperones work synergistically in a wide range of biological processes including protein synthesis, membrane translocation, and folding. We used nuclear magnetic resonance spectroscopy to determine the solution structure and dynamic features of an Hsp40 in complex with an unfolded client protein. Atomic structures of the various binding sites in the client complexed to the binding domains of the Hsp40 reveal the recognition pattern. Hsp40 engages the client in a highly dynamic fashion using a multivalent binding mechanism that alters the folding properties of the client. Different Hsp40 family members have different numbers of client-binding sites with distinct sequence selectivity, providing additional mechanisms for activity regulation and function modification. Hsp70 binding to Hsp40 displaces the unfolded client. The activity of Hsp40 is altered in its complex with Hsp70, further regulating client binding and release.
Collapse
Affiliation(s)
- Yajun Jiang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
24
|
Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol 2020; 20:665-680. [PMID: 31253954 DOI: 10.1038/s41580-019-0133-3] [Citation(s) in RCA: 654] [Impact Index Per Article: 163.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 70-kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that act in a large variety of cellular protein folding and remodelling processes. They function virtually at all stages of the life of proteins from synthesis to degradation and are thus crucial for maintaining protein homeostasis, with direct implications for human health. A large set of co-chaperones comprising J-domain proteins and nucleotide exchange factors regulate the ATPase cycle of Hsp70s, which is allosterically coupled to substrate binding and release. Moreover, Hsp70s cooperate with other cellular chaperone systems including Hsp90, Hsp60 chaperonins, small heat shock proteins and Hsp100 AAA+ disaggregases, together constituting a dynamic and functionally versatile network for protein folding, unfolding, regulation, targeting, aggregation and disaggregation, as well as degradation. In this Review we describe recent advances that have increased our understanding of the molecular mechanisms and working principles of the Hsp70 network. This knowledge showcases how the Hsp70 chaperone system controls diverse cellular functions, and offers new opportunities for the development of chemical compounds that modulate disease-related Hsp70 activities.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-ZMBH Alliance, Heidelberg, Germany.,Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
25
|
Faust O, Rosenzweig R. Structural and Biochemical Properties of Hsp40/Hsp70 Chaperone System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:3-20. [DOI: 10.1007/978-3-030-40204-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Yang H, Hofstetter H, Cavagnero S. Fast-pulsing LED-enhanced NMR: A convenient and inexpensive approach to increase NMR sensitivity. J Chem Phys 2019; 151:245102. [PMID: 31893873 DOI: 10.1063/1.5131452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) has recently emerged as a powerful technology for the detection of aromatic amino acids and proteins in solution in the low-micromolar to nanomolar concentration range. LC-photo-CIDNP is typically carried out in the presence of high-power lasers, which are costly and maintenance-heavy. Here, we show that LC-photo-CIDNP can be performed with light-emitting diodes (LEDs), which are inexpensive and much less cumbersome than lasers, laser diodes, flash lamps, or other light sources. When nuclear magnetic resonance (NMR) sample concentration is within the low-micromolar to nanomolar range, as in LC-photo-CIDNP, replacement of lasers with LEDs leads to no losses in sensitivity. We also investigate the effect of optical-fiber thickness and compare excitation rate constants of an Ar ion laser (488 nm) and a 466 nm LED, taking LED emission bandwidths into account. In addition, importantly, we develop a novel pulse sequence (13C RASPRINT) to perform ultrarapid LC-photo-CIDNP data collection. Remarkably, 13C RASPRINT leads to 4-fold savings in data collection time. The latter advance relies on the fact that photo-CID nuclear hyperpolarization does not suffer from the longitudinal-relaxation recovery requirements of conventional NMR. Finally, we combine both the above improvements, resulting in facile and rapid (≈16 s-2.5 min) collection of 1 and 2D NMR data on aromatic amino acids and proteins in solution at nanomolar to low micromolar concentration.
Collapse
Affiliation(s)
- Hanming Yang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| |
Collapse
|
27
|
Assenza S, Sassi AS, Kellner R, Schuler B, De Los Rios P, Barducci A. Efficient conversion of chemical energy into mechanical work by Hsp70 chaperones. eLife 2019; 8:e48491. [PMID: 31845888 PMCID: PMC7000219 DOI: 10.7554/elife.48491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
Hsp70 molecular chaperones are abundant ATP-dependent nanomachines that actively reshape non-native, misfolded proteins and assist a wide variety of essential cellular processes. Here, we combine complementary theoretical approaches to elucidate the structural and thermodynamic details of the chaperone-induced expansion of a substrate protein, with a particular emphasis on the critical role played by ATP hydrolysis. We first determine the conformational free-energy cost of the substrate expansion due to the binding of multiple chaperones using coarse-grained molecular simulations. We then exploit this result to implement a non-equilibrium rate model which estimates the degree of expansion as a function of the free energy provided by ATP hydrolysis. Our results are in quantitative agreement with recent single-molecule FRET experiments and highlight the stark non-equilibrium nature of the process, showing that Hsp70s are optimized to effectively convert chemical energy into mechanical work close to physiological conditions.
Collapse
Affiliation(s)
- Salvatore Assenza
- Laboratory of Food and Soft MaterialsETH ZürichZürichSwitzerland
- Departmento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
| | - Alberto Stefano Sassi
- Institute of Physics, School of Basic SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- IBM TJ Watson Research CenterYorktown HeightsNew YorkUnited States
| | - Ruth Kellner
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Benjamin Schuler
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
- Department of PhysicsUniversity of ZurichZurichSwitzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS)INSERM, CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
28
|
Wu K, Stull F, Lee C, Bardwell JCA. Protein folding while chaperone bound is dependent on weak interactions. Nat Commun 2019; 10:4833. [PMID: 31645566 PMCID: PMC6811625 DOI: 10.1038/s41467-019-12774-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
It is generally assumed that protein clients fold following their release from chaperones instead of folding while remaining chaperone-bound, in part because binding is assumed to constrain the mobility of bound clients. Previously, we made the surprising observation that the ATP-independent chaperone Spy allows its client protein Im7 to fold into the native state while continuously bound to the chaperone. Spy apparently permits sufficient client mobility to allow folding to occur while chaperone bound. Here, we show that strengthening the interaction between Spy and a recently discovered client SH3 strongly inhibits the ability of the client to fold while chaperone bound. The more tightly Spy binds to its client, the more it slows the folding rate of the bound client. Efficient chaperone-mediated folding while bound appears to represent an evolutionary balance between interactions of sufficient strength to mediate folding and interactions that are too tight, which tend to inhibit folding. Spy is an ATP independent chaperone that allows folding of its client protein Im7 while continuously bound to Spy. Here the authors employ kinetics measurements to study the folding of another Spy client protein SH3 and find that Spy’s ability to allow a client to fold while bound is inversely related to how strongly it interacts with that client.
Collapse
Affiliation(s)
- Kevin Wu
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Frederick Stull
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Changhan Lee
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA.
| |
Collapse
|
29
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
30
|
Laser- and cryogenic probe-assisted NMR enables hypersensitive analysis of biomolecules at submicromolar concentration. Proc Natl Acad Sci U S A 2019; 116:11602-11611. [PMID: 31142651 DOI: 10.1073/pnas.1820573116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Solution-state NMR typically requires 100 μM to 1 mM samples. This limitation prevents applications to mass-limited and aggregation-prone target molecules. Photochemically induced dynamic nuclear polarization was adapted to data collection on low-concentration samples by radiofrequency gating, enabling rapid 1D NMR spectral acquisition on aromatic amino acids and proteins bearing aromatic residues at nanomolar concentration, i.e., a full order of magnitude below other hyperpolarization techniques in liquids. Both backbone H1-C13 and side-chain resonances were enhanced, enabling secondary and tertiary structure analysis of proteins with remarkable spectral editing, via the 13C PREPRINT pulse sequence. Laser-enhanced 2D NMR spectra of 5 μM proteins at 600 MHz display 30-fold better S/N than conventional 2D data collected at 900 MHz. Sensitivity enhancements achieved with this technology, denoted as low-concentration photo-CIDNP (LC-photo-CIDNP), depend only weakly on laser intensity, highlighting the opportunity of safer and more cost-effective hypersensitive NMR applications employing low-power laser sources.
Collapse
|
31
|
Abstract
Biological molecules are often highly dynamic, and this flexibility can be critical for function. The large range of sampled timescales and the fact that many of the conformers that are continually explored are only transiently formed and sparsely populated challenge current biophysical approaches. Solution nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for characterizing biomolecular dynamics in detail, even in cases where excursions involve short-lived states. Here, we briefly review a number of NMR experiments for studies of biomolecular dynamics on the microsecond-to-second timescale and focus on applications to protein and nucleic acid systems that clearly illustrate the functional relevance of motion in both health and disease.
Collapse
Affiliation(s)
- Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
32
|
Mayer MP, Gierasch LM. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 2018; 294:2085-2097. [PMID: 30455352 DOI: 10.1074/jbc.rev118.002810] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hsp70 chaperones are central hubs of the protein quality control network and collaborate with co-chaperones having a J-domain (an ∼70-residue-long helical hairpin with a flexible loop and a conserved His-Pro-Asp motif required for ATP hydrolysis by Hsp70s) and also with nucleotide exchange factors to facilitate many protein-folding processes that (re)establish protein homeostasis. The Hsp70s are highly dynamic nanomachines that modulate the conformation of their substrate polypeptides by transiently binding to short, mostly hydrophobic stretches. This interaction is regulated by an intricate allosteric mechanism. The J-domain co-chaperones target Hsp70 to their polypeptide substrates, and the nucleotide exchange factors regulate the lifetime of the Hsp70-substrate complexes. Significant advances in recent years are beginning to unravel the molecular mechanism of this chaperone machine and how they treat their substrate proteins.
Collapse
Affiliation(s)
- Matthias P Mayer
- From the Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany and
| | - Lila M Gierasch
- the Departments of Biochemistry and Molecular Biology and.,Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
33
|
Hiller S, Burmann BM. Chaperone-client complexes: A dynamic liaison. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:142-155. [PMID: 29544626 DOI: 10.1016/j.jmr.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/08/2023]
Abstract
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University for Gothenburg, 405 30 Göteborg, Sweden.
| |
Collapse
|
34
|
Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins. Nat Chem Biol 2018; 14:388-395. [PMID: 29507388 DOI: 10.1038/s41589-018-0013-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022]
Abstract
During and after protein translation, molecular chaperones require ATP hydrolysis to favor the native folding of their substrates and, under stress, to avoid aggregation and revert misfolding. Why do some chaperones need ATP, and what are the consequences of the energy contributed by the ATPase cycle? Here, we used biochemical assays and physical modeling to show that the bacterial chaperones GroEL (Hsp60) and DnaK (Hsp70) both use part of the energy from ATP hydrolysis to restore the native state of their substrates, even under denaturing conditions in which the native state is thermodynamically unstable. Consistently with thermodynamics, upon exhaustion of ATP, the metastable native chaperone products spontaneously revert to their equilibrium non-native states. In the presence of ATPase chaperones, some proteins may thus behave as open ATP-driven, nonequilibrium systems whose fate is only partially determined by equilibrium thermodynamics.
Collapse
|
35
|
Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. eLife 2018; 7:32764. [PMID: 29460778 PMCID: PMC5819949 DOI: 10.7554/elife.32764] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Molecular recognition is integral to biological function and frequently involves preferred binding of a molecule to one of several exchanging ligand conformations in solution. In such a process the bound structure can be selected from the ensemble of interconverting ligands a priori (conformational selection, CS) or may form once the ligand is bound (induced fit, IF). Here we focus on the ubiquitous and conserved Hsp70 chaperone which oversees the integrity of the cellular proteome through its ATP-dependent interaction with client proteins. We directly quantify the flux along CS and IF pathways using solution NMR spectroscopy that exploits a methyl TROSY effect and selective isotope-labeling methodologies. Our measurements establish that both bacterial and human Hsp70 chaperones interact with clients by selecting the unfolded state from a pre-existing array of interconverting structures, suggesting a conserved mode of client recognition among Hsp70s and highlighting the importance of molecular dynamics in this recognition event. Proteins are the workhorses of a cell and are involved in almost all biological processes. Newly made proteins need to ‘fold’ into precise three-dimensional shapes in order to carry out their roles. However, proteins sometimes fold incorrectly or unfold. These protein forms are not able to work effectively and in some cases may even cause diseases. Chaperone proteins help other proteins to fold correctly and are found in living organisms ranging in complexity from bacteria to humans. There are many different types of chaperones that play different roles inside cells. One, called Hsp70, binds to proteins that are incorrectly folded to help them to mature into their correct structures. However, it was not clear whether Hsp70 can also associate with the mature, correctly folded form of the proteins. A technique called Nuclear Magnetic Resonance (NMR) spectroscopy can distinguish between mature, unfolded and chaperone-bound forms of the same protein. Sekhar et al. therefore used NMR to investigate which forms of a protein Hsp70 binds to. This revealed that both the bacterial and human versions of the Hsp70 chaperone interact only with unfolded proteins. The results presented by Sekhar et al. also explain why Hsp70 does not disrupt the routine workings of the cell: because it does not bind to mature forms of proteins. These observations extend our understanding of how chaperones assist in folding proteins, and fit into a broader research theme exploring how proteins recognize one another. It will now be interesting to see whether the same mechanism holds for more complex forms of proteins, such as aggregates, or larger protein structures with regions of both folded and unfolded elements.
Collapse
Affiliation(s)
- Ashok Sekhar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Algirdas Velyvis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guy Zoltsman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Rosenzweig
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Hospital for Sick Children, Program in Molecular Medicine, University Avenue, Toronto, Canada
| |
Collapse
|
36
|
Sekhar A, Nagesh J, Rosenzweig R, Kay LE. Conformational heterogeneity in the Hsp70 chaperone-substrate ensemble identified from analysis of NMR-detected titration data. Protein Sci 2017; 26:2207-2220. [PMID: 28833766 DOI: 10.1002/pro.3276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
Abstract
The Hsp70 chaperone system plays a critical role in cellular homeostasis by binding to client protein molecules. We have recently shown by methyl-TROSY NMR methods that the Escherichia coli Hsp70, DnaK, can form multiple bound complexes with a small client protein, hTRF1. In an effort to characterize the interactions further we report here the results of an NMR-based titration study of hTRF1 and DnaK, where both molecular components are monitored simultaneously, leading to a binding model. A central finding is the formation of a previously undetected 3:1 hTRF1-DnaK complex, suggesting that under heat shock conditions, DnaK might be able to protect cytosolic proteins whose net concentrations would exceed that of the chaperone. Moreover, these results provide new insight into the heterogeneous ensemble of complexes formed by DnaK chaperones and further emphasize the unique role of NMR spectroscopy in obtaining information about individual events in a complex binding scheme by exploiting a large number of probes that report uniquely on distinct binding processes.
Collapse
Affiliation(s)
- Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jayashree Nagesh
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Program in Molecular Medicine, 555 University Avenue, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| |
Collapse
|
37
|
Horowitz S, Koldewey P, Stull F, Bardwell JC. Folding while bound to chaperones. Curr Opin Struct Biol 2017; 48:1-5. [PMID: 28734135 DOI: 10.1016/j.sbi.2017.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023]
Abstract
Chaperones are important in preventing protein aggregation and aiding protein folding. How chaperones aid protein folding remains a key question in understanding their mechanism. The possibility of proteins folding while bound to chaperones was reintroduced recently with the chaperone Spy, many years after the phenomenon was first reported with the chaperones GroEL and SecB. In this review, we discuss the salient features of folding while bound in the cases for which it has been observed and speculate about its biological importance and possible occurrence in other chaperones.
Collapse
Affiliation(s)
- Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80208, USA.
| | - Philipp Koldewey
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - Frederick Stull
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Rosenzweig R, Sekhar A, Nagesh J, Kay LE. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. eLife 2017; 6. [PMID: 28708484 PMCID: PMC5511010 DOI: 10.7554/elife.28030] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023] Open
Abstract
The Hsp70 chaperone system is integrated into a myriad of biochemical processes that are critical for cellular proteostasis. Although detailed pictures of Hsp70 bound with peptides have emerged, correspondingly detailed structural information on complexes with folding-competent substrates remains lacking. Here we report a methyl-TROSY based solution NMR study showing that the Escherichia coli version of Hsp70, DnaK, binds to as many as four distinct sites on a small 53-residue client protein, hTRF1. A fraction of hTRF1 chains are also bound to two DnaK molecules simultaneously, resulting in a mixture of DnaK-substrate sub-ensembles that are structurally heterogeneous. The interactions of Hsp70 with a client protein at different sites results in a fuzzy chaperone-substrate ensemble and suggests a mechanism for Hsp70 function whereby the structural heterogeneity of released substrate molecules enables them to circumvent kinetic traps in their conformational free energy landscape and fold efficiently to the native state. DOI:http://dx.doi.org/10.7554/eLife.28030.001
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ashok Sekhar
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Jayashree Nagesh
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Hospital for Sick Children, Program in Molecular Structure and Function, Toronto, Canada
| |
Collapse
|
39
|
Gorensek-Benitez AH, Smith AE, Stadmiller SS, Perez Goncalves GM, Pielak GJ. Cosolutes, Crowding, and Protein Folding Kinetics. J Phys Chem B 2017; 121:6527-6537. [PMID: 28605189 PMCID: PMC5982521 DOI: 10.1021/acs.jpcb.7b03786] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long accepted as the most important interaction, recent work shows that steric repulsions alone cannot explain the effects of macromolecular cosolutes on the equilibrium thermodynamics of protein stability. Instead, chemical interactions have been shown to modulate, and even dominate, crowding-induced steric repulsions. Here, we use 19F NMR to examine the effects of small and large cosolutes on the kinetics of protein folding and unfolding using the metastable 7 kDa N-terminal SH3 domain of the Drosophila signaling protein drk (SH3), which folds by a two-state mechanism. The small cosolutes consist of trimethylamine N-oxide and sucrose, which increase equilibrium protein stability, and urea, which destabilizes proteins. The macromolecules comprise the stabilizing sucrose polymer, Ficoll, and the destabilizing globular protein, lysozyme. We assessed the effects of these cosolutes on the differences in free energy between the folded state and the transition state and between the unfolded ensemble and the transition state. We then examined the temperature dependence to assess changes in activation enthalpy and entropy. The enthalpically mediated effects are more complicated than suggested by equilibrium measurements. We also observed enthalpic effects with the supposedly inert sucrose polymer, Ficoll, that arise from its macromolecular nature. Assessment of activation entropies shows important contributions from solvent and cosolute, in addition to the configurational entropy of the protein that, again, cannot be gleaned from equilibrium data. Comparing the effects of Ficoll to those of the more physiologically relevant cosolute lysozyme reveals that synthetic polymers are not appropriate models for understanding the kinetics of protein folding in cells.
Collapse
Affiliation(s)
| | - Austin E. Smith
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Samantha S. Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
40
|
Koldewey P, Horowitz S, Bardwell JCA. Chaperone-client interactions: Non-specificity engenders multifunctionality. J Biol Chem 2017; 292:12010-12017. [PMID: 28620048 DOI: 10.1074/jbc.r117.796862] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we provide an overview of the different mechanisms whereby three different chaperones, Spy, Hsp70, and Hsp60, interact with folding proteins, and we discuss how these chaperones may guide the folding process. Available evidence suggests that even a single chaperone can use many mechanisms to aid in protein folding, most likely due to the need for most chaperones to bind clients promiscuously. Chaperone mechanism may be better understood by always considering it in the context of the client's folding pathway and biological function.
Collapse
Affiliation(s)
- Philipp Koldewey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Scott Horowitz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
41
|
Zhuravleva A, Korzhnev DM. Protein folding by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:52-77. [PMID: 28552172 DOI: 10.1016/j.pnmrs.2016.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Abstract
Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease.
Collapse
Affiliation(s)
- Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
42
|
Salmon L, Ahlstrom LS, Horowitz S, Dickson A, Brooks CL, Bardwell JCA. Capturing a Dynamic Chaperone-Substrate Interaction Using NMR-Informed Molecular Modeling. J Am Chem Soc 2016; 138:9826-39. [PMID: 27415450 DOI: 10.1021/jacs.6b02382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chaperones maintain a healthy proteome by preventing aggregation and by aiding in protein folding. Precisely how chaperones influence the conformational properties of their substrates, however, remains unclear. To achieve a detailed description of dynamic chaperone-substrate interactions, we fused site-specific NMR information with coarse-grained simulations. Our model system is the binding and folding of a chaperone substrate, immunity protein 7 (Im7), with the chaperone Spy. We first used an automated procedure in which NMR chemical shifts inform the construction of system-specific force fields that describe each partner individually. The models of the two binding partners are then combined to perform simulations on the chaperone-substrate complex. The binding simulations show excellent agreement with experimental data from multiple biophysical measurements. Upon binding, Im7 interacts with a mixture of hydrophobic and hydrophilic residues on Spy's surface, causing conformational exchange within Im7 to slow down as Im7 folds. Meanwhile, the motion of Spy's flexible loop region increases, allowing for better interaction with different substrate conformations, and helping offset losses in Im7 conformational dynamics that occur upon binding and folding. Spy then preferentially releases Im7 into a well-folded state. Our strategy has enabled a residue-level description of a dynamic chaperone-substrate interaction, improving our understanding of how chaperones facilitate substrate folding. More broadly, we validate our approach using two other binding partners, showing that this approach provides a general platform from which to investigate other flexible biomolecular complexes through the integration of NMR data with efficient computational models.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Logan S Ahlstrom
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Scott Horowitz
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Alex Dickson
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016; 353:aac4354. [DOI: 10.1126/science.aac4354] [Citation(s) in RCA: 832] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most proteins must fold into unique three-dimensional structures to perform their biological functions. In the crowded cellular environment, newly synthesized proteins are at risk of misfolding and forming toxic aggregate species. To ensure efficient folding, different classes of molecular chaperones receive the nascent protein chain emerging from the ribosome and guide it along a productive folding pathway. Because proteins are structurally dynamic, constant surveillance of the proteome by an integrated network of chaperones and protein degradation machineries is required to maintain protein homeostasis (proteostasis). The capacity of this proteostasis network declines during aging, facilitating neurodegeneration and other chronic diseases associated with protein aggregation. Understanding the proteostasis network holds the promise of identifying targets for pharmacological intervention in these pathologies.
Collapse
|
44
|
Alderson TR, Kim JH, Markley JL. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Structure 2016; 24:1014-30. [PMID: 27345933 DOI: 10.1016/j.str.2016.05.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022]
Abstract
Protein misfolding and aggregation are pathological events that place a significant amount of stress on the maintenance of protein homeostasis (proteostasis). For prevention and repair of protein misfolding and aggregation, cells are equipped with robust mechanisms that mainly rely on molecular chaperones. Two classes of molecular chaperones, heat shock protein 70 kDa (Hsp70) and Hsp40, recognize and bind to misfolded proteins, preventing their toxic biomolecular aggregation and enabling refolding or targeted degradation. Here, we review the current state of structural biology of Hsp70 and Hsp40-Hsp70 complexes and examine the link between their structures, dynamics, and functions. We highlight the power of nuclear magnetic resonance spectroscopy to untangle complex relationships behind molecular chaperones and their mechanism(s) of action.
Collapse
Affiliation(s)
- Thomas Reid Alderson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jin Hae Kim
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Lute Markley
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|