1
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Pinto M, Saliminasab M, Harris A, Lazaratos M, Bondar AN, Ladizhansky V, Brown LS. The retinal chromophore environment in an inward light-driven proton pump studied by solid-state NMR and hydrogen-bond network analysis. Phys Chem Chem Phys 2024; 26:24090-24108. [PMID: 39248601 DOI: 10.1039/d4cp02611j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Inward proton pumping is a relatively new function for microbial rhodopsins, retinal-binding light-driven membrane proteins. So far, it has been demonstrated for two unrelated subgroups of microbial rhodopsins, xenorhodopsins and schizorhodopsins. A number of recent studies suggest unique retinal-protein interactions as being responsible for the reversed direction of proton transport in the latter group. Here, we use solid-state NMR to analyze the retinal chromophore environment and configuration in an inward proton-pumping Antarctic schizorhodopsin. Using fully 13C-labeled retinal, we have assigned chemical shifts for every carbon atom and, assisted by structure modelling and molecular dynamics simulations, made a comparison with well-studied outward proton pumps, identifying locations of the unique protein-chromophore interactions for this functional subclass of microbial rhodopsins. Both the NMR results and molecular dynamics simulations point to the distinctive polar environment in the proximal part of the retinal, which may result in a hydration pattern dramatically different from that of the outward proton pumps, causing the reversed proton transport.
Collapse
Affiliation(s)
- Marie Pinto
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Maryam Saliminasab
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Michalis Lazaratos
- Freie Universität Berlin, Physics Department, Theoretical Molecular Biophysics Group, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele 077125, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), 52428 Jülich, Germany
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
3
|
Wang J, Platz-Baudin E, Noetzel E, Offenhäusser A, Maybeck V. Expressing Optogenetic Actuators Fused to N-terminal Mucin Motifs Delivers Targets to Specific Subcellular Compartments in Polarized Cells. Adv Biol (Weinh) 2024; 8:e2300428. [PMID: 38015104 DOI: 10.1002/adbi.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Optogenetics is a powerful approach in neuroscience research. However, other tissues of the body may benefit from controlled ion currents and neuroscience may benefit from more precise optogenetic expression. The present work constructs three subcellularly-targeted optogenetic actuators based on the channelrhodopsin ChR2-XXL, utilizing 5, 10, or 15 tandem repeats (TR) from mucin as N-terminal targeting motifs and evaluates expression in several polarized and non-polarized cell types. The modified channelrhodopsin maintains its electrophysiological properties, which can be used to produce continuous membrane depolarization, despite the expected size of the repeats. This work then shows that these actuators are subcellularly localized in polarized cells. In polarized epithelial cells, all three actuators localize to just the lateral membrane. The TR-tagged constructs also express subcellularly in cortical neurons, where TR5-ChR2XXL and TR10-ChR2XXL mainly target the somatodendrites. Moreover, the transfection efficiencies are shown to be dependent on cell type and tandem repeat length. Overall, this work verifies that the targeting motifs from epithelial cells can be used to localize optogenetic actuators in both epithelia and neurons, opening epithelia processes to optogenetic manipulation and providing new possibilities to target optogenetic tools.
Collapse
Affiliation(s)
- Jiali Wang
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Eric Platz-Baudin
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| |
Collapse
|
4
|
Quan Y, Ouyang Y, Mardini M, Palani RS, Banks D, Kempf J, Wenckebach WT, Griffin RG. Resonant Mixing Dynamic Nuclear Polarization. J Phys Chem Lett 2023; 14:7007-7013. [PMID: 37523253 DOI: 10.1021/acs.jpclett.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We propose a mechanism for dynamic nuclear polarization that is different from the well-known Overhauser effect, solid effect, cross effect, and thermal mixing processes. We term it Resonant Mixing (RM), and we show that it arises from the evolution of the density matrix for a simple electron-nucleus coupled spin pair subject to weak microwave irradiation, the same interactions as the solid effect. However, the SE is optimal when the microwave field is off-resonance, whereas RM is optimal when the microwave field is on-resonance and involves the mixing of states by the microwave field together with the electron-nuclear coupling. Finally, we argue that this mechanism is responsible for the observed dispersive-shaped DNP field profile for trityl samples near the electron paramagnetic resonance center.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ravi Shankar Palani
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Banks
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - James Kempf
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - W Tom Wenckebach
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32310, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Kriebel CN, Asido M, Kaur J, Orth J, Braun P, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2. Biophys J 2023; 122:1003-1017. [PMID: 36528791 PMCID: PMC10111219 DOI: 10.1016/j.bpj.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Asido
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer Orth
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Philipp Braun
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
7
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
8
|
Shigeta A, Otani Y, Miyasa R, Makino Y, Kawamura I, Okitsu T, Wada A, Naito A. Photoreaction Pathways of Bacteriorhodopsin and Its D96N Mutant as Revealed by in Situ Photoirradiation Solid-State NMR. MEMBRANES 2022; 12:membranes12030279. [PMID: 35323754 PMCID: PMC8949607 DOI: 10.3390/membranes12030279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022]
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump that transitions between different states during the photocycle, such as all-trans (AT; BR568) and 13-cis, 15-syn (CS; BR548) state and K, L, M1, M2, N, and O intermediates. In this study, we used in situ photoirradiation 13C solid-state NMR to observe a variety of photo-intermediates and photoreaction pathways in [20-13C]retinal-WT-BR and its mutant [20-13C, 14-13C]retinal-D96N-BR. In WT-BR, the CS state converted to the CS* intermediate under photoirradiation with green light at −20 °C and consequently converted to the AT state in the dark. The AT state converted to the N intermediate under irradiation with green light. In D96N-BR, the CS state was converted to the CS* intermediate at −30 °C and consequently converted to the AT state. Simultaneously, the AT state converted to the M and L intermediates under green light illumination at −30 °C and subsequently converted to the AT state in the dark. The M intermediate was directly excited to the AT state by UV light illumination. We demonstrated that short-lived photo-intermediates could be observed in a stationary state using in situ photoirradiation solid-state NMR spectroscopy for WT-BR and D96N-BR, enabling insight into the light-driven proton pump activity of BR.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yuto Otani
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Ryota Miyasa
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| |
Collapse
|
9
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
10
|
Abstract
Microbial rhodopsins represent the most abundant phototrophic systems known today. A similar molecular architecture with seven transmembrane helices and a retinal cofactor linked to a lysine in helix 7 enables a wide range of functions including ion pumping, light-controlled ion channel gating, or sensing. Deciphering their molecular mechanisms therefore requires a combined consideration of structural, functional, and spectroscopic data in order to identify key factors determining their function. Important insight can be gained by solid-state NMR spectroscopy by which the large homo-oligomeric rhodopsin complexes can be studied directly within lipid bilayers. This chapter describes the methodological background and the necessary sample preparation requirements for the study of photointermediates, for the analysis of protonation states, H-bonding and chromophore conformations, for 3D structure determination, and for probing oligomer interfaces of microbial rhodopsins. The use of data extracted from these NMR experiments is discussed in the context of complementary biophysical methods.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Kawamura I, Seki H, Tajima S, Makino Y, Shigeta A, Okitsu T, Wada A, Naito A, Sudo Y. Structure of a retinal chromophore of dark-adapted middle rhodopsin as studied by solid-state nuclear magnetic resonance spectroscopy. Biophys Physicobiol 2021; 18:177-185. [PMID: 34434690 PMCID: PMC8354847 DOI: 10.2142/biophysico.bppb-v18.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
Middle rhodopsin (MR) found from the archaeon Haloquadratum walsbyi is evolutionarily located between two different types of rhodopsins, bacteriorhodopsin (BR) and sensory rhodopsin II (SRII). Some isomers of the chromophore retinal and the photochemical reaction of MR are markedly different from those of BR and SRII. In this study, to obtain the structural information regarding its active center (i.e., retinal), we subjected MR embedded in lipid bilayers to solid-state magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The analysis of the isotropic 13C chemical shifts of the retinal chromophore revealed the presence of three types of retinal configurations of dark-adapted MR: (13-trans, 15-anti (all-trans)), (13-cis, 15-syn), and 11-cis isomers. The higher field resonance of the 20-C methyl carbon in the all-trans retinal suggested that Trp182 in MR has an orientation that is different from that in other microbial rhodopsins, owing to the changes in steric hindrance associated with the 20-C methyl group in retinal. 13Cζ signals of Tyr185 in MR for all-trans and 13-cis, 15-syn isomers were discretely observed, representing the difference in the hydrogen bond strength of Tyr185. Further, 15N NMR analysis of the protonated Schiff base corresponding to the all-trans and 13-cis, 15-syn isomers in MR showed a strong electrostatic interaction with the counter ion. Therefore, the resulting structural information exhibited the property of stable retinal conformations of dark-adapted MR.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hayato Seki
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Seiya Tajima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Present address: Graduate School of Medicine, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
12
|
Solid state NMR of membrane proteins: methods and applications. Biochem Soc Trans 2021; 49:1505-1513. [PMID: 34397082 DOI: 10.1042/bst20200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022]
Abstract
Membranes of cells are active barriers, in which membrane proteins perform essential remodelling, transport and recognition functions that are vital to cells. Membrane proteins are key regulatory components of cells and represent essential targets for the modulation of cell function and pharmacological intervention. However, novel folds, low molarity and the need for lipid membrane support present serious challenges to the characterisation of their structure and interactions. We describe the use of solid state NMR as a versatile and informative approach for membrane and membrane protein studies, which uniquely provides information on structure, interactions and dynamics of membrane proteins. High resolution approaches are discussed in conjunction with applications of NMR methods to studies of membrane lipid and protein structure and interactions. Signal enhancement in high resolution NMR spectra through DNP is discussed as a tool for whole cell and interaction studies.
Collapse
|
13
|
Becker‐Baldus J, Leeder A, Brown LJ, Brown RCD, Bamann C, Glaubitz C. The Desensitized Channelrhodopsin‐2 Photointermediate Contains 13 ‐
cis
, 15 ‐
syn
Retinal Schiff Base. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Becker‐Baldus
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Alexander Leeder
- Department of Chemistry University of Southampton Southampton SO17 1BJ UK
| | - Lynda J. Brown
- Department of Chemistry University of Southampton Southampton SO17 1BJ UK
| | | | - Christian Bamann
- Max-Planck-Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| |
Collapse
|
14
|
Becker-Baldus J, Leeder A, Brown LJ, Brown RCD, Bamann C, Glaubitz C. The Desensitized Channelrhodopsin-2 Photointermediate Contains 13 -cis, 15 -syn Retinal Schiff Base. Angew Chem Int Ed Engl 2021; 60:16442-16447. [PMID: 33973334 PMCID: PMC8362212 DOI: 10.1002/anie.202015797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/18/2021] [Indexed: 11/13/2022]
Abstract
Channelrhodopsin‐2 (ChR2) is a light‐gated cation channel and was used to lay the foundations of optogenetics. Its dark state X‐ray structure has been determined in 2017 for the wild‐type, which is the prototype for all other ChR variants. However, the mechanistic understanding of the channel function is still incomplete in terms of structural changes after photon absorption by the retinal chromophore and in the framework of functional models. Hence, detailed information needs to be collected on the dark state as well as on the different photointermediates. For ChR2 detailed knowledge on the chromophore configuration in the different states is still missing and a consensus has not been achieved. Using DNP‐enhanced solid‐state MAS NMR spectroscopy on proteoliposome samples, we unambiguously determined the chromophore configuration in the desensitized state, and we show that this state occurs towards the end of the photocycle.
Collapse
Affiliation(s)
- Johanna Becker-Baldus
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Alexander Leeder
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Lynda J Brown
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Christian Bamann
- Max-Planck-Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
15
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
16
|
Jakdetchai O, Eberhardt P, Asido M, Kaur J, Kriebel CN, Mao J, Leeder AJ, Brown LJ, Brown RCD, Becker-Baldus J, Bamann C, Wachtveitl J, Glaubitz C. Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR. SCIENCE ADVANCES 2021; 7:7/11/eabf4213. [PMID: 33712469 PMCID: PMC7954446 DOI: 10.1126/sciadv.abf4213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/29/2021] [Indexed: 06/10/2023]
Abstract
The functional mechanism of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) raises fundamental questions since the transfer of cations must differ from the better-known principles of rhodopsin-based proton pumps. Addressing these questions must involve a better understanding of its photointermediates. Here, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy on cryo-trapped photointermediates shows that the K-state with 13-cis retinal directly interconverts into the subsequent L-state with distinct retinal carbon chemical shift differences and an increased out-of-plane twist around the C14-C15 bond. The retinal converts back into an all-trans conformation in the O-intermediate, which is the key state for sodium transport. However, retinal carbon and Schiff base nitrogen chemical shifts differ from those observed in the KR2 dark state all-trans conformation, indicating a perturbation through the nearby bound sodium ion. Our findings are supplemented by optical and infrared spectroscopy and are discussed in the context of known three-dimensional structures.
Collapse
Affiliation(s)
- Orawan Jakdetchai
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Peter Eberhardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Jiafei Mao
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Alexander J Leeder
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, Great Britain
| | - Lynda J Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, Great Britain
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, Great Britain
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
18
|
Solid-state NMR approaches to investigate large enzymes in complex with substrates and inhibitors. Biochem Soc Trans 2020; 49:131-144. [PMID: 33367567 DOI: 10.1042/bst20200099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Enzyme catalysis is omnipresent in the cell. The mechanisms by which highly evolved protein folds enable rapid and specific chemical transformation of substrates belong to the marvels of structural biology. Targeting of enzymes with inhibitors has immediate application in drug discovery, from chemotherapeutics over antibiotics to antivirals. NMR spectroscopy combines multiple assets for the investigation of enzyme function. The non-invasive technique can probe enzyme structure and dynamics and map interactions with substrates, cofactors and inhibitors at the atomic level. With experiments performed at close to native conditions, catalytic transformations can be monitored in real time, giving access to kinetic parameters. The power of NMR in the solid state, in contrast with solution, lies in the absence of fundamental size limitations, which is crucial for enzymes that are either membrane-embedded or assemble into large soluble complexes exceeding hundreds of kilodaltons in molecular weight. Here we review recent progress in solid-state NMR methodology, which has taken big leaps in the past years due to steady improvements in hardware design, notably magic angle spinning, and connect it to parallel biochemical advances that enable isotope labelling of increasingly complex enzymes. We first discuss general concepts and requirements of the method and then highlight the state-of-the-art in sample preparation, structure determination, dynamics and interaction studies. We focus on examples where solid-state NMR has been instrumental in elucidating enzyme mechanism, alone or in integrative studies.
Collapse
|
19
|
Yeh V, Goode A, Bonev BB. Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR. BIOLOGY 2020; 9:E396. [PMID: 33198410 PMCID: PMC7697852 DOI: 10.3390/biology9110396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics. NMR is uniquely suited to resolving atomic environments within complex molecular assemblies and reporting on membrane organisation, protein structure, lipid and polysaccharide composition, conformational variations and molecular interactions. The main challenge in membrane protein studies at the atomic level remains the need for a membrane environment to support their fold. NMR studies in membrane mimetics and membranes of increasing complexity offer close to native environments for structural and molecular studies of membrane proteins. Solution NMR inherits high resolution from small molecule analysis, providing insights from detergent solubilised proteins and small molecular assemblies. Solid-state NMR achieves high resolution in membrane samples through fast sample spinning or sample alignment. Recent developments in dynamic nuclear polarisation NMR allow signal enhancement by orders of magnitude opening new opportunities for expanding the applications of NMR to studies of native membranes and whole cells.
Collapse
Affiliation(s)
| | | | - Boyan B. Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (V.Y.); (A.G.)
| |
Collapse
|
20
|
Kaminker I. Recent Advances in Magic Angle Spinning‐Dynamic Nuclear Polarization Methodology. Isr J Chem 2019. [DOI: 10.1002/ijch.201900092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ilia Kaminker
- School of ChemistryTel Aviv University Ramat Aviv 6997801 Tel Aviv Israel
| |
Collapse
|
21
|
Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. J Am Chem Soc 2019; 141:19888-19901. [DOI: 10.1021/jacs.9b11195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Retinal Configuration of ppR Intermediates Revealed by Photoirradiation Solid-State NMR and DFT. Biophys J 2019; 115:72-83. [PMID: 29972813 DOI: 10.1016/j.bpj.2018.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Pharanois phoborhodopsin (ppR) from Natronomonas pharaonis is a transmembrane photoreceptor protein involved in negative phototaxis. Structural changes in ppR triggered by photoisomerization of the retinal chromophore are transmitted to its cognate transducer protein (pHtrII) through a cyclic photoreaction pathway involving several photointermediates. This pathway is called the photocycle. It is important to understand the detailed configurational changes of retinal during the photocycle. We previously observed one of the photointermediates (M-intermediates) by in situ photoirradiation solid-state NMR experiments. In this study, we further observed the 13C cross-polarization magic-angle-spinning NMR signals of late photointermediates such as O- and N'-intermediates by illumination with green light (520 nm). Under blue-light (365 nm) irradiation of the M-intermediates, 13C cross-polarization magic-angle-spinning NMR signals of 14- and 20-13C-labeled retinal in the O-intermediate appeared at 115.4 and 16.4 ppm and were assigned to the 13-trans, 15-syn configuration. The signals caused by the N'-intermediate appeared at 115.4 and 23.9 ppm and were assigned to the 13-cis configuration, and they were in an equilibrium state with the O-intermediate during thermal decay of the M-intermediates at -60°C. Thus, photoirradiation NMR studies revealed the photoreaction pathways from the M- to O-intermediates and the equilibrium state between the N'- and O-intermediate. Further, we evaluated the detailed retinal configurations in the O- and N'-intermediates by performing a density functional theory chemical shift calculation. The results showed that the N'-intermediate has a 63° twisted retinal state due to the 13-cis configuration. The retinal configurations of the O- and N'-intermediates were determined to be 13-trans, 15-syn, and 13-cis, respectively, based on the chemical shift values of [20-13C] and [14-13C] retinal obtained by photoirradiation solid-state NMR and density functional theory calculation.
Collapse
|
23
|
Salnikov ES, Aussenac F, Abel S, Purea A, Tordo P, Ouari O, Bechinger B. Dynamic Nuclear Polarization / solid-state NMR of membranes. Thermal effects and sample geometry. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:70-76. [PMID: 30995597 DOI: 10.1016/j.ssnmr.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Whereas specially designed dinitroxide biradicals, reconstitution protocols, oriented sample geometries and NMR probes have helped to much increase the DNP enhancement factors of membrane samples they still lag considerably behind those obtained from glasses made of protein solutions. Here we show that not only the MAS rotor material but also the distribution of the membrane samples within the NMR rotor have a pronounced effect on the DNP enhancement. These observations are rationalized with the cooling efficiency and the internal properties of the sample, monitored by their T1 relaxation, microwave ON versus OFF signal intensities and DNP effect. The data are suggestive that for membranes the speed of cooling has a pronounced effect on the membrane properties and concomitantly the distribution of biradicals within the sample.
Collapse
Affiliation(s)
| | | | - Sebastian Abel
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | | | - Paul Tordo
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | - Olivier Ouari
- Aix-Marseille University, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13013, Marseille, France
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg / CNRS, UMR7177, 67070, Strasbourg, France.
| |
Collapse
|
24
|
Solid-State NMR Approaches to Study Protein Structure and Protein-Lipid Interactions. Methods Mol Biol 2019. [PMID: 31218633 DOI: 10.1007/978-1-4939-9512-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Solid-state NMR spectroscopy has been developed for the investigation of membrane-associated polypeptides and remains one of the few techniques to reveal high-resolution structural information in liquid-disordered phospholipid bilayers. In particular, oriented samples have been used to investigate the structure, dynamics and topology of membrane polypeptides. Much of the previous solid-state NMR work has been developed and performed on peptides but the technique is constantly expanding towards larger membrane proteins. Here, a number of protocols are presented describing among other the reconstitution of membrane proteins into oriented membranes, monitoring membrane alignment by 31P solid-state NMR spectroscopy, investigations of the protein by one- and two-dimensional 15N solid-state NMR and measurements of the lipid order parameters using 2H solid-state NMR spectroscopy. Using such methods solid-state NMR spectroscopy has revealed a detailed picture of the ensemble of both lipids and proteins and their mutual interdependence in the bilayer environment.
Collapse
|
25
|
Liang R, Liu F, Martínez TJ. Nonadiabatic Photodynamics of Retinal Protonated Schiff Base in Channelrhodopsin 2. J Phys Chem Lett 2019; 10:2862-2868. [PMID: 31083920 DOI: 10.1021/acs.jpclett.9b00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Channelrhodopsin 2 (ChR2) is a light-gated ion channel and an important tool in optogenetics. Photoisomerization of retinal protonated Schiff base (RPSB) in ChR2 triggers channel activation. Despite the importance of ChR2 in optogenetics, the detailed mechanism for photoisomerization and channel activation is still not fully understood. Here, we report on computer simulations to investigate the photoisomerization mechanism and its effect on the activation of ChR2. Nonadiabatic dynamics simulation of ChR2 was carried out using the ab initio multiple spawning (AIMS) method and quantum mechanics/molecular mechanics (QM/MM) with a restricted ensemble Kohn-Sham (REKS) treatment of the QM region. Our results agree well with spectroscopic measurements and reveal that the RPSB isomerization is highly specific around the C13=C14 bond and follows the "aborted bicycle-pedal" mechanism. In addition, RPSB photoisomerization facilitates its deprotonation and partially increases the hydration level in the channel, which could trigger subsequent channel opening and ion conduction.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry and The PULSE Institute , Stanford University , Stanford , California 94305 , United States
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Fang Liu
- Department of Chemistry and The PULSE Institute , Stanford University , Stanford , California 94305 , United States
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute , Stanford University , Stanford , California 94305 , United States
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| |
Collapse
|
26
|
Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc Natl Acad Sci U S A 2019; 116:9380-9389. [PMID: 31004059 PMCID: PMC6510988 DOI: 10.1073/pnas.1818707116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.
Collapse
|
27
|
Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR. Proc Natl Acad Sci U S A 2019; 116:8342-8349. [PMID: 30948633 DOI: 10.1073/pnas.1817665116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteorhodopsin (PR) is a highly abundant, pentameric, light-driven proton pump. Proton transfer is linked to a canonical photocycle typical for microbial ion pumps. Although the PR monomer is able to undergo a full photocycle, the question arises whether the pentameric complex formed in the membrane via specific cross-protomer interactions plays a role in its functional mechanism. Here, we use dynamic nuclear polarization (DNP)-enhanced solid-state magic-angle spinning (MAS) NMR in combination with light-induced cryotrapping of photointermediates to address this topic. The highly conserved residue H75 is located at the protomer interface. We show that it switches from the (τ)- to the (π)-tautomer and changes its ring orientation in the M state. It couples to W34 across the oligomerization interface based on specific His/Trp ring orientations while stabilizing the pKa of the primary proton acceptor D97 within the same protomer. We further show that specific W34 mutations have a drastic effect on D97 and proton transfer mediated through H75. The residue H75 defines a cross-protomer Asp-His-Trp triad, which potentially serves as a pH-dependent regulator for proton transfer. Our data represent light-dependent, functionally relevant cross talk between protomers of a microbial rhodopsin homo-oligomer.
Collapse
|
28
|
Kaur J, Kriebel CN, Eberhardt P, Jakdetchai O, Leeder AJ, Weber I, Brown LJ, Brown RC, Becker-Baldus J, Bamann C, Wachtveitl J, Glaubitz C. Solid-state NMR analysis of the sodium pump Krokinobacter rhodopsin 2 and its H30A mutant. J Struct Biol 2019; 206:55-65. [DOI: 10.1016/j.jsb.2018.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/05/2018] [Accepted: 06/02/2018] [Indexed: 12/26/2022]
|
29
|
Naito A, Makino Y, Shigeta A, Kawamura I. Photoreaction pathways and photointermediates of retinal-binding photoreceptor proteins as revealed by in situ photoirradiation solid-state NMR spectroscopy. Biophys Rev 2019; 11:167-181. [PMID: 30811009 DOI: 10.1007/s12551-019-00501-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Photoirradiation solid-state NMR spectroscopy is a powerful means to study photoreceptor retinal-binding proteins by the detection of short-lived photointermediates to elucidate the photoreaction cycle and photoactivated structural changes. An in situ photoirradiation solid-state NMR apparatus has been developed for the irradiation of samples with extremely high efficiency to enable observation of photointermediates which are stationary trapped states. Such observation enables elucidation of the photoreaction processes of photoreceptor membrane proteins. Therefore, in situ photoirradiation is particularly useful study the photocycle of retinal-binding proteins such as sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) because functional photointermediates have relatively longer half-lives than other photointermediates. As a result, several photointermediates have been trapped as stationary state and their detailed structures and photoreaction cycles have been revealed using photoirradiation solid-state NMR spectroscopy at low temperature. Photoreaction intermediates of bacteriorhodopsin, which functions to provide light-driven proton pump activity, were difficult to trap because the half-lives of the photointermediates were shorter than those of sensory rhodopsin. Therefore, these photointermediates are trapped in a freeze-trapped state at a very low temperature and the NMR signals were observed using a combination of photoirradiation and dynamic nuclear polarization (DNP) experiments.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan.
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
30
|
Munro RA, de Vlugt J, Ward ME, Kim SY, Lee KA, Jung KH, Ladizhansky V, Brown LS. Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:49-58. [PMID: 30719609 DOI: 10.1007/s10858-019-00225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The isomerization of a covalently bound retinal is an integral part of both microbial and animal rhodopsin function. As such, detailed structure and conformational changes in the retinal binding pocket are of significant interest and are studied in various NMR, FTIR, and Raman spectroscopy experiments, which commonly require isotopic labeling of retinal. Unfortunately, the de novo organic synthesis of an isotopically-labeled retinal is complex and often cost-prohibitive, especially for large scale expression required for solid-state NMR. We present the novel protocol for biosynthetic production of an isotopically labeled retinal ligand concurrently with an apoprotein in E. coli as a cost-effective alternative to the de novo organic synthesis. Previously, the biosynthesis of a retinal precursor, β-carotene, has been introduced into many different organisms. We extended this system to the prototrophic E. coli expression strain BL21 in conjunction with the inducible expression of a β-dioxygenase and proteo-opsin. To demonstrate the applicability of this system, we were able to assign several new carbon resonances for proteorhodopsin-bound retinal by using fully 13C-labeled glucose as the sole carbon source. Furthermore, we demonstrated that this biosynthetically produced retinal can be extracted from E. coli cells by applying a hydrophobic solvent layer to the growth medium and reconstituted into an externally produced opsin of any desired labeling pattern.
Collapse
Affiliation(s)
- Rachel A Munro
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jeffrey de Vlugt
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Meaghan E Ward
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - So Young Kim
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Keon Ah Lee
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Kwang-Hwan Jung
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Vladimir Ladizhansky
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Leonid S Brown
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
31
|
Bühl E, Eberhardt P, Bamann C, Bamberg E, Braun M, Wachtveitl J. Ultrafast Protein Response in Channelrhodopsin-2 Studied by Time-Resolved Infrared Spectroscopy. J Phys Chem Lett 2018; 9:7180-7184. [PMID: 30525663 DOI: 10.1021/acs.jpclett.8b03382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrafast infrared transient absorption in the carbonyl vibrational region of protonated aspartate and glutamate residues in channelrhodopsin-2 from Chlamydomonas reinhardtii shows immediate protein response to retinal excitation. The observed difference bands are formed directly after the excitation on the subpicosecond time scale and were assigned to side chains in the retinal vicinity, such as D156 and E90. This finding implies an ultrafast and effective energy transfer from the retinal to its environment via hydrogen-bonded networks and reveals extraordinarily strong chromophore-protein coupling and intense interaction within the protein. Relevance to the protein function as an optically gated ion channel is discussed.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Peter Eberhardt
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics , Max von Laue-Straße 3 , 60438 Frankfurt am Main , Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics , Max von Laue-Straße 3 , 60438 Frankfurt am Main , Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| |
Collapse
|
32
|
Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int J Mol Sci 2018; 19:E3401. [PMID: 30380757 PMCID: PMC6274748 DOI: 10.3390/ijms19113401] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Osamu Miyashita
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
33
|
Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C. Unexplored Nucleotide Binding Modes for the ABC Exporter MsbA. J Am Chem Soc 2018; 140:14112-14125. [PMID: 30289253 DOI: 10.1021/jacs.8b06739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter MsbA is an ATP-driven lipid-A flippase. It belongs to the ABC protein superfamily whose members are characterized by conserved motifs in their nucleotide binding domains (NBDs), which are responsible for ATP hydrolysis. Recently, it was found that MsbA could catalyze a reverse adenylate kinase (rAK)-like reaction in addition to ATP hydrolysis. Both reactions are connected and mediated by the same conserved NBD domains. Here, the structural foundations underlying the nucleotide binding to MsbA were therefore explored using a concerted approach based on conventional- and DNP-enhanced solid-state NMR, pulsed-EPR, and MD simulations. MsbA reconstituted into lipid bilayers was trapped in various catalytic states corresponding to intermediates of the coupled ATPase-rAK mechanism. The analysis of nucleotide-binding dependent chemical shift changes, and the detection of through-space contacts between bound nucleotides and MsbA within these states provides evidence for an additional nucleotide-binding site in close proximity to the Q-loop and the His-Switch. By replacing Mg2+ with Mn2+ and employing pulsed EPR spectroscopy, evidence is provided that this newly found nucleotide binding site does not interfere with the coordination of the required metal ion. Molecular dynamic (MD) simulations of nucleotide and metal binding required for the coupled ATPase-rAK mechanism have been used to corroborate these experimental findings and provide additional insight into nucleotide location, orientation, and possible binding modes.
Collapse
Affiliation(s)
- Hundeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Bárbara Abreu
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Dmitry Akhmetzyanov
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Andrea Lakatos-Karoly
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Cláudio M Soares
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Thomas Prisner
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| |
Collapse
|
34
|
Jaudzems K, Polenova T, Pintacuda G, Oschkinat H, Lesage A. DNP NMR of biomolecular assemblies. J Struct Biol 2018; 206:90-98. [PMID: 30273657 DOI: 10.1016/j.jsb.2018.09.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 11/30/2022]
Abstract
Dynamic Nuclear Polarization (DNP) is an effective approach to alleviate the inherently low sensitivity of solid-state NMR (ssNMR) under magic angle spinning (MAS) towards large-sized multi-domain complexes and assemblies. DNP relies on a polarization transfer at cryogenic temperatures from unpaired electrons to adjacent nuclei upon continuous microwave irradiation. This is usually made possible via the addition in the sample of a polarizing agent. The first pioneering experiments on biomolecular assemblies were reported in the early 2000s on bacteriophages and membrane proteins. Since then, DNP has experienced tremendous advances, with the development of extremely efficient polarizing agents or with the introduction of new microwaves sources, suitable for NMR experiments at very high magnetic fields (currently up to 900 MHz). After a brief introduction, several experimental aspects of DNP enhanced NMR spectroscopy applied to biomolecular assemblies are discussed. Recent demonstration experiments of the method on viral capsids, the type III and IV bacterial secretion systems, ribosome and membrane proteins are then described.
Collapse
Affiliation(s)
- Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, DE 19716, USA
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch Robert-Roessle-Str. 10 13125 Berlin, Germany
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
35
|
Wisser D, Karthikeyan G, Lund A, Casano G, Karoui H, Yulikov M, Menzildjian G, Pinon AC, Purea A, Engelke F, Chaudhari SR, Kubicki D, Rossini AJ, Moroz IB, Gajan D, Copéret C, Jeschke G, Lelli M, Emsley L, Lesage A, Ouari O. BDPA-Nitroxide Biradicals Tailored for Efficient Dynamic Nuclear Polarization Enhanced Solid-State NMR at Magnetic Fields up to 21.1 T. J Am Chem Soc 2018; 140:13340-13349. [DOI: 10.1021/jacs.8b08081] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dorothea Wisser
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | | | - Alicia Lund
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Gilles Casano
- AixMarseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Hakim Karoui
- AixMarseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Georges Menzildjian
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Arthur C. Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | - Sachin R. Chaudhari
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Dominik Kubicki
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aaron J. Rossini
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ilia B. Moroz
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - David Gajan
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Moreno Lelli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anne Lesage
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Olivier Ouari
- AixMarseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
36
|
Gelenter MD, Hong M. Efficient 15N- 13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. J Phys Chem B 2018; 122:8367-8379. [PMID: 30106585 DOI: 10.1021/acs.jpcb.8b06400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We introduce a pulsed third-spin-assisted recoupling experiment that produces high-intensity long-range 15N-13C cross peaks using low radiofrequency (rf) energy. This Proton-Enhanced Rotor-echo Short-Pulse IRradiATION Cross-Polarization (PERSPIRATIONCP) pulse sequence operates with the same principle as the Proton-Assisted Insensitive-Nuclei Cross-Polarization (PAINCP) experiment but uses only a fraction of the rf energy by replacing continuous-wave 13C and 15N irradiation with rotor-echo 90° pulses. Using formyl-Met-Leu-Phe (f-MLF) and β1 immunoglobulin binding domain of protein G (GB1) as model proteins, we demonstrate experimentally how PERSPIRATIONCP polarization transfer depends on the CP contact time, rf power, pulse flip angle, and 13C carrier frequency and compare the PERSPIRATIONCP performance with the performances of PAINCP, RESPIRATIONCP, and SPECIFICCP for measuring 15N-13C cross peaks. PERSPIRATIONCP achieves long-range 15N-13C transfer and yields higher cross peak-intensities than that of the other techniques. Numerical simulations reproduce the experimental trends and moreover indicate that PERSPIRATIONCP relies on 15N-1H and 13C-1H dipolar couplings rather than 15N-13C dipolar coupling for polarization transfer. Therefore, PERSPIRATIONCP is an rf-efficient and higher-sensitivity alternative to PAINCP for measuring long-range 15N-13C correlations, which are essential for protein resonance assignment and structure determination. Using cross peaks from two PERSPIRATIONCP 15N-13C correlation spectra as the sole distance restraints, supplemented with (φ, ψ) torsion angles obtained from chemical shifts, we calculated the GB1 structure and obtained a backbone root-mean-square deviation of 2.0 Å from the high-resolution structure of the protein. Therefore, this rf-efficient PERSPIRATIONCP method is useful for obtaining many long-range distance restraints for protein structure determination.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
37
|
Saita M, Pranga-Sellnau F, Resler T, Schlesinger R, Heberle J, Lorenz-Fonfria VA. Photoexcitation of the P4480 State Induces a Secondary Photocycle That Potentially Desensitizes Channelrhodopsin-2. J Am Chem Soc 2018; 140:9899-9903. [DOI: 10.1021/jacs.8b03931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mattia Saita
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Franziska Pranga-Sellnau
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tom Resler
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Victor A. Lorenz-Fonfria
- Institute of Molecular Science, Universitat de València, 46980 Paterna, Spain
- Department of Biochemistry and Molecular Biology, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
38
|
Can TV, McKay JE, Weber RT, Yang C, Dubroca T, van Tol J, Hill S, Griffin RG. Frequency-Swept Integrated and Stretched Solid Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2018; 9:3187-3192. [PMID: 29756781 PMCID: PMC8253171 DOI: 10.1021/acs.jpclett.8b01002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We investigate a new time domain approach to dynamic nuclear polarization (DNP), the frequency-swept integrated solid effect (FS-ISE), utilizing a high power, broadband 94 GHz (3.35 T) pulse EPR spectrometer. The bandwidth of the spectrometer enabled measurement of the DNP Zeeman frequency/field profile that revealed two dominant polarization mechanisms, the expected ISE, and a recently observed mechanism, the stretched solid effect (S2E). At 94 GHz, despite the limitations in the microwave chirp pulse length (10 μs) and the repetition rate (2 kHz), we obtained signal enhancements up to ∼70 for the S2E and ∼50 for the ISE. The results successfully demonstrate the viability of the FS-ISE and S2E DNP at a frequency 10 times higher than previous studies. Our results also suggest that these approaches are candidates for implementation at higher magnetic fields.
Collapse
Affiliation(s)
- T. V. Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - J. E. McKay
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - R. T. Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - C. Yang
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - T. Dubroca
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - J. van Tol
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - S. Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - R. G. Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Jaudzems K, Bertarello A, Chaudhari SR, Pica A, Cala-De Paepe D, Barbet-Massin E, Pell AJ, Akopjana I, Kotelovica S, Gajan D, Ouari O, Tars K, Pintacuda G, Lesage A. Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kristaps Jaudzems
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Andrea Bertarello
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Sachin R. Chaudhari
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Andrea Pica
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia I-80126 Naples Italy
| | - Diane Cala-De Paepe
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Emeline Barbet-Massin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Andrew J. Pell
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
- Present address: Department of Materials and Environmental Chemistry; Arrhenius Laboratory; Stockholm University; Svante Arrhenius Väg 16 C SE-106 91 Stockholm Sweden
| | - Inara Akopjana
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | | | - David Gajan
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille cedex 20 France
| | - Kaspars Tars
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | - Guido Pintacuda
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Anne Lesage
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| |
Collapse
|
40
|
Jaudzems K, Bertarello A, Chaudhari SR, Pica A, Cala-De Paepe D, Barbet-Massin E, Pell AJ, Akopjana I, Kotelovica S, Gajan D, Ouari O, Tars K, Pintacuda G, Lesage A. Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning. Angew Chem Int Ed Engl 2018; 57:7458-7462. [DOI: 10.1002/anie.201801016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Kristaps Jaudzems
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Andrea Bertarello
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Sachin R. Chaudhari
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Andrea Pica
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia I-80126 Naples Italy
| | - Diane Cala-De Paepe
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Emeline Barbet-Massin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Andrew J. Pell
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
- Present address: Department of Materials and Environmental Chemistry; Arrhenius Laboratory; Stockholm University; Svante Arrhenius Väg 16 C SE-106 91 Stockholm Sweden
| | - Inara Akopjana
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | | | - David Gajan
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille cedex 20 France
| | - Kaspars Tars
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | - Guido Pintacuda
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| | - Anne Lesage
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1; Ens Lyon; Institut des Sciences Analytiques, UMR 5280; 5 rue de la Doua F-69100 VILLEURBANNE France
| |
Collapse
|
41
|
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V. Structural insights into ion conduction by channelrhodopsin 2. Science 2018; 358:358/6366/eaan8862. [PMID: 29170206 DOI: 10.1126/science.aan8862] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/30/2017] [Indexed: 11/02/2022]
Abstract
The light-gated ion channel channelrhodopsin 2 (ChR2) from Chlamydomonas reinhardtii is a major optogenetic tool. Photon absorption starts a well-characterized photocycle, but the structural basis for the regulation of channel opening remains unclear. We present high-resolution structures of ChR2 and the C128T mutant, which has a markedly increased open-state lifetime. The structure reveals two cavities on the intracellular side and two cavities on the extracellular side. They are connected by extended hydrogen-bonding networks involving water molecules and side-chain residues. Central is the retinal Schiff base that controls and synchronizes three gates that separate the cavities. Separate from this network is the DC gate that comprises a water-mediated bond between C128 and D156 and interacts directly with the retinal Schiff base. Comparison with the C128T structure reveals a direct connection of the DC gate to the central gate and suggests how the gating mechanism is affected by subtle tuning of the Schiff base's interactions.
Collapse
Affiliation(s)
- Oleksandr Volkov
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Kirill Kovalev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Crystallography, University of Aachen, Aachen, Germany
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,ELI Beamlines, Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | | | | | - Roman Astashkin
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38027 Grenoble, France
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Georg Büldt
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany. .,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
42
|
Abstract
Channelrhodopsin-2 (ChR2) is a light-sensitive ion channel widely used in optogenetics. Photoactivation triggers a trans-to-cis isomerization of a covalently bound retinal. Ensuing conformational changes open a cation-selective channel. We explore the structural dynamics in the early photocycle leading to channel opening by classical (MM) and quantum mechanical (QM) molecular simulations. With QM/MM simulations, we generated a protein-adapted force field for the retinal chromophore, which we validated against absorption spectra. In a 4-µs MM simulation of a dark-adapted ChR2 dimer, water entered the vestibules of the closed channel. Retinal all-trans to 13-cis isomerization, simulated with metadynamics, triggered a major restructuring of the charge cluster forming the channel gate. On a microsecond time scale, water penetrated the gate to form a membrane-spanning preopen pore between helices H1, H2, H3, and H7. This influx of water into an ion-impermeable preopen pore is consistent with time-resolved infrared spectroscopy and electrophysiology experiments. In the retinal 13-cis state, D253 emerged as the proton acceptor of the Schiff base. Upon proton transfer from the Schiff base to D253, modeled by QM/MM simulations, we obtained an early-M/P2390-like intermediate. Rapid rotation of the unprotonated Schiff base toward the cytosolic side effectively prevents its reprotonation from the extracellular side. From MM and QM simulations, we gained detailed insight into the mechanism of ChR2 photoactivation and early events in pore formation. By rearranging the network of charges and hydrogen bonds forming the gate, water emerges as a key player in light-driven ChR2 channel opening.
Collapse
Affiliation(s)
- Albert Ardevol
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
- Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Jahnke JP, Idso MN, Hussain S, Junk MJ, Fisher JM, Phan DD, Han S, Chmelka BF. Functionally Active Membrane Proteins Incorporated in Mesostructured Silica Films. J Am Chem Soc 2018; 140:3892-3906. [PMID: 29533066 PMCID: PMC6040920 DOI: 10.1021/jacs.7b06863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A versatile synthetic protocol is reported that allows high concentrations of functionally active membrane proteins to be incorporated in mesostructured silica materials. Judicious selections of solvent, surfactant, silica precursor species, and synthesis conditions enable membrane proteins to be stabilized in solution and during subsequent coassembly into silica-surfactant composites with nano- and mesoscale order. This was demonstrated by using a combination of nonionic ( n-dodecyl-β-d-maltoside or Pluronic P123), lipid-like (1,2-diheptanoyl- s n-glycero-3-phosphocholine), and perfluoro-octanoate surfactants under mild acidic conditions to coassemble the light-responsive transmembrane protein proteorhodopsin at concentrations up to 15 wt % into the hydrophobic regions of worm-like mesostructured silica materials in films. Small-angle X-ray scattering, electron paramagnetic resonance spectroscopy, and transient UV-visible spectroscopy analyses established that proteorhodopsin molecules in mesostructured silica films exhibited native-like function, as well as enhanced thermal stability compared to surfactant or lipid environments. The light absorbance properties and light-activated conformational changes of proteorhodopsin guests in mesostructured silica films are consistent with those associated with the native H+-pumping mechanism of these biomolecules. The synthetic protocol is expected to be general, as demonstrated also for the incorporation of functionally active cytochrome c, a peripheral membrane protein enzyme involved in electron transport, into mesostructured silica-cationic surfactant films.
Collapse
Affiliation(s)
- Justin P. Jahnke
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Matthew N. Idso
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Sunyia Hussain
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Matthias J.N. Junk
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Julia M. Fisher
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - David D. Phan
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106 U.S.A
| | - Bradley F. Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| |
Collapse
|
44
|
Leeder AJ, Brown LJ, Becker-Baldus J, Mehler M, Glaubitz C, Brown RCD. Synthesis of isotopically labeled all-trans retinals for DNP-enhanced solid-state NMR studies of retinylidene proteins. J Labelled Comp Radiopharm 2018; 61:922-933. [PMID: 29080288 DOI: 10.1002/jlcr.3576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
Three all-trans retinals containing multiple 13 C labels have been synthesized to enable dynamic nuclear polarization enhanced solid-state magic angle spinning NMR studies of novel microbial retinylidene membrane proteins including proteorhodpsin and channelrhodopsin. The synthetic approaches allowed specific introduction of 13 C labels in ring substituents and at different positions in the polyene chain to probe structural features such as ring orientation and interaction of the chromophore with the protein in the ground state and in photointermediates. [10-18-13 C9 ]-All-trans-retinal (1b), [12,15-13 C2 ]-all-trans-retinal (1c), and [14,15-13 C2 ]-all-trans-retinal (1d) were synthesized in in 12, 8, and 7 linear steps from ethyl 2-oxocyclohexanecarboxylate (5) or β-ionone (4), respectively.
Collapse
Affiliation(s)
| | - Lynda J Brown
- Department of Chemistry, University of Southampton, Southampton, UK
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Mehler
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
45
|
Schubeis T, Le Marchand T, Andreas LB, Pintacuda G. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:140-152. [PMID: 29413327 DOI: 10.1016/j.jmr.2017.11.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.
Collapse
Affiliation(s)
- Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tanguy Le Marchand
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
46
|
The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors. Nat Chem Biol 2018; 14:284-290. [PMID: 29334381 DOI: 10.1038/nchembio.2551] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the most important signal transducers in higher eukaryotes. Despite considerable progress, the molecular basis of subtype-specific ligand selectivity, especially for peptide receptors, remains unknown. Here, by integrating DNP-enhanced solid-state NMR spectroscopy with advanced molecular modeling and docking, the mechanism of the subtype selectivity of human bradykinin receptors for their peptide agonists has been resolved. The conserved middle segments of the bound peptides show distinct conformations that result in different presentations of their N and C termini toward their receptors. Analysis of the peptide-receptor interfaces reveals that the charged N-terminal residues of the peptides are mainly selected through electrostatic interactions, whereas the C-terminal segments are recognized via both conformations and interactions. The detailed molecular picture obtained by this approach opens a new gateway for exploring the complex conformational and chemical space of peptides and peptide analogs for designing GPCR subtype-selective biochemical tools and drugs.
Collapse
|
47
|
Guo Y, Wolff FE, Schapiro I, Elstner M, Marazzi M. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Phys Chem Chem Phys 2018; 20:27501-27509. [DOI: 10.1039/c8cp05210g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Franziska E. Wolff
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research
- Institute of Chemistry
- Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Marcus Elstner
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| |
Collapse
|
48
|
Mehler M, Eckert CE, Leeder AJ, Kaur J, Fischer T, Kubatova N, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C. Chromophore Distortions in Photointermediates of Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. J Am Chem Soc 2017; 139:16143-16153. [PMID: 29027800 DOI: 10.1021/jacs.7b05061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteorhodopsin (PR) is the most abundant retinal protein on earth and functions as a light-driven proton pump. Despite extensive efforts, structural data for PR photointermediate states have not been obtained. On the basis of dynamic nuclear polarization (DNP)-enhanced solid-state NMR, we were able to analyze the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the ground state in comparison to light-induced, cryotrapped K- and M-states. A high M-state population could be achieved by preventing reprotonation of the Schiff base through a mutation of the primary proton donor (E108Q). Our data reveal unexpected large and alternating 13C chemical shift changes in the K-state propagating away from the Schiff base along the polyene chain. Furthermore, two different M-states have been observed reflecting the Schiff base reorientation after the deprotonation step. Our study provides novel insight into the photocycle of PR and also demonstrates the power of DNP-enhanced solid-state NMR to bridge the gap between functional and structural data and models.
Collapse
Affiliation(s)
- Michaela Mehler
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Carl Elias Eckert
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Alexander J Leeder
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Tobias Fischer
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Nina Kubatova
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Lynda J Brown
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Richard C D Brown
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| |
Collapse
|
49
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
50
|
The effect of drug binding on specific sites in transmembrane helices 4 and 6 of the ABC exporter MsbA studied by DNP-enhanced solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:833-840. [PMID: 29069570 DOI: 10.1016/j.bbamem.2017.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 02/05/2023]
Abstract
MsbA, a homodimeric ABC exporter, translocates its native substrate lipid A as well as a range of smaller, amphiphilic substrates across the membrane. Magic angle sample spinning (MAS) NMR, in combination with dynamic nuclear polarization (DNP) for signal enhancement, has been used to probe two specific sites in transmembrane helices 4 and 6 of full length MsbA embedded in lipid bilayers. Significant chemical shift changes in both sites were observed in the vanadate-trapped state compared to apo state MsbA. The reduced spectral line width indicates a more confined conformational space upon trapping. In the presence of substrates Hoechst 33342 and daunorubicin, further chemical shift changes and line shape alterations mainly in TM6 in the vanadate trapped state were detected. These data illustrate the conformational response of MsbA towards the presence of drugs during the catalytic cycle. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
|