1
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Abu Bakar N, Chung BLY, Smykla J, Karsani SA, Alias SA. Proteomic characterization of Pseudogymnoascus spp. isolates from polar and temperate regions. Mycologia 2024; 116:449-463. [PMID: 38484286 DOI: 10.1080/00275514.2024.2313429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/30/2024] [Indexed: 05/01/2024]
Abstract
Proteomics has been used extensively in the field of mycology, mainly in trying to understand the complex network of protein-protein interactions that has been implicated in the molecular functions of fungi. It is also a useful tool to compare metabolic differences within a genus. Species of Pseudogymnoascus, a genus under the phyla Ascomycota, have been shown to play an important role in the soil environment. They have been found in both polar and temperate regions and are a known producer of many extracellular hydrolases that contribute to soil decomposition. Despite the apparent importance of Pseudogymnoascus spp. in the soil ecosystem, investigations into their molecular functions are still very limited. In the present study, proteomic characterization of six Pseudogymnoascus spp. isolated from three biogeographic regions (the Arctic, Antarctic, and temperate regions) was carried out using tandem mass spectrometry. Prior to proteomic analysis, the optimization for protein extraction was carried out. Trichloroacetic acid‑acetone‑phenol was found to be the best extraction method to be used for proteomic profiling of Pseudogymnoascus spp. The proteomic analysis identified 2003 proteins that were successfully mapped to the UniProtKB database. The identified proteins were clustered according to their biological processes and molecular functions. The shared proteins found in all Pseudogymnoascus spp. (1201 proteins) showed a significantly close relationship in their basic cellular functions, despite differences in morphological structures. Analysis of Pseudogymnoascus spp. proteome also identified proteins that were unique to each region. However, a high number of these proteins belonged to protein families of similar molecular functions, namely, transferases and hydrolases. Our proteomic data can be used as a reference for Pseudogymnoascus spp. across different global regions and a foundation for future soil ecosystem function research.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, C308, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
- National Antarctic Research Centre, Universiti Malaya, B303, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
| | - Benjamin Lau Yii Chung
- Advanced Biotechnology and Breeding Centre, Persiaran Institusi, Malaysian Palm Oil Board, No. 6, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Jerzy Smykla
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Krakow 31-120, Poland
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, C308, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
- National Antarctic Research Centre, Universiti Malaya, B303, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Whiting-Fawcett F, Blomberg AS, Troitsky T, Meierhofer MB, Field KA, Puechmaille SJ, Lilley TM. A Palearctic view of a bat fungal disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14265. [PMID: 38616727 DOI: 10.1111/cobi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 04/16/2024]
Abstract
The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.
Collapse
Affiliation(s)
- F Whiting-Fawcett
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - A S Blomberg
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - M B Meierhofer
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - S J Puechmaille
- Institut des Sciences de l'Évolution Montpellier (ISEM), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Pikula J, Brichta J, Seidlova V, Piacek V, Zukal J. Higher antibody titres against Pseudogymnoascus destructans are associated with less white-nose syndrome skin lesions in Palearctic bats. Front Immunol 2023; 14:1269526. [PMID: 38143741 PMCID: PMC10739372 DOI: 10.3389/fimmu.2023.1269526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. Methods In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. Results and Discussion Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
- CEITEC: Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jiri Brichta
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
5
|
Silva RDS, Segura WD, Oliveira RS, Xander P, Batista WL. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J Fungi (Basel) 2023; 9:jof9030375. [PMID: 36983543 PMCID: PMC10053120 DOI: 10.3390/jof9030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. Proteases play an important role in the host invasion process and immune modulation in many pathogenic microorganisms. Aspartyl proteases are virulence factors in many human fungal pathogens that play an important role in the host invasion process morphogenesis, cellular function, immunity, and nutrition. In the present study, we characterized the modulation of acid proteases from Paracoccidioides brasiliensis. We detected four aspartyl proteases in P. brasiliensis with high homology to aspartic protease from Saccharomyces cerevisiae Pep4. Furthermore, we demonstrated that Pepstatin A can inhibit dimorphic switching (mycelium→yeast) in P. brasiliensis. In addition, these genes were modulated during thermo-dimorphism (M→Y transition) in the presence or absence of carbon and nitrogen sources and during growth at pH 4 during 24 and 48 h. We also observed that P. brasiliensis increase the secretion of aspartic proteases when cultivated at pH 4, and these acid proteases cleave BSA, collagen, and hemoglobin. These data suggest that aspartyl proteases are modulated by environmental conditions and during fungal thermo-dimorphism. Thus, this work brings new possibilities for studying the role of aspartyl proteases in the host-pathogen relationship and P. brasiliensis biology.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Wilson Dias Segura
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Reinaldo Souza Oliveira
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Wagner Luiz Batista
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
6
|
Higher white-nose syndrome fungal isolate yields from UV-guided wing biopsies compared with skin swabs and optimal culture media. BMC Vet Res 2023; 19:40. [PMID: 36759833 PMCID: PMC9912490 DOI: 10.1186/s12917-023-03603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.
Collapse
|
7
|
Characterization of Pseudogymnoascus destructans conidial adherence to extracellular matrix: Association with fungal secreted proteases and identification of candidate extracellular matrix binding proteins. Microb Pathog 2023; 174:105895. [PMID: 36423748 DOI: 10.1016/j.micpath.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Pseudogymnoascus destructans is the etiological agent of white-nose syndrome (WNS), a fungal skin infection of hibernating bats. Pathophysiology of the disease involves disruption of bat metabolism and hibernation patterns, which subsequently causes premature emergence and mortality. However, information on the mechanism(s) and virulence factors of P. destructans infection is minimally known. Typically, fungal adherence to host cells and extracellular matrix (ECM) is the critical first step of the infection. It allows pathogenic fungi to establish colonization and provides an entry for invasion in host tissues. In this study, we characterized P. destructans conidial adherence to laminin and fibronectin. We found that P. destructans conidia adhered to laminin and fibronectin in a dose-dependent, time-dependent and saturable manner. We also observed changes in the gene expression of secreted proteases, in response to ECM exposure. However, the interaction between fungal conidia and ECM was not specific, nor was it facilitated by enzymatic activity of secreted proteases. We therefore further investigated other P. destructans proteins that recognized ECM and found glyceraldehyde-3-phosphate dehydrogenase and elongation factor 1-alpha among the candidate proteins. Our results demonstrate that P. destructans may use conidial surface proteins to recognize laminin and fibronectin and facilitate conidial adhesion to ECM. In addition, other non-specific interactions may contribute to the conidial adherence to ECM. However, the ECM binding protein candidates identified in this study highlight additional potential fungal virulence factors worth investigating in the P. destructans mechanism of infection in future studies.
Collapse
|
8
|
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods Enzymol 2022; 682:375-411. [PMID: 36948708 PMCID: PMC10201391 DOI: 10.1016/bs.mie.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.
Collapse
Affiliation(s)
- Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
9
|
Reher R, Aron AT, Fajtová P, Stincone P, Wagner B, Pérez-Lorente AI, Liu C, Shalom IYB, Bittremieux W, Wang M, Jeong K, Matos-Hernandez ML, Alexander KL, Caro-Diaz EJ, Naman CB, Scanlan JHW, Hochban PMM, Diederich WE, Molina-Santiago C, Romero D, Selim KA, Sass P, Brötz-Oesterhelt H, Hughes CC, Dorrestein PC, O'Donoghue AJ, Gerwick WH, Petras D. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat Commun 2022; 13:4619. [PMID: 35941113 PMCID: PMC9358669 DOI: 10.1038/s41467-022-32016-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
The identity and biological activity of most metabolites still remain unknown. A bottleneck in the exploration of metabolite structures and pharmaceutical activities is the compound purification needed for bioactivity assignments and downstream structure elucidation. To enable bioactivity-focused compound identification from complex mixtures, we develop a scalable native metabolomics approach that integrates non-targeted liquid chromatography tandem mass spectrometry and detection of protein binding via native mass spectrometry. A native metabolomics screen for protease inhibitors from an environmental cyanobacteria community reveals 30 chymotrypsin-binding cyclodepsipeptides. Guided by the native metabolomics results, we select and purify five of these compounds for full structure elucidation via tandem mass spectrometry, chemical derivatization, and nuclear magnetic resonance spectroscopy as well as evaluation of their biological activities. These results identify rivulariapeptolides as a family of serine protease inhibitors with nanomolar potency, highlighting native metabolomics as a promising approach for drug discovery, chemical ecology, and chemical biology studies. Bioactivity-guided isolation of specialized metabolites is an iterative process. Here, the authors demonstrate a native metabolomics approach that allows for fast screening of complex metabolite extracts against a protein of interest and simultaneous structure annotation.
Collapse
Affiliation(s)
- Raphael Reher
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Pharmaceutical Biology and Biotechnology, University of Marburg, Marburg, Germany
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Paolo Stincone
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany
| | - Berenike Wagner
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Alicia I Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Chenxi Liu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Ido Y Ben Shalom
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Kyowon Jeong
- Applied Bioinformatics, Computer Science Department, University of Tuebingen, Tuebingen, Germany
| | - Marie L Matos-Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico
| | - Kelsey L Alexander
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Eduardo J Caro-Diaz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - J H William Scanlan
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Phil M M Hochban
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology (ZTI), University of Marburg, Marburg, Germany
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Khaled A Selim
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Peter Sass
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Chambers C Hughes
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.,German Center for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA.
| | - Daniel Petras
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA. .,Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany. .,Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
10
|
Forsythe A, Fontaine N, Bissonnette J, Hayashi B, Insuk C, Ghosh S, Kam G, Wong A, Lausen C, Xu J, Cheeptham N. Microbial isolates with Anti-Pseudogymnoascus destructans activities from Western Canadian bat wings. Sci Rep 2022; 12:9895. [PMID: 35701553 PMCID: PMC9198084 DOI: 10.1038/s41598-022-14223-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudogymnoascus destructans (Pd) is the causative agent of white-nose syndrome, which has resulted in the death of millions of bats in North America (NA) since 2006. Based on mortalities in eastern NA, the westward spread of infections likely poses a significant threat to western NA bats. To help prevent/reduce Pd infections in bats in western NA, we isolated bacteria from the wings of wild bats and screened for inhibitory activity against Pd. In total, we obtained 1,362 bacterial isolates from 265 wild bats of 13 species in western Canada. Among the 1,362 isolates, 96 showed inhibitory activity against Pd based on a coculture assay. The inhibitory activities varied widely among these isolates, ranging from slowing fungal growth to complete inhibition. Interestingly, host bats containing isolates with anti-Pd activities were widely distributed, with no apparent geographic or species-specific pattern. However, characteristics of roosting sites and host demography showed significant associations with the isolation of anti-Pd bacteria. Specifically, anthropogenic roosts and swabs from young males had higher frequencies of anti-Pd bacteria than those from natural roosts and those from other sex and age-groups, respectively. These anti-Pd bacteria could be potentially used to help mitigate the impact of WNS. Field trials using these as well as additional microbes from future screenings are needed in order to determine their effectiveness for the prevention and treatment against WNS.
Collapse
Affiliation(s)
- Adrian Forsythe
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nick Fontaine
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Julianna Bissonnette
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Brandon Hayashi
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.,Department of Genetics, Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Gabrielle Kam
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Aaron Wong
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC, V0G 1M0, Canada.
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.
| |
Collapse
|
11
|
Kanfra X, Wrede A, Moll J, Heuer H. Nematode-Microbe Complexes in Soils Replanted with Apple. Microorganisms 2022; 10:microorganisms10010157. [PMID: 35056606 PMCID: PMC8780120 DOI: 10.3390/microorganisms10010157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Apple replant disease is a severe problem in orchards and tree nurseries. Evidence for the involvement of a nematode–microbe disease complex was reported. To search for this complex, plots with a history of apple replanting, and control plots cultivated for the first time with apple were sampled in two fields in two years. Shoot weight drastically decreased with each replanting. Amplicon sequencing of the nematode community and co-extracted fungal and bacterial communities revealed significant differences between replanted and control plots. Free-living nematodes of the genera Aphelenchus and Cephalenchus and an unidentified Dorylaimida were associated with replanted plots, as indicated by linear discriminant analysis effect size. Among the co-extracted fungi and bacteria, Mortierella and Methylotenera were most indicative of replanting. Some genera, mostly Rhabditis, Streptomyces and a fungus belonging to the Chaetomiaceae indicated healthy control plots. Isolating and investigating the putative disease complexes will help to understand and alleviate stress-induced root damage of apple in replanted soil.
Collapse
Affiliation(s)
- Xorla Kanfra
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany;
| | - Andreas Wrede
- Department of Horticulture, Landwirtschaftskammer Schleswig-Holstein, 25373 Ellerhoop, Germany;
| | - Julia Moll
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany;
| | - Holger Heuer
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany;
- Correspondence:
| |
Collapse
|
12
|
Korn VL, Pennerman KK, Padhi S, Bennett JW. Trans-2-hexenal downregulates several pathogenicity genes of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats. J Ind Microbiol Biotechnol 2021; 48:kuab060. [PMID: 34415032 PMCID: PMC8788850 DOI: 10.1093/jimb/kuab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
White-nose syndrome is an emergent wildlife disease that has killed millions of North American bats. It is caused by Pseudogymnoascus destructans, a cold-loving, invasive fungal pathogen that grows on bat tissues and disrupts normal hibernation patterns. Previous work identified trans-2-hexenal as a fungistatic volatile compound that potentially could be used as a fumigant against P. destructans in bat hibernacula. To determine the physiological responses of the fungus to trans-2-hexenal exposure, we characterized the P. destructans transcriptome in the presence and absence of trans-2-hexenal. Specifically, we analyzed the effects of sublethal concentrations (5 μmol/L, 10 μmol/L, and 20 μmol/L) of gas-phase trans-2-hexenal of the fungus grown in liquid culture. Among the three treatments, a total of 407 unique differentially expressed genes (DEGs) were identified, of which 74 were commonly affected across all three treatments, with 44 upregulated and 30 downregulated. Downregulated DEGs included several probable virulence genes including those coding for a high-affinity iron permease, a superoxide dismutase, and two protein-degrading enzymes. There was an accompanying upregulation of an ion homeostasis gene, as well as several genes involved in transcription, translation, and other essential cellular processes. These data provide insights into the mechanisms of action of trans-2-hexenal as an anti-fungal fumigant that is active at cold temperatures and will guide future studies on the molecular mechanisms by which six carbon volatiles inhibit growth of P. destructans and other pathogenic fungi.
Collapse
Affiliation(s)
| | - Kayla K Pennerman
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
| | - Sally Padhi
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
13
|
Yoon MC, Solania A, Jiang Z, Christy MP, Podvin S, Mosier C, Lietz CB, Ito G, Gerwick WH, Wolan DW, Hook G, O’Donoghue AJ, Hook V. Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions. ACS Chem Biol 2021; 16:1628-1643. [PMID: 34416110 DOI: 10.1021/acschembio.1c00138] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cathepsin B is a cysteine protease that normally functions within acidic lysosomes for protein degradation, but in numerous human diseases, cathepsin B translocates to the cytosol having neutral pH where the enzyme activates inflammation and cell death. Cathepsin B is active at both the neutral pH 7.2 of the cytosol and the acidic pH 4.6 within lysosomes. We evaluated the hypothesis that cathepsin B may possess pH-dependent cleavage preferences that can be utilized for design of a selective neutral pH inhibitor by (1) analysis of differential cathepsin B cleavage profiles at neutral pH compared to acidic pH using multiplex substrate profiling by mass spectrometry (MSP-MS), (2) design of pH-selective peptide-7-amino-4-methylcoumarin (AMC) substrates, and (3) design and validation of Z-Arg-Lys-acyloxymethyl ketone (AOMK) as a selective neutral pH inhibitor. Cathepsin B displayed preferences for cleaving peptides with Arg in the P2 position at pH 7.2 and Glu in the P2 position at pH 4.6, represented by its primary dipeptidyl carboxypeptidase and modest endopeptidase activity. These properties led to design of the substrate Z-Arg-Lys-AMC having neutral pH selectivity, and its modification with the AOMK warhead to result in the inhibitor Z-Arg-Lys-AOMK. This irreversible inhibitor displays nanomolar potency with 100-fold selectivity for inhibition of cathepsin B at pH 7.2 compared to pH 4.6, shows specificity for cathepsin B over other cysteine cathepsins, and is cell permeable and inhibits intracellular cathepsin B. These findings demonstrate that cathepsin B possesses pH-dependent cleavage properties that can lead to development of a potent, neutral pH inhibitor of this enzyme.
Collapse
Affiliation(s)
- Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Mitchell P. Christy
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Recombinant Production and Characterization of an Extracellular Subtilisin-Like Serine Protease from Acinetobacter baumannii of Fermented Food Origin. Protein J 2021; 40:419-435. [PMID: 33870461 PMCID: PMC8053418 DOI: 10.1007/s10930-021-09986-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
Acinetobacter baumannii is a ubiquitous bacteria that is increasingly becoming a formidable nosocomial pathogen. Due to its clinical relevance, studies on the bacteria's secretory molecules especially extracellular proteases are of interest primarily in relation to the enzyme's role in virulence. Besides, favorable properties that extracellular proteases possess may be exploited for commercial use thus there is a need to investigate extracellular proteases from Acinetobacter baumannii to gain insights into their catalytic properties. In this study, an extracellular subtilisin-like serine protease from Acinetobacter baumannii designated as SPSFQ that was isolated from fermented food was recombinantly expressed and characterized. The mature catalytically active form of SPSFQ shared a high percentage sequence identity of 99% to extracellular proteases from clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae as well as a moderately high percentage identity to other bacterial proteases with known keratinolytic and collagenolytic activity. The homology model of mature SPSFQ revealed its structure is composed of 10 β-strands, 8 α-helices, and connecting loops resembling a typical architecture of subtilisin-like α/β motif. SPSFQ is catalytically active at an optimum temperature of 40 °C and pH 9. Its activity is stimulated in the presence of Ca2+ and severely inhibited in the presence of PMSF. SPSFQ also displayed the ability to degrade several tissue-associated protein substrates such as keratin, collagen, and fibrin. Accordingly, our study shed light on the catalytic properties of a previously uncharacterized extracellular serine protease from Acinetobacter baumannii that warrants further investigations into its potential role as a virulence factor in pathogenicity and commercial applications.
Collapse
|
15
|
Abstract
The recent introduction of Pseudogymnoascus destructans (the fungal pathogen that causes white-nose syndrome in bats) from Eurasia to North America has resulted in the collapse of North American bat populations and restructured species communities. The long evolutionary history between P. destructans and bats in Eurasia makes understanding host life history essential to uncovering the ecology of P. destructans. In this Review, we combine information on pathogen and host biology to understand the patterns of P. destructans spread, seasonal transmission ecology, the pathogenesis of white-nose syndrome and the cross-scale impact from individual hosts to ecosystems. Collectively, this research highlights how early pathogen detection and quantification of host impacts has accelerated the understanding of this newly emerging infectious disease.
Collapse
|
16
|
Davy CM, Donaldson ME, Bandouchova H, Breit AM, Dorville NA, Dzal YA, Kovacova V, Kunkel EL, Martínková N, Norquay KJ, Paterson JE, Zukal J, Pikula J, Willis CK, Kyle CJ. Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence 2020; 11:781-794. [PMID: 32552222 PMCID: PMC7549942 DOI: 10.1080/21505594.2020.1768018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/07/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology. We hypothesized that in bat white-nose syndrome (WNS), species-specific host-pathogen interactions may partly explain varying disease outcomes among host species. We characterized bat and pathogen transcriptomes in paired samples of lesion-positive and lesion-negative wing tissue from bats infected with Pseudogymnoascus destructans in three parallel experiments. The first two experiments analyzed samples collected from the susceptible Nearctic Myotis lucifugus and the less-susceptible Nearctic Eptesicus fuscus, following experimental infection and hibernation in captivity under controlled conditions. The third experiment applied the same analyses to paired samples from infected, free-ranging Myotis myotis, a less susceptible, Palearctic species, following natural infection and hibernation (n = 8 sample pairs/species). Gene expression by P. destructans was similar among the three host species despite varying environmental conditions among the three experiments and was similar within each host species between saprophytic contexts (superficial growth on wings) and pathogenic contexts (growth in lesions on the same wings). In contrast, we observed qualitative variation in host response: M. lucifugus and M. myotis exhibited systemic responses to infection, while E. fuscus up-regulated a remarkably localized response. Our results suggest potential phylogenetic determinants of response to WNS and can inform further studies of context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Christina M. Davy
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Canada
| | | | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ana M. Breit
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Nicole A.S. Dorville
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Yvonne A. Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Emma L. Kunkel
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kaleigh J.O. Norquay
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - James E. Paterson
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Craig K.R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Christopher J. Kyle
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
- Natural Resources DNA Profiling and Forensics Centre, Trent University, Peterborough, Canada
| |
Collapse
|
17
|
Veselská T, Homutová K, García Fraile P, Kubátová A, Martínková N, Pikula J, Kolařík M. Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans. Sci Rep 2020; 10:16530. [PMID: 33020524 PMCID: PMC7536203 DOI: 10.1038/s41598-020-73619-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/15/2020] [Indexed: 01/16/2023] Open
Abstract
The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascus destructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.
Collapse
Affiliation(s)
- Tereza Veselská
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Karolína Homutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Paula García Fraile
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences (CAS), Květná 8, 60365, Brno, Czech Republic
| | - Jiří Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
18
|
Lohse MB, Brenes LR, Ziv N, Winter MB, Craik CS, Johnson AD. An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in Candida albicans. Genetics 2020; 216:409-429. [PMID: 32839241 PMCID: PMC7536846 DOI: 10.1534/genetics.120.303613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Lucas R Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
19
|
Sun J, LaRock DL, Skowronski EA, Kimmey JM, Olson J, Jiang Z, O'Donoghue AJ, Nizet V, LaRock CN. The Pseudomonas aeruginosa protease LasB directly activates IL-1β. EBioMedicine 2020; 60:102984. [PMID: 32979835 PMCID: PMC7511813 DOI: 10.1016/j.ebiom.2020.102984] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary damage by Pseudomonas aeruginosa during cystic fibrosis lung infection and ventilator-associated pneumonia is mediated both by pathogen virulence factors and host inflammation. Impaired immune function due to tissue damage and inflammation, coupled with pathogen multidrug resistance, complicates the management of these deep-seated infections. Pathological inflammation during infection is driven by interleukin-1β (IL-1β), but the molecular processes involved are not fully understood. METHODS We examined IL-1β activation in a pulmonary model infection of Pseudomonas aeruginosa and in vitro using genetics, specific inhibitors, recombinant proteins, and targeted reporters of protease activity and IL-1β bioactivity. FINDINGS Caspase-family inflammasome proteases canonically regulate maturation of this proinflammatory cytokine, but we report that plasticity in IL-1β proteolytic activation allows for its direct maturation by the pseudomonal protease LasB. LasB promotes IL-1β activation, neutrophilic inflammation, and destruction of lung architecture characteristic of severe P. aeruginosa pulmonary infection. INTERPRETATION Preservation of lung function and effective immune clearance may be enhanced by selectively controlling inflammation. Discovery of this IL-1β regulatory mechanism provides a distinct target for anti-inflammatory therapeutics, such as matrix metalloprotease inhibitors that inhibit LasB and limit inflammation and pathology during P. aeruginosa pulmonary infections. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Josh Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States
| | - Elaine A Skowronski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | | | - Joshua Olson
- Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States; Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States; Division of Infectious Diseases, Emory School of Medicine, Atlanta GA, United States; Antimicrobial Resistance Center, Emory University, Atlanta GA, United States.
| |
Collapse
|
20
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Magnino MZ, Holder KA, Norton SA. White-nose syndrome: A novel dermatomycosis of biologic interest and epidemiologic consequence. Clin Dermatol 2020; 39:299-303. [PMID: 34272026 PMCID: PMC7395813 DOI: 10.1016/j.clindermatol.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Over the past 10 years, the environmental and veterinary communities have sounded alarms over an insidious keratinophilous fungus, Pseudogymnoascus destructans, that has decimated populations of bats (yes, bats, chiropterans) throughout North America and, most recently, Northern China and Siberia. We as dermatologists may find this invasive keratinophilous fungus of particular interest, as its method of destruction is disruption of the homeostatic mechanism of the bat wing integument. Although it is unlikely that this pathogen will become an infectious threat to humans, its environmental impact will likely affect us all, especially as recent data have shown upregulation of naturally occurring coronaviruses in coinfected bats. Dermatologists are familiar with keratinophilous dermatophyte infections, but these rarely cause serious morbidity in individual patients and never cause crisis on a population basis. This contribution describes the effects of P destructans on both the individual and the population basis. Bringing the white-nose syndrome to the attention of human dermatologists and skin scientists may invite transfer of expertise in understanding the disease, its pathophysiology, epidemiology, treatment, and prevention.
Collapse
Affiliation(s)
| | - Kali A Holder
- Department of Wildlife Health Sciences, Smithsonian National Zoological Park, Washington, District of Columbia, USA
| | - Scott A Norton
- Department of Dermatology, The George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Bernard RF, Reichard JD, Coleman JTH, Blackwood JC, Verant ML, Segers JL, Lorch JM, White J, Moore MS, Russell AL, Katz RA, Lindner DL, Toomey RS, Turner GG, Frick WF, Vonhof MJ, Willis CKR, Grant EHC. Identifying research needs to inform white‐nose syndrome management decisions. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Riley F. Bernard
- Department of Ecosystem Science and ManagementPennsylvania State University University Park Pennsylvania USA
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| | | | | | - Julie C. Blackwood
- Department of Mathematics and StatisticsWilliams College Williamstown Massachusetts USA
| | - Michelle L. Verant
- Biological Resource DivisionWildlife Health Branch Fort Collins Colorado USA
| | - Jordi L. Segers
- Canadian Wildlife Health Cooperative Charlottetown Prince Edward Island Canada
| | - Jeffery M. Lorch
- United States Geological Survey National Wildlife Health Center Madison Wisconsin USA
| | - John White
- Bureau of Natural Heritage ConservationWisconsin Department of Natural Resources Madison Wisconsin USA
| | - Marianne S. Moore
- College of Integrative Science and ArtsArizona State University Mesa Arizona USA
| | - Amy L. Russell
- Department of BiologyGrand Valley State University Allendale Michigan USA
| | - Rachel A. Katz
- United States Fish and Wildlife Service Hadley Massachusetts USA
| | - Daniel L. Lindner
- United States Forest ServiceNorthern Research Station Madison Wisconsin USA
| | | | | | - Winifred F. Frick
- Department of Ecology and Evolutionary BiologyUniversity of California Santa Cruz California USA
- Bat Conservation International Austin Texas USA
| | - Maarten J. Vonhof
- Department of Biological SciencesWestern Michigan University Kalamazoo Michigan USA
- Institute of the Environment and SustainabilityWestern Michigan University Kalamazoo Michigan USA
| | | | - Evan H. C. Grant
- United States Geological Survey Patuxent Wildlife Research CenterSO Conte Anadromous Fish Research Laboratory Turners Falls Massachusetts USA
| |
Collapse
|
23
|
A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species. Proc Natl Acad Sci U S A 2019; 116:11351-11360. [PMID: 31113885 PMCID: PMC6561249 DOI: 10.1073/pnas.1814995116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This work represents a large, order-wide evolutionary analysis of the order Chiroptera (bats). Our pipeline for assembling sequence data and curating orthologous multiple sequence alignments includes methods for improving results when combining genomic and transcriptomic data sources. The resulting phylogenetic tree divides the order Chiroptera into Yinpterochiroptera and Yangochiroptera, in disagreement with the previous division into Megachiroptera and Microchiroptera and in agreement with some other recent molecular studies, and also provides evidence for other contested branch placements. We also performed a genome-wide analysis of positive selection and found 181 genes with signatures of positive selection. Enrichment analysis shows these positively selected genes to be primarily related to immune responses but also, surprisingly, collagen formation. Historically, the evolution of bats has been analyzed using a small number of genetic loci for many species or many genetic loci for a few species. Here we present a phylogeny of 18 bat species, each of which is represented in 1,107 orthologous gene alignments used to build the tree. We generated a transcriptome sequence of Hypsignathus monstrosus, the African hammer-headed bat, and additional transcriptome sequence for Rousettus aegyptiacus, the Egyptian fruit bat. We then combined these data with existing genomic and transcriptomic data from 16 other bat species. In the analysis of such datasets, there is no clear consensus on the most reliable computational methods for the curation of quality multiple sequence alignments since these public datasets represent multiple investigators and methods, including different source materials (chromosomal DNA or expressed RNA). Here we lay out a systematic analysis of parameters and produce an advanced pipeline for curating orthologous gene alignments from combined transcriptomic and genomic data, including a software package: the Mismatching Isoform eXon Remover (MIXR). Using this method, we created alignments of 11,677 bat genes, 1,107 of which contain orthologs from all 18 species. Using the orthologous gene alignments created, we assessed bat phylogeny and also performed a holistic analysis of positive selection acting in bat genomes. We found that 181 genes have been subject to positive natural selection. This list is dominated by genes involved in immune responses and genes involved in the production of collagens.
Collapse
|
24
|
Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci Rep 2019; 9:6788. [PMID: 31043669 PMCID: PMC6494898 DOI: 10.1038/s41598-019-43210-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/17/2019] [Indexed: 12/24/2022] Open
Abstract
White-nose syndrome (WNS) caused by the fungus, Pseudogymnoascus destructans (Pd) has killed millions of North American hibernating bats. Currently, methods to prevent the disease are limited. We conducted two trials to assess potential WNS vaccine candidates in wild-caught Myotis lucifugus. In a pilot study, we immunized bats with one of four vaccine treatments or phosphate-buffered saline (PBS) as a control and challenged them with Pd upon transfer into hibernation chambers. Bats in one vaccine-treated group, that received raccoon poxviruses (RCN) expressing Pd calnexin (CAL) and serine protease (SP), developed WNS at a lower rate (1/10) than other treatments combined (14/23), although samples sizes were small. The results of a second similar trial provided additional support for this observation. Bats vaccinated orally or by injection with RCN-CAL and RCN-SP survived Pd challenge at a significantly higher rate (P = 0.01) than controls. Using RT-PCR and flow cytometry, combined with fluorescent in situ hybridization, we determined that expression of IFN-γ transcripts and the number of CD4 + T-helper cells transcribing this gene were elevated (P < 0.10) in stimulated lymphocytes from surviving vaccinees (n = 15) compared to controls (n = 3). We conclude that vaccination with virally-vectored Pd antigens induced antifungal immunity that could potentially protect bats against WNS.
Collapse
|
25
|
Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, Gonzalez DJ, O'Donoghue AJ. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol Cell Proteomics 2019; 18:968-981. [PMID: 30705125 DOI: 10.1074/mcp.tir118.001099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.
Collapse
Affiliation(s)
- John D Lapek
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Zhenze Jiang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; ¶Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Jacob M Wozniak
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Elena Arutyunova
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Steven C Wang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; **Division of Biological Sciences, University of California, San Diego, 9500, Gilman Drive, La Jolla, California 92093
| | - M Joanne Lemieux
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - David J Gonzalez
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| | - Anthony J O'Donoghue
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| |
Collapse
|
26
|
Biochemical characterization of a native group III trypsin ZT from Atlantic cod (Gadus morhua). Int J Biol Macromol 2018; 125:847-855. [PMID: 30550824 PMCID: PMC7112495 DOI: 10.1016/j.ijbiomac.2018.12.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
Atlantic cod trypsin ZT is biochemically characterized for the first time in this report in comparison to a group I trypsin (cod trypsin I). To our knowledge, trypsin ZT is the first thoroughly characterized group III trypsin. A more detailed understanding of trypsin ZT biochemistry may give insight into its physiological role as well as its potential use within the biotechnology sector. Stability is an important factor when it comes to practical applications of enzymes. Compared to trypsin I, trypsin ZT shows differences in pH and heat stability, sensitivity to inhibitors and sub-site substrate specificity as shown by multiplex substrate profiling analysis. Based on the analysis, trypsin ZT cleaved at arginine and lysine as other trypsins. Furthermore, trypsin ZT is better than trypsin I in cleaving peptides containing several consecutive positively charged residues. Lysine- and arginine-rich amino acid sequences are frequently found in human viral proteins. Thus, trypsin ZT may be effective in inactivating human and fish viruses implying a possible role for the enzyme in the natural defence of Atlantic cod. The results from this study can lead to multiple practical applications of trypsin ZT.
Collapse
|
27
|
Schneidman-Duhovny D, Khuri N, Dong GQ, Winter MB, Shifrut E, Friedman N, Craik CS, Pratt KP, Paz P, Aswad F, Sali A. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLoS One 2018; 13:e0206654. [PMID: 30399156 PMCID: PMC6219782 DOI: 10.1371/journal.pone.0206654] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Accurate predictions of T-cell epitopes would be useful for designing vaccines, immunotherapies for cancer and autoimmune diseases, and improved protein therapies. The humoral immune response involves uptake of antigens by antigen presenting cells (APCs), APC processing and presentation of peptides on MHC class II (pMHCII), and T-cell receptor (TCR) recognition of pMHCII complexes. Most in silico methods predict only peptide-MHCII binding, resulting in significant over-prediction of CD4 T-cell epitopes. We present a method, ITCell, for prediction of T-cell epitopes within an input protein antigen sequence for given MHCII and TCR sequences. The method integrates information about three stages of the immune response pathway: antigen cleavage, MHCII presentation, and TCR recognition. First, antigen cleavage sites are predicted based on the cleavage profiles of cathepsins S, B, and H. Second, for each 12-mer peptide in the antigen sequence we predict whether it will bind to a given MHCII, based on the scores of modeled peptide-MHCII complexes. Third, we predict whether or not any of the top scoring peptide-MHCII complexes can bind to a given TCR, based on the scores of modeled ternary peptide-MHCII-TCR complexes and the distribution of predicted cleavage sites. Our benchmarks consist of epitope predictions generated by this algorithm, checked against 20 peptide-MHCII-TCR crystal structures, as well as epitope predictions for four peptide-MHCII-TCR complexes with known epitopes and TCR sequences but without crystal structures. ITCell successfully identified the correct epitopes as one of the 20 top scoring peptides for 22 of 24 benchmark cases. To validate the method using a clinically relevant application, we utilized five factor VIII-specific TCR sequences from hemophilia A subjects who developed an immune response to factor VIII replacement therapy. The known HLA-DR1-restricted factor VIII epitope was among the six top-scoring factor VIII peptides predicted by ITCall to bind HLA-DR1 and all five TCRs. Our integrative approach is more accurate than current single-stage epitope prediction algorithms applied to the same benchmarks. It is freely available as a web server (http://salilab.org/itcell).
Collapse
Affiliation(s)
- Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Natalia Khuri
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- Graduate Group in Biophysics, University of California at San Francisco, San Francisco, CA, United States of America
| | - Guang Qiang Dong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Michael B. Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA, United States of America
| | - Kathleen P. Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Pedro Paz
- Bayer HealthCare, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Fred Aswad
- Bayer HealthCare, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- Graduate Group in Biophysics, University of California at San Francisco, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| |
Collapse
|
28
|
Beekman CN, Meckler L, Kim E, Bennett RJ. Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndrome in bats. PLoS One 2018; 13:e0201915. [PMID: 30183704 PMCID: PMC6124720 DOI: 10.1371/journal.pone.0201915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. Here, we establish a high-throughput model of infection using larvae of Galleria mellonella, an invertebrate used to study host-pathogen interactions for a wide range of microbial species. We demonstrate that P. destructans can kill G. mellonella larvae in an inoculum-dependent manner when infected larvae are housed at 13°C or 18°C. Larval killing is an active process, as heat-killed P. destructans spores caused significantly decreased levels of larval death compared to live spores. We also show that fungal spores that were germinated prior to inoculation were able to kill larvae 3–4 times faster than non-germinated spores. Lastly, we identified chemical inhibitors of P. destructans and used G. mellonella to evaluate these inhibitors for their ability to reduce virulence. We demonstrate that amphotericin B can effectively block larval killing by P. destructans and thereby establish that this infection model can be used to screen biocontrol agents against this fungal pathogen.
Collapse
Affiliation(s)
- Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Lauren Meckler
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Eleanor Kim
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
- * E-mail:
| |
Collapse
|
29
|
Field KA, Sewall BJ, Prokkola JM, Turner GG, Gagnon MF, Lilley TM, Paul White J, Johnson JS, Hauer CL, Reeder DM. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol Ecol 2018; 27:3727-3743. [PMID: 30080945 DOI: 10.1111/mec.14827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 01/07/2023]
Abstract
Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA-Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome. Within 70-80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro-inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host-pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade-offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.
Collapse
Affiliation(s)
- Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | - Brent J Sewall
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Jenni M Prokkola
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | - Gregory G Turner
- Wildlife Diversity Division, Pennsylvania Game Commission, Harrisburg, Pennsylvania
| | - Marianne F Gagnon
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Thomas M Lilley
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | - J Paul White
- Wisconsin Department of Natural Resources, Madison, Wisconsin
| | - Joseph S Johnson
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| | | | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania
| |
Collapse
|
30
|
Laber EB, Meyer NJ, Reich BJ, Pacifici K, Collazo JA, Drake JM. Optimal treatment allocations in space and time for on-line control of an emerging infectious disease. J R Stat Soc Ser C Appl Stat 2018; 67:743-770. [PMID: 30662097 PMCID: PMC6334759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A key component in controlling the spread of an epidemic is deciding where, when and to whom to apply an intervention. We develop a framework for using data to inform these decisions in realtime. We formalize a treatment allocation strategy as a sequence of functions, one per treatment period, that map up-to-date information on the spread of an infectious disease to a subset of locations where treatment should be allocated. An optimal allocation strategy optimizes some cumulative outcome, e.g. the number of uninfected locations, the geographic footprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategy for an emerging infectious disease is challenging because spatial proximity induces interference between locations, the number of possible allocations is exponential in the number of locations, and because disease dynamics and intervention effectiveness are unknown at out-break. We derive a Bayesian on-line estimator of the optimal allocation strategy that combines simulation-optimization with Thompson sampling. The estimator proposed performs favourably in simulation experiments. This work is motivated by and illustrated using data on the spread of white nose syndrome, which is a highly fatal infectious disease devastating bat populations in North America.
Collapse
Affiliation(s)
| | | | | | | | - Jaime A Collazo
- US Geological Survey North Carolina Cooperative Fish and Wildlife Research Unit, and North Carolina State University, Raleigh, USA
| | | |
Collapse
|
31
|
Kim S, Wong WK. Discussion on Optimal treatment allocations in space and time for on-line control of an emerging infectious disease. J R Stat Soc Ser C Appl Stat 2018. [PMID: 30270943 DOI: 10.1111/rssc.12266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seongho Kim
- Biostatistics Core, Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Weng Kee Wong
- Department of Biostatistics, UCLA School of Public Health, Los Angeles, CA 90095
| |
Collapse
|
32
|
Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, Wu G, Hoon SS, Raida M, Camattari A, Yang L, O’Donoghue AJ, Dawson TL. Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. J Invest Dermatol 2018; 138:1137-1145. [DOI: 10.1016/j.jid.2017.11.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
|
33
|
Corvo I, Ferraro F, Merlino A, Zuberbühler K, O'Donoghue AJ, Pastro L, Pi-Denis N, Basika T, Roche L, McKerrow JH, Craik CS, Caffrey CR, Tort JF. Substrate Specificity of Cysteine Proteases Beyond the S 2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L. Front Mol Biosci 2018; 5:40. [PMID: 29725596 PMCID: PMC5917446 DOI: 10.3389/fmolb.2018.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous Fasciola hepatica cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S2 subsite (pocket) of the enzyme that interacts with the substrate P2 residue (Schetcher and Berger nomenclature). Although secreted FhCL1 accommodates aliphatic residues in the S2 pocket, FhCL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the FhCL1 S2 subsite at three amino acid positions to render it identical to that present in FhCL2. The substitutions did not produce the expected increment in proline accommodation in P2. Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P3 specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S2 and S3 subsites that contributes to the accommodation of Gly in S3. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S2 and S3 pockets of the mutant FhCL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity.
Collapse
Affiliation(s)
- Ileana Corvo
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Ferraro
- Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Kathrin Zuberbühler
- Department of Pharmaceutical Chemistry, Pharmacology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Lucía Pastro
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Pi-Denis
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tatiana Basika
- Departamento de Biología Celular y Molecular, Unidad de Biología Parasitaria, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Leda Roche
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - James H McKerrow
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, Pharmacology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Conor R Caffrey
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, Linhart P, Piacek V, Pikula J, Zahradníková A, Zukal J. Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 2018; 8:6067. [PMID: 29666436 PMCID: PMC5904171 DOI: 10.1038/s41598-018-24461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
35
|
Padhi S, Dias I, Korn VL, Bennett JW. Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds. J Fungi (Basel) 2018; 4:jof4020048. [PMID: 29642609 PMCID: PMC6023378 DOI: 10.3390/jof4020048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/12/2023] Open
Abstract
White-nose syndrome (WNS) is caused by Pseudogymnoascus destructans, a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans. The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C. Here we report the efficacy of vapor phase mushroom alcohol (1-octen-3-ol) for inhibiting mycelial and conidiospore growth of P. destructans at 0.4 and 0.8 µmol/mL and demonstrate that the R enantiomer of this compound is more effective than the S enantiomer, supporting the finding that biological systems can be sensitive to stereochemistry. Further, we report that vapor phase leaf aldehyde (trans-2-hexenal), a common aroma compound associated with cut grass odors and also the major volatile compound in extra virgin olive oil, is more effective than mushroom alcohol. At 0.05 µmol/mL, trans-2-hexenal is fungicidal to both conidiospores and mycelia of P. destructans.
Collapse
Affiliation(s)
- Sally Padhi
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Itamar Dias
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Victoria L Korn
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
36
|
Ivry SL, Meyer NO, Winter MB, Bohn MF, Knudsen GM, O'Donoghue AJ, Craik CS. Global substrate specificity profiling of post-translational modifying enzymes. Protein Sci 2018; 27:584-594. [PMID: 29168252 PMCID: PMC5818756 DOI: 10.1002/pro.3352] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this article, we highlight various peptide-based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases and also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our multiplex substrate profiling by mass spectrometry (MSP-MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, and guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems-level understanding of PTM enzyme regulation and function.
Collapse
Affiliation(s)
- Sam L. Ivry
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Nicole O. Meyer
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Michael B. Winter
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Markus F. Bohn
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Giselle M. Knudsen
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San DiegoLa JollaCalifornia
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| |
Collapse
|
37
|
Palmer JM, Drees KP, Foster JT, Lindner DL. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats. Nat Commun 2018; 9:35. [PMID: 29295979 PMCID: PMC5750222 DOI: 10.1038/s41467-017-02441-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023] Open
Abstract
Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential “Achilles’ heel” of P. destructans that might be exploited for treatment of bats with WNS. White-nose syndrome, caused by the fungus Pseudogymnoascus destructans, is decimating North American bats. Here, Palmer et al. use comparative genomics to examine the evolutionary history of this pathogen, and show that it has lost a crucial DNA repair enzyme and is extremely sensitive to UV light.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI, 53726, USA
| | - Kevin P Drees
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Jeffrey T Foster
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI, 53726, USA.
| |
Collapse
|
38
|
Ghosh S, McArthur R, Guo ZC, McKerchar R, Donkor K, Xu J, Cheeptham N. Evidence for Anti-Pseudogymnoascus destructans (Pd) Activity of Propolis. Antibiotics (Basel) 2017; 7:antibiotics7010002. [PMID: 29267199 PMCID: PMC5872113 DOI: 10.3390/antibiotics7010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022] Open
Abstract
White-nose syndrome (WNS) in bats, caused by Pseudogymnoascus destructans (Pd), is a cutaneous infection that has devastated North American bat populations since 2007. At present, there is no effective method for controlling this disease. Here, we evaluated the effect of propolis against Pd in vitro. Using Sabouraud dextrose agar (SDA) medium, approximately 1.7 × 10⁷ conidia spores of the Pd strain M3906-2/mL were spread on each plate and grown to form a consistent lawn. A Kirby-Bauer disk diffusion assay was employed using different concentrations of propolis (1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%), in plates incubated at 8 °C and 15 °C. At 8 °C and 15 °C, as the concentration of propolis increased, there was an increasing zone of inhibition (ZOI), reaching the highest degree at 10% and 25% concentrations, respectively. A germule suppression assay showed a similar effect on Pd conidia germination. A MALDI-TOF-MS analysis of propolis revealed multiple constituents with a potential anti-Pd activity, including cinnamic acid, p-coumaric acid, and dihydrochalcones, which could be further tested for their individual effects. Our study suggests that propolis or its individual constituents might be suitable products against Pd.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.
| | - Robyn McArthur
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.
| | - Zhi Chao Guo
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.
| | - Rory McKerchar
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.
| | - Kingsley Donkor
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada.
| | - Naowarat Cheeptham
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.
| |
Collapse
|
39
|
Winter MB, La Greca F, Arastu-Kapur S, Caiazza F, Cimermancic P, Buchholz TJ, Anderl JL, Ravalin M, Bohn MF, Sali A, O'Donoghue AJ, Craik CS. Immunoproteasome functions explained by divergence in cleavage specificity and regulation. eLife 2017; 6:e27364. [PMID: 29182146 PMCID: PMC5705213 DOI: 10.7554/elife.27364] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/11/2017] [Indexed: 12/16/2022] Open
Abstract
The immunoproteasome (iP) has been proposed to perform specialized roles in MHC class I antigen presentation, cytokine modulation, and T cell differentiation and has emerged as a promising therapeutic target for autoimmune disorders and cancer. However, divergence in function between the iP and the constitutive proteasome (cP) has been unclear. A global peptide library-based screening strategy revealed that the proteasomes have overlapping but distinct substrate specificities. Differing iP specificity alters the quantity of production of certain MHC I epitopes but does not appear to be preferentially suited for antigen presentation. Furthermore, iP specificity was found to have likely arisen through genetic drift from the ancestral cP. Specificity differences were exploited to develop isoform-selective substrates. Cellular profiling using these substrates revealed that divergence in regulation of the iP balances its relative contribution to proteasome capacity in immune cells, resulting in selective recovery from inhibition. These findings have implications for iP-targeted therapeutic development.
Collapse
Affiliation(s)
- Michael B Winter
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Florencia La Greca
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Shirin Arastu-Kapur
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
- Onyx PharmaceuticalsInc., an Amgen subsidiarySan FranciscoUnited States
| | - Francesco Caiazza
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic SciencesCalifornia Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Tonia J Buchholz
- Onyx PharmaceuticalsInc., an Amgen subsidiarySan FranciscoUnited States
| | - Janet L Anderl
- Onyx PharmaceuticalsInc., an Amgen subsidiarySan FranciscoUnited States
| | - Matthew Ravalin
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Markus F Bohn
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Andrej Sali
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic SciencesCalifornia Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Charles S Craik
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
40
|
McGuire LP, Mayberry HW, Willis CKR. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R680-R686. [PMID: 28835446 DOI: 10.1152/ajpregu.00058.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Fungal diseases of wildlife typically manifest as superficial skin infections but can have devastating consequences for host physiology and survival. White-nose syndrome (WNS) is a fungal skin disease that has killed millions of hibernating bats in North America since 2007. Infection with the fungus Pseudogymnoascus destructans causes bats to rewarm too often during hibernation, but the cause of increased arousal rates remains unknown. On the basis of data from studies of captive and free-living bats, two mechanistic models have been proposed to explain disease processes in WNS. Key predictions of both models are that WNS-affected bats will show 1) higher metabolic rates during torpor (TMR) and 2) higher rates of evaporative water loss (EWL). We collected bats from a WNS-negative hibernaculum, inoculated one group with P. destructans, and sham-inoculated a second group as controls. After 4 mo of hibernation, TMR and EWL were measured using respirometry. Both predictions were supported, and our data suggest that infected bats were more affected by variation in ambient humidity than controls. Furthermore, disease severity, as indicated by the area of the wing with UV fluorescence, was positively correlated with EWL, but not TMR. Our results provide the first direct evidence that heightened energy expenditure during torpor and higher EWL independently contribute to WNS pathophysiology, with implications for the design of potential treatments for the disease.
Collapse
Affiliation(s)
- Liam P McGuire
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada; .,Department of Biological Sciences, Texas Tech University, Lubbock, Texas; and
| | - Heather W Mayberry
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Craig K R Willis
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
41
|
Ivry SL, Sharib JM, Dominguez DA, Roy N, Hatcher SE, Yip-Schneider MT, Schmidt CM, Brand RE, Park WG, Hebrok M, Kim GE, O'Donoghue AJ, Kirkwood KS, Craik CS. Global Protease Activity Profiling Provides Differential Diagnosis of Pancreatic Cysts. Clin Cancer Res 2017; 23:4865-4874. [PMID: 28424202 PMCID: PMC5712228 DOI: 10.1158/1078-0432.ccr-16-2987] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/23/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022]
Abstract
Purpose: Pancreatic cysts are estimated to be present in 2%-3% of the adult population. Unfortunately, current diagnostics do not accurately distinguish benign cysts from those that can progress into invasive cancer. Misregulated pericellular proteolysis is a hallmark of malignancy, and therefore, we used a global approach to discover protease activities that differentiate benign nonmucinous cysts from premalignant mucinous cysts.Experimental Design: We employed an unbiased and global protease profiling approach to discover protease activities in 23 cyst fluid samples. The distinguishing activities of select proteases was confirmed in 110 samples using specific fluorogenic substrates and required less than 5 μL of cyst fluid.Results: We determined that the activities of the aspartyl proteases gastricsin and cathepsin E are highly increased in fluid from mucinous cysts. IHC analysis revealed that gastricsin expression was associated with regions of low-grade dysplasia, whereas cathepsin E expression was independent of dysplasia grade. Gastricsin activity differentiated mucinous from nonmucinous cysts with a specificity of 100% and a sensitivity of 93%, whereas cathepsin E activity was 92% specific and 70% sensitive. Gastricsin significantly outperformed the most widely used molecular biomarker, carcinoembryonic antigen (CEA), which demonstrated 94% specificity and 65% sensitivity. Combined analysis of gastricsin and CEA resulted in a near perfect classifier with 100% specificity and 98% sensitivity.Conclusions: Quantitation of gastricsin and cathepsin E activities accurately distinguished mucinous from nonmucinous pancreatic cysts and has the potential to replace current diagnostics for analysis of these highly prevalent lesions. Clin Cancer Res; 23(16); 4865-74. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Carcinoembryonic Antigen/metabolism
- Cathepsin E/metabolism
- Cyst Fluid/enzymology
- Diagnosis, Differential
- Fluorescent Dyes/metabolism
- Humans
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Cystic, Mucinous, and Serous/diagnosis
- Neoplasms, Cystic, Mucinous, and Serous/enzymology
- Pancreatic Cyst/diagnosis
- Pancreatic Cyst/enzymology
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/enzymology
- Pancreatic Pseudocyst/diagnosis
- Pancreatic Pseudocyst/enzymology
- Pepsin A/metabolism
- Peptide Hydrolases/metabolism
- Retrospective Studies
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Sam L Ivry
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, California
| | - Jeremy M Sharib
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Dana A Dominguez
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Stacy E Hatcher
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | | | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Randall E Brand
- Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Walter G Park
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Grace E Kim
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Chemistry, University of California, San Diego, La Jolla, California
| | - Kimberly S Kirkwood
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
42
|
Reeder SM, Palmer JM, Prokkola JM, Lilley TM, Reeder DM, Field KA. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence 2017; 8:1695-1707. [PMID: 28614673 PMCID: PMC5810475 DOI: 10.1080/21505594.2017.1342910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.
Collapse
Affiliation(s)
- Sophia M Reeder
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Jonathan M Palmer
- b Center for Forest Mycology Research , Northern Research Station, US Forest Service , Madison , WI , USA
| | - Jenni M Prokkola
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Thomas M Lilley
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - DeeAnn M Reeder
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Kenneth A Field
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| |
Collapse
|
43
|
Joshi S, Chen L, Winter MB, Lin YL, Yang Y, Shapovalova M, Smith PM, Liu C, Li F, LeBeau AM. The Rational Design of Therapeutic Peptides for Aminopeptidase N using a Substrate-Based Approach. Sci Rep 2017; 7:1424. [PMID: 28465619 PMCID: PMC5431086 DOI: 10.1038/s41598-017-01542-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/31/2017] [Indexed: 01/11/2023] Open
Abstract
The M1 family of metalloproteases represents a large number of exopeptidases that cleave single amino acid residues from the N-terminus of peptide substrates. One member of this family that has been well studied is aminopeptidase N (APN), a multifunctional protease known to cleave biologically active peptides and aide in coronavirus entry. The proteolytic activity of APN promotes cancer angiogenesis and metastasis making it an important target for cancer therapy. To understand the substrate specificity of APN for the development of targeted inhibitors, we used a global substrate profiling method to determine the P1-P4' amino acid preferences. The key structural features of the APN pharmacophore required for substrate recognition were elucidated by x-ray crystallography. By combining these substrate profiling and structural data, we were able to design a selective peptide inhibitor of APN that was an effective therapeutic both in vitro and in vivo against APN-expressing prostate cancer models.
Collapse
Affiliation(s)
- Shilvi Joshi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Lang Chen
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94153, USA
| | - Yi-Lun Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Yang Yang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Mariya Shapovalova
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Paige M Smith
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Chang Liu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
44
|
Padhi S, Dias I, Bennett JW. Two volatile-phase alcohols inhibit growth of Pseudogymnoascus destructans, causative agent of white-nose syndrome in bats. Mycology 2016. [DOI: 10.1080/21501203.2016.1269843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sally Padhi
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Itamar Dias
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Joan W. Bennett
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
45
|
Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog 2016; 12:e1006051. [PMID: 27977806 PMCID: PMC5158083 DOI: 10.1371/journal.ppat.1006051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors. Many pathogenic organisms secrete peptidases. The activity of these enzymes often contributes to virulence, making their study crucial for understanding host-pathogen biology and developing therapeutics. In this report, we employed an unbiased, activity-based profiling assay to examine the secreted peptidases of a fungal pathogen, Cryptococcus neoformans, which is responsible for 40% of AIDS-related deaths. We discovered which peptidases are secreted, identified their substrate specificity, and interrogated their biological functions. Through this analysis, we identified a principal enzyme responsible for the extracellular peptidase activity of C. neoformans, May1, and demonstrated its importance for growth in acidic environments. Characterization of its substrate preferences allowed us to identify compounds that are potent substrate-based inhibitors of May1 activity. Finally, we found that the presence of this enzyme promotes virulence in a mouse model of infection. Our comprehensive study reveals the expression, regulation and function of C. neoformans secreted peptidases, including evidence for the role of a novel aspartyl peptidase in virulence.
Collapse
|
46
|
Abstract
Candida albicans is a fungal species that is part of the normal human microbiota and also an opportunistic pathogen capable of causing mucosal and systemic infections. C. albicans cells proliferate in a planktonic (suspension) state, but they also form biofilms, organized and tightly packed communities of cells attached to a solid surface. Biofilms colonize many niches of the human body and persist on implanted medical devices, where they are a major source of new C. albicans infections. Here, we used an unbiased and global substrate-profiling approach to discover proteolytic activities produced specifically by C. albicans biofilms, compared to planktonic cells, with the goal of identifying potential biofilm-specific diagnostic markers and targets for therapeutic intervention. This activity-based profiling approach, coupled with proteomics, identified Sap5 (Candidapepsin-5) and Sap6 (Candidapepsin-6) as major biofilm-specific proteases secreted by C. albicans. Fluorogenic peptide substrates with selectivity for Sap5 or Sap6 confirmed that their activities are highly upregulated in C. albicans biofilms; we also show that these activities are upregulated in other Candida clade pathogens. Deletion of the SAP5 and SAP6 genes in C. albicans compromised biofilm development in vitro in standard biofilm assays and in vivo in a rat central venous catheter biofilm model. This work establishes secreted proteolysis as a promising enzymatic marker and potential therapeutic target for Candida biofilm formation. Biofilm formation by the opportunistic fungal pathogen C. albicans is a major cause of life-threatening infections. This work provides a global characterization of secreted proteolytic activity produced specifically by C. albicans biofilms. We identify activity from the proteases Sap5 and Sap6 as highly upregulated during C. albicans biofilm formation and develop Sap-cleavable fluorogenic substrates that enable the detection of biofilms from C. albicans and also from additional pathogenic Candida species. Furthermore, SAP5 and SAP6 deletions confirm that both proteases are required for proper biofilm development in vitro and in vivo. We propose that secreted proteolysis is a promising marker for the diagnosis and potential therapeutic targeting of Candida biofilm-associated infections.
Collapse
|
47
|
Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci Rep 2016; 6:33200. [PMID: 27620349 PMCID: PMC5020413 DOI: 10.1038/srep33200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/22/2016] [Indexed: 12/02/2022] Open
Abstract
Pathogenic and non-pathogenic related microorganisms differ in secondary metabolite production. Here we show that riboflavin overproduction by a fungal pathogen and its hyperaccumulation in affected host tissue exacerbates a skin infection to necrosis. In white-nose syndrome (WNS) skin lesions caused by Pseudogymnoascus destructans, maximum riboflavin concentrations reached up to 815 μg ml−1, indicating bioaccumulation and lack of excretion. We found that high riboflavin concentrations are cytotoxic under conditions specific for hibernation, affect bats’ primary fibroblasts and induce cell detachment, loss of mitochondrial membrane potential, polymerization of cortical actin, and cell necrosis. Our results explain molecular pathology of WNS, where a skin infection becomes fatal. Hyperaccumulation of vitamin B2 coupled with reduced metabolism and low tissue oxygen saturation during hibernation prevents removal of excess riboflavin in infected bats. Upon reperfusion, oxygen reacts with riboflavin resulting in dramatic pathology after arousal. While multiple molecules enable invasive infection, riboflavin-associated extensive necrosis likely contributes to pathophysiology and altered arousal pattern in infected bats. Bioaccumulation of a vitamin under natural infection represents a novel condition in a complex host-pathogen interplay.
Collapse
|
48
|
Goupil LS, Ivry SL, Hsieh I, Suzuki BM, Craik CS, O’Donoghue AJ, McKerrow JH. Cysteine and Aspartyl Proteases Contribute to Protein Digestion in the Gut of Freshwater Planaria. PLoS Negl Trop Dis 2016; 10:e0004893. [PMID: 27501047 PMCID: PMC4976874 DOI: 10.1371/journal.pntd.0004893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
Proteases perform numerous vital functions in flatworms, many of which are likely to be conserved throughout the phylum Platyhelminthes. Within this phylum are several parasitic worms that are often poorly characterized due to their complex life-cycles and lack of responsiveness to genetic manipulation. The flatworm Schmidtea mediterranea, or planaria, is an ideal model organism to study the complex role of protein digestion due to its simple life cycle and amenability to techniques like RNA interference (RNAi). In this study, we were interested in deconvoluting the digestive protease system that exists in the planarian gut. To do this, we developed an alcohol-induced regurgitation technique to enrich for the gut enzymes in S. mediterranea. Using a panel of fluorescent substrates, we show that this treatment produces a sharp increase in proteolytic activity. These enzymes have broad yet diverse substrate specificity profiles. Proteomic analysis of the gut contents revealed the presence of cysteine and metallo-proteases. However, treatment with class-specific inhibitors showed that aspartyl and cysteine proteases are responsible for the majority of protein digestion. Specific RNAi knockdown of the cathepsin B-like cysteine protease (SmedCB) reduced protein degradation in vivo. Immunohistochemistry and whole-mount in situ hybridization (WISH) confirmed that the full-length and active forms of SmedCB are found in secretory cells surrounding the planaria intestinal lumen. Finally, we show that the knockdown of SmedCB reduces the speed of tissue regeneration. Defining the roles of proteases in planaria can provide insight to functions of conserved proteases in parasitic flatworms, potentially uncovering drug targets in parasites.
Collapse
Affiliation(s)
- Louise S. Goupil
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Sam L. Ivry
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Ivy Hsieh
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brian M. Suzuki
- Skaggs School of Pharmacy and Pharmaceutical Chemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Chemistry, University of California, San Diego, La Jolla, California, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Chemistry, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
49
|
Bibo-Verdugo B, O'Donoghue AJ, Rojo-Arreola L, Craik CS, García-Carreño F. Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:201-214. [PMID: 26613762 DOI: 10.1007/s10126-015-9681-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico
| | - Anthony J O'Donoghue
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Liliana Rojo-Arreola
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Fernando García-Carreño
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico.
| |
Collapse
|
50
|
Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 2016; 113:E2001-10. [PMID: 27006500 DOI: 10.1073/pnas.1524900113] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events.
Collapse
|