1
|
Sadafi M, da Mota AF, Mosallaei H. Electrostatic Orientation of Optically Asymmetric Janus Particles. ACS OMEGA 2024; 9:49172-49187. [PMID: 39713669 PMCID: PMC11656250 DOI: 10.1021/acsomega.4c05669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
Janus micro- and nanoparticles, featuring unique dual-interface designs, are at the forefront of rapidly advancing fields such as optics, medicine, and chemistry. Accessible control over the position and orientation of Janus particles within a cluster is crucial for unlocking versatile applications, including targeted drug delivery, self-assembly, micro- and nanomotors, and asymmetric imaging. Nevertheless, precise mechanical manipulation of Janus particles remains a significant practical challenge across these fields. The current predominant methods, based on fluid flow, thermal gradients, or chemical reactions, have their precision and applicability limited by the properties of their background fluids. Therefore, this study proposes electrostatics to deliberately control the local orientation of optically asymmetric Janus particles (spherical and matchstick-like hybrid metal-dielectric objects) within a cluster to overcome the aforementioned restraints. We introduce a sophisticated multiphysics platform and employ it to explore and unveil the infrastructural physics behind the mechanical behavior of the particles when subjected to electrostatic stimuli in an ionic environment. We investigate how different deterministic and stochastic variables affect the particles' short- and long-term responses. By judicious engineering of amplitude, direction, and polarization of the external excitation, we demonstrate that the particles tend to undergo the desired rotational motion and converge to favorable orientations. The functionality of our approach is showcased in the context of an asymmetric imaging system based on optically asymmetric Janus particles. Our findings suggest a viable platform for adequate mechanical manipulation of Janus particles and pave the way for enabling numerous state-of-the-art applications in various fields.
Collapse
Affiliation(s)
- Mohammad
Mojtaba Sadafi
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Achiles Fontana da Mota
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Electrical Engineering, University of
Brasilia, Brasilia, Federal
District 70910-900, Brazil
| | - Hossein Mosallaei
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Groves TS, Perkin S. Wave mechanics in an ionic liquid mixture. Faraday Discuss 2024; 253:193-211. [PMID: 39045840 PMCID: PMC11505645 DOI: 10.1039/d4fd00040d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 07/25/2024]
Abstract
Experimental measurements of interactions in ionic liquids and concentrated electrolytes over the past decade or so have revealed simultaneous monotonic and oscillatory decay modes. These observations have been hard to interpret using classical theories, which typically allow for just one electrostatic decay mode in electrolytes. Meanwhile, substantial progress in the theoretical description of dielectric response and ion correlations in electrolytes has illuminated the deep connection between density and charge correlations and the multiplicity of decay modes characterising a liquid electrolyte. The challenge in front of us is to build connections between the theoretical expressions for a pair of correlation functions and the directly measured free energy of interaction between macroscopic surfaces in experiments. Towards this aim, we here present measurements and analysis of the interactions between macroscopic bodies across a fluid mixture of two ionic liquids of widely diverging ionic size. The measured oscillatory interaction forces in the liquid mixtures are significantly more complex than for either of the pure ionic liquids, but can be fitted to a superposition of two oscillatory and one monotonic mode with parameters matching those of the pure liquids. We discuss this empirical finding, which hints at a kind of wave mechanics for interactions in liquid matter.
Collapse
Affiliation(s)
- Timothy S Groves
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Markiewitz DM, Goodwin ZAH, McEldrew M, Pedro de Souza J, Zhang X, Espinosa-Marzal RM, Bazant MZ. Electric field induced associations in the double layer of salt-in-ionic-liquid electrolytes. Faraday Discuss 2024; 253:365-384. [PMID: 39176453 DOI: 10.1039/d4fd00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Ionic liquids (ILs) are an extremely exciting class of electrolytes for energy storage applications. Upon dissolving alkali metal salts, such as Li or Na based salts, with the same anion as the IL, an intrinsically asymmetric electrolyte can be created for use in batteries, known as a salt-in-ionic liquid (SiIL). These SiILs have been well studied in the bulk, where negative transference numbers of the alkali metal cation have been observed from the formation of small, negatively charged clusters. The properties of these SiILs at electrified interfaces, however, have received little to no attention. Here, we develop a theory for the electrical double layer (EDL) of SiILs where we consistently account for the thermoreversible association of ions into Cayley tree aggregates. The theory predicts that the IL cations first populate the EDL at negative voltages, as they are not strongly bound to the anions. However, at large negative voltages, which are strong enough to break the alkali metal cation-anion associations, these IL cations are exchanged for the alkali metal cation because of their higher charge density. At positive voltages, we find that the SiIL actually becomes more aggregated while screening the electrode charge from the formation of large, negatively charged aggregates. Therefore, in contrast to conventional intuition of associations in the EDL, SiILs appear to become more associated in certain electric fields. We present these theoretical predictions to be verified by molecular dynamics simulations and experimental measurements.
Collapse
Affiliation(s)
- Daniel M Markiewitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Zachary A H Goodwin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Xuhui Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Choudhury A, Dayal P. Ordered patterns in electroactive polymer ionic liquid blends: effect of long range interactions. SOFT MATTER 2024; 20:6754-6766. [PMID: 39133111 DOI: 10.1039/d4sm00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Designing multifunctional soft materials via pattern formation has been a major challenge for scientists and engineers. Soft materials based on polymers are the perfect candidates for designing such materials as they are not only easy to handle, but also offer diverse combinations of mechanical and chemical properties. Here, we present a polymer-based ternary system and reveal, using modelling and simulations, the mechanisms for creating patterned surfaces. Specifically, we consider polymer ionic liquid (PIL) blends and demonstrate that exposure to a uniform electric field results in the formation of ordered patterns through phase separation. Our approach is based on reaction-diffusion phenomena and utilizes Poisson-Boltzmann-Nernst-Planck equations to capture the long-range interactions of ionic liquids in both weak and strong segregation limits. Furthermore, we elucidate that the ordered patterns in our PIL blend can be tuned by changing the direction of the electric field. From the structural characterization point of view, we reveal that the presence of the electric field significantly enhances the domain growth rate and their respective ordering in a remarkable fashion. We believe this non-invasive technique is a significant step towards the development of ordered structures at microscopic length scales and can be utilized for micro-scale fabrication from soft materials.
Collapse
Affiliation(s)
- Ashima Choudhury
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Pratyush Dayal
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
5
|
Ribar D, Woodward CE, Nordholm S, Forsman J. Cluster Formation Induced by Local Dielectric Saturation in Restricted Primitive Model Electrolytes. J Phys Chem Lett 2024; 15:8326-8333. [PMID: 39109581 PMCID: PMC11331514 DOI: 10.1021/acs.jpclett.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Experiments using the Surface Force Apparatus (SFA) have found anomalously long-ranged charge-charge underscreening in concentrated salt solutions. Meanwhile, theory and simulations have suggested ion clustering to be a possible origin of this behavior. The popular Restricted Primitive Model of electrolyte solutions, in which the solvent is represented by a uniform relative dielectric constant, εr, is unable to resolve the anomalous underscreening seen in experiments. In this work, we modify the Restricted Primitive Model to account for local dielectric saturation within the ion hydration shell. The dielectric "constant" in our model locally decreases from the bulk value to a lower saturated value at the ionic surface. The parameters for the model are deduced so that typical salt solubilities are obtained. Our simulations for both bulk and slit geometries show that our model displays strong cluster formation and these give rise to long-ranged density correlations between charged surfaces, at distances similar to what has been observed in SFA measurements. An electrolyte model wherein the dielectric constant remains uniform does not display similar clusters, even with εr equal to the low saturated value at ion contact. Hence, the observed behaviors are not simply due to an enhanced Coulomb interaction. In the latter case, cluster growth is counteracted by long-ranged repulsions between like-charged ions within clusters; this is an effect that is considerably reduced when the dielectric response drop is local. Our results imply that long-ranged interactions in these systems are mainly due to cluster-cluster correlations, rather than large electrostatic screening lengths.
Collapse
Affiliation(s)
- David Ribar
- Computational
Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Clifford E. Woodward
- School
of Physical, Environmental and Mathematical Sciences, University College, University of New South Wales, ADFA Canberra ACT 2600, Australia
| | - Sture Nordholm
- Department
of Chemistry and Molecular Biology, The
University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Jan Forsman
- Computational
Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
6
|
Forsman J, Ribar D, Woodward CE. An efficient method to establish electrostatic screening lengths of restricted primitive model electrolytes. Phys Chem Chem Phys 2024; 26:19921-19933. [PMID: 38990567 DOI: 10.1039/d4cp00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We present a novel, and computationally cheap, way to estimate electrostatic screening lengths from simulations of restricted primitive model (RPM) electrolytes. We demonstrate that the method is accurate by comparisons with simulated long-ranged parts of the charge density, at various Bjerrum lengths, salt concentrations and ion diameters. We find substantial underscreening in low dielectric solvent, but with an "aqueous" solvent, there is instead overscreening, the degree of which increases with ion size. Our method also offers a possible path to (future) more accurate classical density functional treatments of ionic fluids.
Collapse
Affiliation(s)
- Jan Forsman
- Computational Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden.
| | - David Ribar
- Computational Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden.
| | - Clifford E Woodward
- School of Physical, Environmental and Mathematical Sciences University College, University of New South Wales, ADFA Canberra ACT 2600, Australia
| |
Collapse
|
7
|
Wang S, Tao H, Yang J, Cheng J, Liu H, Lian C. Structure and Screening in Confined Electrolytes: The Role of Ion Association. J Phys Chem Lett 2024; 15:7147-7153. [PMID: 38959446 DOI: 10.1021/acs.jpclett.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The effect of ionic association on the structure and property of confined electrolytes is investigated using the classical density functional theory. We find that ionic association strongly affects the ion distribution, surface force, and screening behavior of confined electrolytes. The decay length ξ, which can describe the screening effect of high-concentration electrolytes, satisfies a scaling relationship ξ/λD ∼ (σ/λD)n, with λD being the Debye length and σ representing the ion diameter. We find that n = 1.5 in the nonassociation model, which is contributed by the charge correlation, but n = 3 in the association model, which is contributed by the density correlation. The ion association changes the concentration-dependent characteristics of the screening length by promoting the shift of the decay behavior from the charge-dominated regime to the density-dominated regime. Our result reveals the importance of ion association for electrolyte structure and screening behaviors.
Collapse
Affiliation(s)
- Sijie Wang
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haolan Tao
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Cheng
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Simonis ED, Blanchard GJ. Evaluating the contributions to conductivity in room temperature ionic liquids. Phys Chem Chem Phys 2024; 26:17048-17056. [PMID: 38836605 DOI: 10.1039/d4cp01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The conductivity of room temperature ionic liquids is not described adequately by the Nernst-Einstein equation, which accounts only for Brownian motion of the ions. We report on the conductivity of the ionic liquid 1-butyl-3-methylimidazolum bis(trifluoromethylsulfonyl) imide (BMIM TFSI), comparing the known conductivity of this RTIL to the diffusion constants of the cationic and anionic species over a range of length scales, using time-resolved fluorescence depolarization and fluorescence recovery after photobleaching (FRAP) measurements of chromophores in the RTIL. Our data demonstrate that the diffusional contribution to molar conductivity is ca. 50%. Another mechanism for the transmission of charged species in RTILs is responsible for the "excess" molar conductivity, and we consider possible contributions.
Collapse
Affiliation(s)
- Emily D Simonis
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI 48824, USA.
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Pontoni D, DiMichiel M, Murphy BM, Honkimäki V, Deutsch M. Ordering of ionic liquids at a charged sapphire interface: Evolution with cationic chain length. J Colloid Interface Sci 2024; 661:33-45. [PMID: 38295701 DOI: 10.1016/j.jcis.2024.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
HYPOTHESIS Room Temperature Ionic Liquids (RTILs) bulk's molecular layering dominates their structure also at the RTIL/sapphire interface, increasing the layer spacing with the cationic alkyl chain length n. However, the negatively-charged sapphire surface compresses the layers, increases the layering range, and affects the intra-layer structure in yet unknown ways. EXPERIMENTS X-ray reflectivity (XR) off the RTIL/sapphire interface, for a broad homologous RTIL series 1-alkyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide, hitherto unavailable for any RTIL. FINDINGS RTIL layers against the sapphire, exhibit two spacings: da and db. da is n-varying, follows the behavior of the bulk spacing but exhibits a downshift, thus showing significant layer compression, and over twofold polar slab thinning. The latter suggests exclusion of anions from the interfacial region due to the negative sapphire charging by x-ray-released electrons. The layering range is larger than the bulk's. db is short and near n-independent, suggesting polar moieties' layering, the coexistence mode of which with the da-spaced layering is unclear. Comparing the present layering with the bulk's and the RTIL/air interface's provides insight into the Coulomb and dispersion interaction balance dominating the RTIL's structure and the impact thereon of the presence of a charged solid interface.
Collapse
Affiliation(s)
- Diego Pontoni
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marco DiMichiel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Kiel D-24098, Germany; Ruprecht-Haensel Laboratory, Kiel University, Kiel D-24118, Germany
| | - Veijo Honkimäki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Moshe Deutsch
- Physics Dept. & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
10
|
Yang J, Papaderakis AA, Roh JS, Keerthi A, Adams RW, Bissett MA, Radha B, Dryfe RAW. Measuring the Capacitance of Carbon in Ionic Liquids: From Graphite to Graphene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:3674-3684. [PMID: 38476828 PMCID: PMC10926162 DOI: 10.1021/acs.jpcc.3c08269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
The physical electrochemistry of the carbon/ionic liquids interface underpins the processes occurring in a vast range of applications spanning electrochemical energy storage, iontronic devices, and lubrication. Elucidating the charge storage mechanisms at the carbon/electrolyte interface will lead to a better understanding of the operational principles of such systems. Herein, we probe the charge stored at the electrochemical double layer formed between model carbon systems, ranging from single-layer graphene to graphite and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). The effect of the number of graphene layers on the overall capacitance of the interface is investigated. We demonstrate that in pure EMIM-TFSI and at moderate potential biases, the electronic properties of graphene and graphite govern the overall capacitance of the interface, while the electrolyte contribution to the latter is less significant. In mixtures of EMIM-TFSI with solvents of varying relative permittivity, the complex interplay between electrolyte ions and solvent molecules is shown to influence the charge stored at the interface, which under certain conditions overcomes the effects of relative permittivity. This work provides additional experimental insights into the continuously advancing topic of electrochemical double-layer structure at the interface between room temperature ionic liquids and carbon materials.
Collapse
Affiliation(s)
- Jing Yang
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Athanasios A. Papaderakis
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Ji Soo Roh
- Department
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Ashok Keerthi
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Ralph W. Adams
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Mark A. Bissett
- Department
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- National
Graphene Institute, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Boya Radha
- Department
of Physics and Astronomy, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Robert A. W. Dryfe
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| |
Collapse
|
11
|
Gurina DL, Odintsova EG, Budkov YA. Disjoining Pressure Decay Length in Room-Temperature Ionic Liquids: A Molecular Simulation Study. J Phys Chem B 2024; 128:2215-2218. [PMID: 38387067 DOI: 10.1021/acs.jpcb.3c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We present all-atom molecular simulations to investigate the behavior of 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in negatively charged carbon nanopores of different widths (h = 5÷15 nm) and lengths (l = 4÷10 nm). The goal of our study was to determine how the disjoining pressure varies as a function of the pore width at different lengths and to understand the influence of edge effects. Our results show that the edge effect decreases as the pore length increases. Using an exponential function, we can approximate the disjoining pressure at large pore widths and use this approximation to estimate the decay length that can correlate with the electrostatic screening length. The results agreed well with those of previous experimental studies.
Collapse
Affiliation(s)
- Darya L Gurina
- Laboratory of Multiscale Modeling of Molecular Systems, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation
- Laboratory of Computational Physics, HSE University, Tallinskaya St. 34, 123458 Moscow, Russian Federation
| | - Ekaterina G Odintsova
- Laboratory of Multiscale Modeling of Molecular Systems, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation
| | - Yury A Budkov
- Laboratory of Multiscale Modeling of Molecular Systems, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St. 1, 153045 Ivanovo, Russian Federation
- Laboratory of Computational Physics, HSE University, Tallinskaya St. 34, 123458 Moscow, Russian Federation
| |
Collapse
|
12
|
Sarma R, Hardt S. Giant Thermoelectric Response of Confined Electrolytes with Thermally Activated Charge Carrier Generation. PHYSICAL REVIEW LETTERS 2024; 132:098001. [PMID: 38489648 DOI: 10.1103/physrevlett.132.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
The thermoelectric response of thermally activated electrolytes (TAEs) in a slit channel is studied theoretically and by numerical simulations. The term TAE refers to electrolytes whose charge carrier concentration is a function of temperature, as recently suggested for ionic liquids and highly concentrated aqueous electrolyte solutions. Two competing mechanisms driving charge transport by temperature gradients are identified. For suitable values of the activation energy that governs the generation of charge carriers, a giant thermoelectric response is found, which could help explain recent experimental results for nanoporous media infiltrated with TAEs.
Collapse
Affiliation(s)
- Rajkumar Sarma
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano- und Mikrofluidik, Peter-Grünberg-Straße 10, 64287 Darmstadt, Germany
| | - Steffen Hardt
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano- und Mikrofluidik, Peter-Grünberg-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
13
|
Coskun OK, Muñoz M, Dongare S, Dean W, Gurkan BE. Understanding the Electrode-Electrolyte Interfaces of Ionic Liquids and Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3283-3300. [PMID: 38341773 DOI: 10.1021/acs.langmuir.3c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Developing unconventional electrolytes such as ionic liquids (ILs) and deep eutectic solvents (DESs) has led to remarkable advances in electrochemical energy storage and conversion devices. However, the understanding of the electrode-electrolyte interfaces of these electrolytes, specifically the liquid structure and the charge/electron transfer mechanism and rates, is lacking due to the complexity of molecular interactions, the difficulty in studying the buried interfaces with nanometer-scale resolution, and the distribution of the time scales for the various interfacial events. This Feature Article outlines the standing questions in the field, summarizes some of the exciting approaches and results, and discusses our contributions to probing the electrified interfaces by electrochemical impedance spectroscopy (EIS), surface-enhanced Raman spectroscopy (SERS), and neutron reflectivity (NR). The related findings are analyzed within electrical double-layer models to provide a framework for studying ILs, DESs, and, more broadly, the concentrated hydrogen-bonded electrolytes.
Collapse
Affiliation(s)
- Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - William Dean
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Burcu E Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
14
|
Hossain MI, Wang H, Adhikari L, Baker GA, Mezzetta A, Guazzelli L, Mussini P, Xie W, Blanchard GJ. Structure-Dependence and Mechanistic Insights into the Piezoelectric Effect in Ionic Liquids. J Phys Chem B 2024; 128:1495-1505. [PMID: 38301038 PMCID: PMC10961722 DOI: 10.1021/acs.jpcb.3c07967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
We reported recently that two imidazolium room-temperature ionic liquids (RTILs) exhibit the direct piezoelectric effect (J. Phys. Chem. Lett., 2023, 14, 2731-2735). We have subsequently investigated several other RTILs with pyrrolidinium and imidazolium cations and tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions in an effort to gain insight into the generality and mechanism of the effect. All the RTILs studied exhibit the direct piezoelectric effect, with a magnitude (d33) and threshold force that depend on the structures of both the cation and anion. The structure-dependence and existence of a threshold force for the piezoelectric effect are consistent with a pressure-induced liquid-to-crystalline solid phase transition in the RTILs, and this is consistent with experimental X-ray diffraction data.
Collapse
Affiliation(s)
- Md. Iqbal Hossain
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Haozhe Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrea Mezzetta
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department
of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Patrizia Mussini
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Weiwei Xie
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - G. J. Blanchard
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Onuki A. Ions and dipoles in electric field: nonlinear polarization and field-dependent chemical reaction. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:3. [PMID: 38206545 DOI: 10.1140/epje/s10189-023-00398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
We investigate electric-field effects in dilute electrolytes with nonlinear polarization. As a first example of such systems, we add a dipolar component with a relatively large dipole moment [Formula: see text] to an aqueous electrolyte. As a second example, the solvent itself exhibits nonlinear polarization near charged objects. For such systems, we present a Ginzburg-Landau free energy and introduce field-dependent chemical potentials, entropy density, and stress tensor, which satisfy general thermodynamic relations. In the first example, the dipoles accumulate in high-field regions, as predicted by Abrashikin et al.[Phys.Rev.Lett. 99, 077801 (2007)]. Finally, we consider the case, where Bjerrum ion pairs form a dipolar component with nonlinear polarization. The Bjerrum dipoles accumulate in high-field regions, while field-induced dissociation was predicted by Onsager [J. Chem. Phys.2, 599 (1934)]. We present an expression for the field-dependent association constant K(E), which depends on the field strength nonmonotonically.
Collapse
Affiliation(s)
- Akira Onuki
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
16
|
Huang Y, Fan H, Yip NY. Mobility of Condensed Counterions in Ion-Exchange Membranes: Application of Screening Length Scaling Relationship in Highly Charged Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:836-846. [PMID: 38147509 DOI: 10.1021/acs.est.3c06068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Ion-exchange membranes (IEMs) are widely used in water, energy, and environmental applications, but transport models to accurately simulate ion permeation are currently lacking. This study presents a theoretical framework to predict ionic conductivity of IEMs by introducing an analytical model for condensed counterion mobility to the Donnan-Manning model. Modeling of condensed counterion mobility is enabled by the novel utilization of a scaling relationship to describe screening lengths in the densely charged IEM matrices, which overcame the obstacle of traditional electrolyte chemistry theories breaking down at very high ionic strength environments. Ionic conductivities of commercial IEMs were experimentally characterized in different electrolyte solutions containing a range of mono-, di-, and trivalent counterions. Because the current Donnan-Manning model neglects the mobility of condensed counterions, it is inadequate for modeling ion transport and significantly underestimated membrane conductivities (by up to ≈5× difference between observed and modeled values). Using the new model to account for condensed counterion mobilities substantially improved the accuracy of predicting IEM conductivities in monovalent counterions (to as small as within 7% of experimental values), without any adjustable parameters. Further adjusting the power law exponent of the screen length scaling relationship yielded reasonable precision for membrane conductivities in multivalent counterions. Analysis reveals that counterions are significantly more mobile in the condensed phase than in the uncondensed phase because electrostatic interactions accelerate condensed counterions but retard uncondensed counterions. Condensed counterions still have lower mobilities than ions in bulk solutions due to impedance from spatial effects. The transport framework presented here can model ion migration a priori with adequate accuracy. The findings provide insights into the underlying phenomena governing ion transport in IEMs to facilitate the rational development of more selective membranes.
Collapse
Affiliation(s)
- Yuxuan Huang
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Hanqing Fan
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Ngai Yin Yip
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
- Columbia Water Center, Columbia University, New York, New York 10027-6623, United States
| |
Collapse
|
17
|
Neumann J, Lee SS, Zhao EJ, Fenter P. Direct Experimental Observations of Ion Distributions during Overcharging at the Muscovite-Water Interface by Adsorption of Rb + and Halides (Cl - , Br - , I - ) at High Salinity. Chemphyschem 2023; 24:e202300545. [PMID: 37632699 DOI: 10.1002/cphc.202300545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Classical electric double layer (EDL) models have been widely used to describe ion distributions at charged solid-water interfaces in dilute electrolytes. However, the chemistry of EDLs remains poorly constrained at high ionic strength where ion-ion correlations control non-classical behavior such as overcharging, i. e., the accumulation of counter-ions in amounts exceeding the substrate's surface charge. Here, we provide direct experimental observations of correlated cation and anion distributions adsorbed at the muscovite (001)-aqueous electrolyte interface as a function of dissolved RbBr concentration ([RbBr]=0.01-5.8 M) using resonant anomalous X-ray reflectivity. Our results show alternating cation-anion layers in the EDL when [RbBr]≳100 mM, whose spatial extension (i. e., ~20 Å from the surface) far exceeds the dimension of the classical Stern layer. Comparison to RbCl and RbI electrolytes indicates that these behaviors are sensitive to the choice of co-ion. This new in-depth molecular-scale understanding of the EDL structure during transition from classical to non-classical regimes supports the development of realistic EDL models for technologies operating at high salinity such as water purification applications or modern electrochemical storage.
Collapse
Affiliation(s)
- Julia Neumann
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
| | - Sang Soo Lee
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
| | - Eric J Zhao
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Avenue, Chicago, IL, 60637, USA
| | - Paul Fenter
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
| |
Collapse
|
18
|
Cats P, Härtel A. In-plane structure of the electric double layer in the primitive model using classical density functional theory. J Chem Phys 2023; 159:184707. [PMID: 37955323 DOI: 10.1063/5.0176309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
The electric double layer (EDL) has a pivotal role in screening charges on surfaces as in supercapacitor electrodes or colloidal and polymer solutions. Its structure is determined by correlations between the finite-sized ionic charge carriers of the underlying electrolyte, and, this way, these correlations affect the properties of the EDL and of applications utilizing EDLs. We study the structure of EDLs within classical density functional theory (DFT) in order to uncover whether a structural transition in the first layer of the EDL that is driven by changes in the surface potential depends on specific particle interactions or has a general footing. This transition has been found in full-atom simulations. Thus far, investigating the in-plane structure of the EDL for the primitive model (PM) using DFT has proved a challenge. We show here that the use of an appropriate functional predicts the in-plane structure of EDLs in excellent agreement with molecular dynamics simulations. This provides the playground to investigate how the structure factor within a layer parallel to a charged surface changes as a function of both the applied surface potential and its separation from the surface. We discuss pitfalls in properly defining an in-plane structure factor and fully map out the structure of the EDL within the PM for a wide range of electrostatic electrode potentials. However, we do not find any signature of a structural crossover and conclude that the previously reported effect is not fundamental but rather occurs due to the specific force field of ions used in the simulations.
Collapse
Affiliation(s)
- Peter Cats
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Safran SA, Pincus PA. Scaling perspectives of underscreening in concentrated electrolyte solutions. SOFT MATTER 2023; 19:7907-7911. [PMID: 37823228 DOI: 10.1039/d3sm01094e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We present a scaling view of underscreening observed in salt solutions in the range of concentrations greater than about 1 M, in which the screening length increases with concentration. The system consists of hydrated clusters of positive and negative ions with a single unpaired ion as suggested by recent simulations. The environment of this ion is more hydrated than average which leads to a self-similar situation in which the size of this environment scales with the screening length. The prefactor involves the local dielectric constant and the cluster density. The scaling arguments as well as the cluster model lead to scaling of the screening length with the ion concentration, in agreement with observations.
Collapse
Affiliation(s)
- Samuel A Safran
- Dept. Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Philip A Pincus
- Physics and Materials Departments, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
20
|
Jäger H, Schlaich A, Yang J, Lian C, Kondrat S, Holm C. A screening of results on the decay length in concentrated electrolytes. Faraday Discuss 2023; 246:520-539. [PMID: 37602784 DOI: 10.1039/d3fd00043e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Screening of electrostatic interactions in room-temperature ionic liquids and concentrated electrolytes has recently attracted much attention as surface force balance experiments have suggested the emergence of unanticipated anomalously large screening lengths at high ion concentrations. Termed underscreening, this effect was ascribed to the bulk properties of concentrated ionic systems. However, underscreening under experimentally relevant conditions is not predicted by classical theories and challenges our understanding of electrostatic correlations. Despite the enormous effort in performing large-scale simulations and new theoretical investigations, the origin of the anomalously long-range screening length remains elusive. This contribution briefly summarises the experimental, analytical and simulation results on ionic screening and the scaling behaviour of screening lengths. We then present an atomistic simulation approach that accounts for the solvent and ion exchange with a reservoir. We find that classical density functional theory (DFT) for concentrated electrolytes under confinement reproduces ion adsorption at charged interfaces surprisingly well. With DFT, we study confined electrolytes using implicit and explicit solvent models and the dependence on the solvent's dielectric properties. Our results demonstrate how the absence vs. presence of solvent particles and their discrete nature affect the short and long-range screening in concentrated ionic systems.
Collapse
Affiliation(s)
- Henrik Jäger
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Schlaich
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
| | - Jie Yang
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Svyatoslav Kondrat
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
21
|
Hoang Ngoc Minh T, Kim J, Pireddu G, Chubak I, Nair S, Rotenberg B. Electrical noise in electrolytes: a theoretical perspective. Faraday Discuss 2023; 246:198-224. [PMID: 37409620 DOI: 10.1039/d3fd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and surface force balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the relevant length and time scales of these dynamics are encoded in the dynamic structure factors. However, modelling the latter for frequencies and wavevectors spanning many orders of magnitude remains a great challenge to interpret the experiments in terms of physical processes such as solvation dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety of complementary experiments. We further analyze this quantity in the special case of an aqueous NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how the predictions can be improved. We finally discuss the contributions of ions and water to the total charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to decipher the microscopic properties encoded in the measured electrical noise.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Jeongmin Kim
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Iurii Chubak
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Swetha Nair
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
22
|
Fung YKC, Perkin S. Structure and anomalous underscreening in ethylammonium nitrate solutions confined between two mica surfaces. Faraday Discuss 2023; 246:370-386. [PMID: 37458200 PMCID: PMC10568257 DOI: 10.1039/d3fd00042g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 10/13/2023]
Abstract
The observation of long-range interactions across ionic liquids and highly concentrated electrolytes, extending far beyond the Debye-Hückel prediction and beyond the range predicted in liquid state theory, has been called 'anomalous underscreening'. A number of theoretical and experimental works have explored this phenomenon over recent years, although its origin is not yet fully understood. Most of the experimental studies of anomalous underscreening until now involved aprotic ionic liquids, and so it is of interest to explore interactions in protic ionic liquids where the distribution of charge in the fluid is different in nature. Here we present direct measurements of the interaction force as a function of separation distance, measured using a surface force balance, across solutions of a protic ionic liquid ethylammonium nitrate (EAN) and its mixtures with water over a range of volume fractions from 10 vol% to 100 vol% EAN. The results reveal intricate details about near-surface ordering and dynamics at the EAN-mica interface as well as anomalous underscreening consistent with that observed in the past with aprotic ionic liquids.
Collapse
Affiliation(s)
- Y K Catherine Fung
- Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| | - Susan Perkin
- Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Yang J, Kondrat S, Lian C, Liu H, Schlaich A, Holm C. Solvent Effects on Structure and Screening in Confined Electrolytes. PHYSICAL REVIEW LETTERS 2023; 131:118201. [PMID: 37774307 DOI: 10.1103/physrevlett.131.118201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/04/2023] [Accepted: 08/15/2023] [Indexed: 10/01/2023]
Abstract
Using classical density functional theory, we investigate the influence of solvent on the structure and ionic screening of electrolytes under slit confinement and in contact with a reservoir. We consider a symmetric electrolyte with implicit and explicit solvent models and find that spatially resolving solvent molecules is essential for the ion structure at confining walls, excess ion adsorption, and the pressure exerted on the walls. Despite this, we observe only moderate differences in the period of oscillations of the pressure with the slit width and virtually coinciding decay lengths as functions of the scaling variable σ_{ion}/λ_{D}, where σ_{ion} is the ion diameter and λ_{D} the Debye length. Moreover, in the electrostatic-dominated regime, this scaling behavior is practically independent of the relative permittivity and its dependence on the ion concentration. In contrast, the crossover to the hard-core-dominated regime depends sensitively on all three factors.
Collapse
Affiliation(s)
- Jie Yang
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Svyatoslav Kondrat
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Cheng Lian
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Alexander Schlaich
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
24
|
Zhang W, Liu X, Jiao K, Wang Q, Yang C, Zhao C. Ion Steric Effect Induces Giant Enhancement of Thermoelectric Conversion in Electrolyte-Filled Nanochannels. NANO LETTERS 2023; 23:8264-8271. [PMID: 37590911 DOI: 10.1021/acs.nanolett.3c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Ionic thermoelectricity in nanochannels has received increasing attention because of its advantages, such as high Seebeck coefficient and low cost. However, most studies have focused on dilute simple electrolytes that neglect the effects of finite ion sizes and short-range electrostatic correlation. Here, we reveal a new thermoelectric mechanism arising from the coupling of the ion steric effect due to finite ion sizes and ion thermodiffusion in electric double layers, using both theoretical and numerical methods. We show that this mechanism can significantly enhance the thermoelectric response in nanoconfined electrolytes depending on the properties of electrolytes and nanochannels. Compared to the previously known mechanisms, the new mechanism can increase the Seebeck coefficient by 100% or even 1 order of magnitude enhancement under optimal conditions. Moreover, we demonstrate that the short-range electrostatic correlation can help preserve the Seebeck coefficient enhancement in a weaker confinement or in more concentrated electrolytes.
Collapse
Affiliation(s)
- Wenyao Zhang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinxi Liu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Jiao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuwang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cunlu Zhao
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
25
|
Ma L, Zhong Z, Hu J, Qing L, Jiang J. Long-Lived Weak Ion Pairs in Ionic Liquids: An Insight from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2023. [PMID: 37262343 DOI: 10.1021/acs.jpcb.3c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microstructure and local dynamics of ions in room-temperature ionic liquids (RTILs) have drawn a lot of attention due to their extensive potential applications in numerous fields. It is well-known that the widely used definitions of ion pairs (IPs) cannot reflect the full picture of RTILs. In this study, we find a universal residence time (τMR), which is regardless of the number of counterions in the first solvation shell in RTILs. Inspired by this, we propose a weak IP (WIP) model from a spatiotemporal perspective and demonstrate that the WIPs are long-lived and that their lifetimes obey a log-normal distribution, which is different from the literature. In addition, the electrostatic interactions are the main factors in the formation of WIPs, and the reorientations of ions are vital to the ruptures of WIPs. This research provides a new perspective for understanding the microstructural and dynamical properties of RTILs.
Collapse
Affiliation(s)
- Linbo Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixuan Zhong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junbao Hu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Leying Qing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Miller SL, Gaidamauskas E, Altaf AA, Crans DC, Levinger NE. Where Are Sodium Ions in AOT Reverse Micelles? Fluoride Anion Probes Nanoconfined Ions by 19F Nuclear Magnetic Resonance Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37219990 DOI: 10.1021/acs.langmuir.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Confining water to nanosized spaces creates a unique environment that can change water's structural and dynamic properties. When ions are present in these nanoscopic spaces, the limited number of water molecules and short screening length can dramatically affect how ions are distributed compared to the homogeneous distribution assumed in bulk aqueous solution. Here, we demonstrate that the chemical shift observed in 19F NMR spectroscopy of fluoride anion, F-, probes the location of sodium ions, Na+, confined in reverse micelles prepared from AOT (sodium dioctyl sulfosuccinate) surfactants. Our measurements show that the nanoconfined environment of reverse micelles can lead to extremely high apparent ion concentrations and ionic strength, beyond the limit in bulk aqueous solutions. Most notably, the 19F NMR chemical shift trends we observe for F- in the reverse micelles indicate that the AOT sodium counterions remain at or near the interior interface between surfactant and water, thus providing the first experimental support for this hypothesis.
Collapse
Affiliation(s)
- Samantha L Miller
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ernestas Gaidamauskas
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ataf Ali Altaf
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nancy E Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
27
|
Degoulange D, Pandya R, Deschamps M, Skiba D, Gallant B, Gigan S, de Aguiar H, Grimaud A. Direct imaging of micrometer-thick interfaces in salt-salt aqueous biphasic systems. Proc Natl Acad Sci U S A 2023; 120:e2220662120. [PMID: 37068232 PMCID: PMC10151592 DOI: 10.1073/pnas.2220662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
Unlike the interface between two immiscible electrolyte solutions (ITIES) formed between water and polar solvents, molecular understanding of the liquid-liquid interface formed for aqueous biphasic systems (ABSs) is relatively limited and mostly relies on surface tension measurements and thermodynamic models. Here, high-resolution Raman imaging is used to provide spatial and chemical resolution of the interface of lithium chloride - lithium bis(trifluoromethanesulfonyl)imide - water (LiCl-LiTFSI-water) and HCl-LiTFSI-water, prototypical salt-salt ABSs found in a range of electrochemical applications. The concentration profiles of both TFSI anions and water are found to be sigmoidal thus not showing any signs of a positive adsorption for both salts and solvent. More striking, however, is the length at which the concentration profiles extend, ranging from 11 to 2 µm with increasing concentrations, compared to a few nanometers for ITIES. We thus reveal that unlike ITIES, salt-salt ABSs do not have a molecularly sharp interface but rather form an interphase with a gradual change of environment from one phase to the other. This knowledge represents a major stepping-stone in the understanding of aqueous interfaces, key for mastering ion or electron transfer dynamics in a wide range of biological and technological settings including novel battery technologies such as membraneless redox flow and dual-ion batteries.
Collapse
Affiliation(s)
- Damien Degoulange
- Chimie du Solide et de l’Energie, UMR 8260, Collège de France,75231 Cedex 05Paris, France
- Sorbonne Université,75006Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
| | - Raj Pandya
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Michael Deschamps
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
- CNRS, Conditions Extrêmes et Matériaux : Haute Température et Irradiation, UPR3079, Université d'Orléans,45071Orléans, France
| | - Dhyllan A. Skiba
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Betar M. Gallant
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
| | - Hilton B. de Aguiar
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
| | - Alexis Grimaud
- Chimie du Solide et de l’Energie, UMR 8260, Collège de France,75231 Cedex 05Paris, France
- Sorbonne Université,75006Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA02467
| |
Collapse
|
28
|
Hu T, Zhang J, Xia J, Li X, Tao P, Deng T. A Review on Recent Progress in Preparation of Medium-Temperature Solar-Thermal Nanofluids with Stable Dispersion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1399. [PMID: 37110985 PMCID: PMC10141638 DOI: 10.3390/nano13081399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Direct absorption of sunlight and conversion into heat by uniformly dispersed photothermal nanofluids has emerged as a facile way to efficiently harness abundant renewable solar-thermal energy for a variety of heating-related applications. As the key component of the direct absorption solar collectors, solar-thermal nanofluids, however, generally suffer from poor dispersion and tend to aggregate, and the aggregation and precipitation tendency becomes even stronger at elevated temperatures. In this review, we overview recent research efforts and progresses in preparing solar-thermal nanofluids that can be stably and homogeneously dispersed under medium temperatures. We provide detailed description on the dispersion challenges and the governing dispersion mechanisms, and introduce representative dispersion strategies that are applicable to ethylene glycol, oil, ionic liquid, and molten salt-based medium-temperature solar-thermal nanofluids. The applicability and advantages of four categories of stabilization strategies including hydrogen bonding, electrostatic stabilization, steric stabilization, and self-dispersion stabilization in improving the dispersion stability of different type of thermal storage fluids are discussed. Among them, recently emerged self-dispersible nanofluids hold the potential for practical medium-temperature direct absorption solar-thermal energy harvesting. In the end, the exciting research opportunities, on-going research need and possible future research directions are also discussed. It is anticipated that the overview of recent progress in improving dispersion stability of medium-temperature solar-thermal nanofluids can not only stimulate exploration of direct absorption solar-thermal energy harvesting applications, but also provide a promising means to solve the fundamental limiting issue for general nanofluid technologies.
Collapse
|
29
|
Abstract
The piezoelectric effect was discovered over a century ago, and it has found wide application since that time. The direct piezoelectric effect is the production of charge upon application of force to a material, and the converse piezoelectric effect is a change in the material dimension(s) upon the application of a potential. To date, piezoelectric effects have been observed only in solid-phase materials. We report here the observation of the direct piezoelectric effect in room-temperature ionic liquids (RTILs). The RTILs 1-butyl-3-methyl imidazolium bis(trifluoromethyl-sulfonyl)imide (BMIM+TFSI-) and 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl) imide (HMIM+TFSI-) produce a potential upon the application of force when confined in a cell, with the magnitude of the potential being directly proportional to the force applied. The effect is one order of magnitude smaller than that seen in quartz. This is the first report to our knowledge of the direct piezoelectric effect in a neat liquid. Its discovery has fundamental implications about the organization and dynamics in ionic liquids and invites theoretical treatment.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Härtel A, Bültmann M, Coupette F. Anomalous Underscreening in the Restricted Primitive Model. PHYSICAL REVIEW LETTERS 2023; 130:108202. [PMID: 36962045 DOI: 10.1103/physrevlett.130.108202] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Underscreening is a collective term for charge correlations in electrolytes decaying slower than the Debye length. Anomalous underscreening refers to phenomenology that cannot be attributed alone to steric interactions. Experiments with concentrated electrolytes and ionic fluids report anomalous underscreening, which so far has not been observed in simulation. We present Molecular Dynamics simulation results exhibiting anomalous underscreening that can be connected to cluster formation. A theory that accounts for ion pairing confirms the trend. Our results challenge the classic understanding of dense electrolytes impacting the design of technologies for energy storage and conversion.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Moritz Bültmann
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Fabian Coupette
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
31
|
Temperature-dependent ultrafast solvation dynamics of choline chloride-based deep eutectic solvent (DES) and hydroxyl functionalized room temperature ionic liquids (RTILs): Exploring the difference in solvent response between DES and RTILs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Kumar S, Cats P, Alotaibi MB, Ayirala SC, Yousef AA, van Roij R, Siretanu I, Mugele F. Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces. J Colloid Interface Sci 2022; 622:819-827. [PMID: 35561602 DOI: 10.1016/j.jcis.2022.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/08/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
Recent surface forces apparatus experiments that measured the forces between two mica surfaces and a series of subsequent theoretical studies suggest the occurrence of universal underscreening in highly concentrated electrolyte solutions. We performed a set of systematic Atomic Force Spectroscopy measurements for aqueous salt solutions in a concentration range from 1 mM to 5 M using chloride salts of various alkali metals as well as mixed concentrated salt solutions (involving both mono- and divalent cations and anions), that mimic concentrated brines typically encountered in geological formations. Experiments were carried out using flat substrates and submicrometer-sized colloidal probes made of smooth oxidized silicon immersed in salt solutions at pH values of 6 and 9 and temperatures of 25 °C and 45 °C. While strong repulsive forces were observed for the smallest tip-sample separations, none of the conditions explored displayed any indication of anomalous long range electrostatic forces as reported for mica surfaces. Instead, forces are universally dominated by attractive van der Waals interactions at tip-sample separations of ≈2 nm and beyond for salt concentrations of 1 M and higher. Complementary calculations based on classical density functional theory for the primitive model support these experimental observations and display a consistent decrease in screening length with increasing ion concentration.
Collapse
Affiliation(s)
- Saravana Kumar
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Peter Cats
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
| | - Mohammed B Alotaibi
- The Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - Subhash C Ayirala
- The Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - Ali A Yousef
- The Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| |
Collapse
|
33
|
Zeidler A, Salmon PS, Usuki T, Kohara S, Fischer HE, Wilson M. Structure of molten NaCl and the decay of the pair-correlations. J Chem Phys 2022; 157:094504. [PMID: 36075708 DOI: 10.1063/5.0107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The structure of molten NaCl is investigated by combining neutron and x-ray diffraction with molecular dynamics simulations that employed interaction potentials with either rigid or polarizable ions. Special attention is paid to the asymptotic decay of the pair-correlation functions, which is related to the small-k behavior of the partial structure factors, where k denotes the magnitude of the scattering vector. The rigid-ion approach gives access to an effective restricted primitive model in which the anion and cation have equal but opposite charges and are otherwise identical. For this model, the decay of the pair-correlation functions is in qualitative agreement with simple theory. The polarizable ion approach gives a good account of the diffraction results and yields thermodynamic parameters (density, isothermal compressibility, Debye screening length, and heat capacity) in accord with experiment. The longest decay length for the partial pair-distribution functions is a factor of ≃2.5 times greater than the nearest-neighbor distance. The results are commensurate with the decay lengths found for the effective restricted primitive model, which are much shorter than those found in experiments on concentrated electrolytes or ionic liquids using surface force apparatus.
Collapse
Affiliation(s)
- Anita Zeidler
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Philip S Salmon
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Takeshi Usuki
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Koshirakawa, Yamagata 990-8560, Japan
| | - Shinji Kohara
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
| | - Henry E Fischer
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Mark Wilson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
34
|
Goodwin ZA, Kornyshev AA. Cracking Ion Pairs in the Electrical Double Layer of Ionic Liquids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Wang Y, Adhikari L, Baker GA, Blanchard GJ. Cation structure-dependence of the induced free charge density gradient in imidazolium and pyrrolidinium ionic liquids. Phys Chem Chem Phys 2022; 24:19314-19320. [PMID: 35929735 DOI: 10.1039/d2cp01066f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the structure-dependence and magnitude of the induced free charge density gradient (ρf) seen in room-temperature ionic liquids (RTILs) with imidazolium and pyrrolidinium cations. We characterize the spatially-resolved rotational diffusion dynamics of a trace-level cationic chromophore to characterize ρf in three different pyrrolidinium RTILs and two imidazolium RTILs. Our data show that the magnitude of ρf depends primarily on the alkyl chain length of RTIL cation and the persistence length of ρf is independent of RTILs' cation structure. These findings collectively suggest that mesoscopic structure in RTILs plays a significant role in allowing charge density gradients to form.
Collapse
Affiliation(s)
- Yufeng Wang
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - Laxmi Adhikari
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - Gary A Baker
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|
36
|
An R, Laaksonen A, Wu M, Zhu Y, Shah FU, Lu X, Ji X. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. NANOSCALE 2022; 14:11098-11128. [PMID: 35876154 DOI: 10.1039/d2nr02812c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure-property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL-solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL-solid interfaces, and the combination of experiments and simulations are argued.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Muqiu Wu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yudan Zhu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
37
|
Cashen RK, Donoghue MM, Schmeiser AJ, Gebbie MA. Bridging Database and Experimental Analysis to Reveal Super-hydrodynamic Conductivity Scaling Regimes in Ionic Liquids. J Phys Chem B 2022; 126:6039-6051. [PMID: 35939324 DOI: 10.1021/acs.jpcb.2c01635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion transport through electrolytes critically impacts the performance of batteries and other devices. Many frameworks used to model ion transport assume hydrodynamic mechanisms and focus on maximizing conductivity by minimizing viscosity. However, solid-state electrolytes illustrate that non-hydrodynamic ion transport can define device performance. Increasingly, selective transport mechanisms, such as hopping, are proposed for concentrated electrolytes. However, viscosity-conductivity scaling relationships in ionic liquids are often analyzed with hydrodynamic models. We report data-centric analyses of hydrodynamic transport models of viscosity-conductivity scaling in ionic liquids by merging three databases to bridge physical properties and computational descriptors. With this expansive database, we constrained scaling analyses using ion sizes defined from simulated volumes, as opposed to estimating sizes from activity coefficients. Remarkably, we find that many ionic liquids exhibit positive deviations from the Nernst-Einstein model, implying ions move faster than hydrodynamics should allow. We verify these findings using microrheology and conductivity experiments. We further show that machine learning tools can improve predictions of conductivity from molecular properties, including predictions from solely computational features. Our findings reveal that many ionic liquids exhibit super-hydrodynamic viscosity-conductivity scaling, suggesting mechanisms of correlated ion motion, which could be harnessed to enhance electrochemical device performance.
Collapse
Affiliation(s)
- Ryan K Cashen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Megan M Donoghue
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Abigail J Schmeiser
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew A Gebbie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Goodwin ZAH, McEldrew MP, de Souza JP, Bazant MZ, Kornyshev AA. Gelation, Clustering and Crowding in the Electrical Double Layer of Ionic Liquids. J Chem Phys 2022; 157:094106. [DOI: 10.1063/5.0097055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Understanding the bulk and interfacial properties of super-concentrated electrolytes, such as ionic liquids (ILs), has attracted significant attention lately for their promising applications in supercapacitors and batteries. Recently, McEldrew et al. developed a theory for reversible ion associations in bulk ILs, which accounted for the formation of all possible Cayley tree clusters and a percolating ionic network (gel). Here we adopt and develop this approach to understand the associations of ILs in the electrical double layer at electrified interfaces. With increasing charge of the electrode, the theory predicts a transition from a regime dominated by a gelled or clustered state to a crowding regime dominated by free ions. This transition from gelation to crowding is conceptually similar to the overscreening to crowding transition.
Collapse
Affiliation(s)
| | - Michael Patrick McEldrew
- Massachusetts Institute of Technology Department of Chemical Engineering, United States of America
| | - J. Pedro de Souza
- MIT, Massachusetts Institute of Technology Department of Chemical Engineering, United States of America
| | | | - Alexei A. Kornyshev
- Department of Chemistry, Imperial College London Faculty of Natural Sciences, United Kingdom
| |
Collapse
|
39
|
Horvath A, Anaredy RS, Shaw SK. Solvents and Stabilization in Ionic Liquid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9372-9381. [PMID: 35862667 PMCID: PMC10111422 DOI: 10.1021/acs.langmuir.2c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
We report the interfacial structures and chemical environments of ionic liquid films as a function of dilution with molecular solvents and over a range of film thicknesses (a few micrometers). Data from spectroscopic ellipsometry and infrared spectroscopy measurements show differences between films comprised of neat ionic liquids, as well as films comprised of ionic liquids diluted with two molecular solvents (water and acetonitrile). While the water-diluted IL films follow thickness trends predicted by the Landau-Levich model, neat IL and IL/MeCN films deviate significantly from predicted behaviors. Specifically, these film thicknesses are far greater than the predicted values, suggesting enhanced intermolecular interactions or other non-Newtonian behaviors not captured by the theory. We correlate film thicknesses with trends in the infrared intensity profiles across film thicknesses and IL-solvent dilution conditions and interpret the changes from expected behaviors as varying amounts of the film volume existing in isotropic (bulk) vs anisotropic (interfacial) states. The hydrogen bonding network of water-diluted ionic liquids is implicated in the agreement of this system with the Landau-Levich model's thickness predictions.
Collapse
|
40
|
Liu B, Guo W, Gebbie MA. Tuning Ionic Screening To Accelerate Electrochemical CO 2 Reduction in Ionic Liquid Electrolytes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beichen Liu
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Wenxiao Guo
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Matthew A. Gebbie
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
41
|
Wang Y, Adhikari L, Baker GA, Blanchard GJ. Cation structure-dependence of the Pockels effect in aprotic ionic liquids. Phys Chem Chem Phys 2022; 24:18067-18072. [PMID: 35861617 DOI: 10.1039/d2cp01068b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the dependence of surface charge-induced birefringence (the Pockels effect) in room temperature ionic liquids (RTILs) with different cation constituents. The induced birefringence is related to the induced free charge density gradient (ρf) in the RTIL. The RTILs are confined in a lens-shaped cell and the surface charge density of the concave cell surface is controlled by the current passed through the surface ITO film. We find that, in all cases, the induced birefringence is proportional to the surface charge density and that the change in refractive index nearest the ITO surface can be on the order of 20%. Our findings indicate that the induced birefringence depends more sensitively on the cation aliphatic substituent length than on the identity of the charge-carrying headgroup.
Collapse
Affiliation(s)
- Yufeng Wang
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - Laxmi Adhikari
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - Gary A Baker
- University of Missouri, Department of Chemistry, Columbia, MO 65211, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
Doan LC, Dahanayake JN, Mitchell-Koch KR, Singh AK, Vinh NQ. Probing Adaptation of Hydration and Protein Dynamics to Temperature. ACS OMEGA 2022; 7:22020-22031. [PMID: 35785325 PMCID: PMC9245114 DOI: 10.1021/acsomega.2c02843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended time scale from femto- to nanosecond. The dielectric spectra reveal several relaxations corresponding to the orientational polarization mechanism, including the dynamics of loosely bound, tightly bound, and bulk water, as well as collective vibrational modes of protein in an aqueous environment. The dynamics of loosely bound and bulk water follow non-Arrhenius behavior; however, the dynamics of water molecules in the tightly bound layer obeys the Arrhenius-type relation. Combining molecular simulations and effective-medium approximation, we have determined the number of water molecules in the tightly bound hydration layer and studied the dynamics of protein as a function of temperature. The results provide the important impact of water on the biochemical functions of proteins.
Collapse
Affiliation(s)
- Luan C. Doan
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jayangika N. Dahanayake
- Department
of Chemistry, Faculty of Science, University
of Kelaniya, Kelaniya 11600, Sri Lanka
| | | | - Abhishek K. Singh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nguyen Q. Vinh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
43
|
Frusawa H. Electric-field-induced oscillations in ionic fluids: a unified formulation of modified Poisson-Nernst-Planck models and its relevance to correlation function analysis. SOFT MATTER 2022; 18:4280-4304. [PMID: 35615919 DOI: 10.1039/d1sm01811f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We theoretically investigate an electric-field-driven system of charged spheres as a primitive model of concentrated electrolytes under an applied electric field. First, we provide a unified formulation for the stochastic charge and density dynamics of the electric-field-driven primitive model using the stochastic density functional theory (DFT). The stochastic DFT integrates the four frameworks (the equilibrium and dynamic DFTs, the liquid state theory and the field-theoretic approach), which allows us to justify in a unified manner various modifications previously made for the Poisson-Nernst-Planck model. Next, we consider stationary density-density and charge-charge correlation functions of the primitive model with a static electric field. We predict an electric-field-induced synchronization between emergences of density and charge oscillations. We are mainly concerned with the emergence of stripe states formed by segregation bands transverse to the external field, thereby demonstrating the following: (i) the electric-field-induced crossover occurs prior to the conventional Kirkwood crossover without an applied electric field, and (ii) the ion concentration dependence of the decay lengths at the onset of oscillations bears a similarity to the underscreening behavior found by recent simulation and theoretical studies on equilibrium electrolytes. Also, the 2D inverse Fourier transform of the correlation function illustrates the existence of stripe states beyond the electric-field-induced Kirkwood crossover.
Collapse
Affiliation(s)
- Hiroshi Frusawa
- Laboratory of Statistical Physics, Kochi University of Technology, Tosa-Yamada, Kochi 782-8502, Japan.
| |
Collapse
|
44
|
Apostol M. Screening length in concentrated electrolytes. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Pontoni D, DiMichiel M, Deutsch M. Binary mixtures of homologous room-temperature ionic liquids: Nanoscale structure evolution with alkyl lengths’ difference. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Wang Y, He H, Wang C, Lu Y, Dong K, Huo F, Zhang S. Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. JACS AU 2022; 2:543-561. [PMID: 35373210 PMCID: PMC8965826 DOI: 10.1021/jacsau.1c00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Ionic liquids (ILs) hold great promise in the fields of green chemistry, environmental science, and sustainable technology due to their unique properties, such as a tailorable structure, the various types available, and their environmentally friendly features. On the basis of multiscale simulations and experimental characterizations, two unique features of ILs are as follows: (1) strong coupling interactions between the electrostatic forces and hydrogen bonds, namely in the Z-bond, and (2) the unique semiordered structure and properties of ultrathin films, specifically regarding the quasi-liquid. In accordance with the aforementioned theoretical findings, many cutting-edge applications have been proposed: for example, CO2 capture and conversion, biomass conversion and utilization, and energy storage materials. Although substantial progress has been made recently in the field of ILs, considerable challenges remain in understanding the nature of and devising applications for ILs, especially in terms of e.g. in situ/real-time observation and highly precise multiscale simulations of the Z-bond and quasi-liquid. In this Perspective, we review recent developments and challenges for the IL research community and provide insights into the nature and function of ILs, which will facilitate future applications.
Collapse
Affiliation(s)
- Yanlei Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Hongyan He
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Chenlu Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Yumiao Lu
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kun Dong
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Feng Huo
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Suojiang Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| |
Collapse
|
47
|
Stenberg S, Woodward CE, Forsman J. Interactions between conducting surfaces in salt solutions. SOFT MATTER 2022; 18:1636-1643. [PMID: 35118484 DOI: 10.1039/d1sm01520f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we simulate interactions between two perfectly conducting surfaces, immersed in a salt solution. We demonstrate that these forces are quantitatively different from those between (equally charged) non-conducting surfaces. There is, for instance, a significant repulsion between net neutral surfaces. On the other hand, there are also qualitative similarities, with behaviours found with non-conducting surfaces. For instance, there is a non-monotonic dependence of the free energy barrier height, on the salt concentration, and the minimum essentially coincides with a flat profile of the apparent surface charge density (i.e. the effective net surface charge density, some distance away from the surface, when accounting for ion neutralization), outside the so-called Stern layer. These conditions can be described as "perfect surface charge neutralization". Despite observed quantitative differences, we demonstrate that it might be possible to mimic a dispersion containing charged colloidal metal particles by a simpler model system with charged non-conducting particles, using modified particle-ion interactions.
Collapse
Affiliation(s)
- Samuel Stenberg
- Theoretical Chemistry, Lund University, P. O. Box 124, 221 00 Lund, Sweden.
| | - Clifford E Woodward
- University College, University of New South Wales (ADFA), Canberra ACT 2600, Australia.
| | - Jan Forsman
- Theoretical Chemistry, Lund University, P. O. Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
48
|
Hossain MI, Blanchard GJ. The effect of dilution on induced free charge density gradients in room temperature ionic liquids. Phys Chem Chem Phys 2022; 24:3844-3853. [PMID: 35088776 DOI: 10.1039/d1cp05027c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on changes in the magnitude and length scale of the induced free charge density gradient, ρf, in three imidazolium room temperature ionic liquids (RTILs) with dilution by methanol and acetonitrile. Using depth- and time-resolved fluorescence measurements of cresyl violet rotational diffusion, we find that ρf persists in RTILs to varying degrees depending on RTIL and diluent identity, and in all cases the functional form of ρf is not a smooth monotonic diminution in either magnitude or persistence length with increasing diluent, but a stepwise collapse. This finding is consistent with changes in the bulk RTIL as a function of dilution seen using rotational diffusion measurements that show the rotating entity in bulk RTILs exhibits a larger effective hydrodynamic volume than would be expected based on bulk viscosity data for the diluted RTILs. This excess hydrodynamic volume can be understood in the context of aggregation of RTIL ion pairs in the diluted RTIL system. The size of the aggregates is seen to depend on RTIL identity and diluent, and in all cases aggregate size increases with increasing dilution. This finding is consistent with the ρf dependence on dilution data. The collapse of ρf is seen to correlate with the onset of RTIL ion pair dimer formation, a condition that may facilitate dissociated RTIL ion mobility in the binary system.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| | - G J Blanchard
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.
| |
Collapse
|
49
|
On the osmotic pressure of cells. QRB DISCOVERY 2022. [PMID: 37529285 PMCID: PMC10392628 DOI: 10.1017/qrd.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
The chemical potential of water (
$ {\mu}_{{\mathrm{H}}_2\mathrm{O}} $
) provides an essential thermodynamic characterization of the environment of living organisms, and it is of equal significance as the temperature. For cells,
$ {\mu}_{{\mathrm{H}}_2\mathrm{O}} $
is conventionally expressed in terms of the osmotic pressure (πosm). We have previously suggested that the main contribution to the intracellular πosm of the bacterium E. coli is from soluble negatively-charged proteins and their counter-ions. Here, we expand on this analysis by examining how evolutionary divergent cell types cope with the challenge of maintaining πosm within viable values. Complex organisms, like mammals, maintain constant internal πosm ≈ 0.285 osmol, matching that of 0.154 M NaCl. For bacteria it appears that optimal growth conditions are found for similar or slightly higher πosm (0.25-0.4 osmol), despite that they represent a much earlier stage in evolution. We argue that this value reflects a general adaptation for optimising metabolic function under crowded intracellular conditions. Environmental πosm that differ from this optimum require therefore special measures, as exemplified with gram-positive and gram-negative bacteria. To handle such situations, their membrane encapsulations allow for a compensating turgor pressure that can take both positive and negative values, where positive pressures allow increased frequency of metabolic events through increased intracellular protein concentrations. A remarkable exception to the rule of 0.25-0.4 osmol, is found for halophilic archaea with internal πosm ≈ 15 osmol. The internal organization of these archaea differs in that they utilize a repulsive electrostatic mechanism operating only in the ionic-liquid regime to avoid aggregation, and that they stand out from other organisms by having no turgor pressure.
Collapse
|
50
|
Sieling T, Petersen T, Alpers T, Christoffers J, Klüner T, Brand I. CD Stretching Modes are Sensitive to the Microenvironment in Ionic Liquids. Chemistry 2021; 27:17808-17817. [PMID: 34510599 PMCID: PMC9298891 DOI: 10.1002/chem.202102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/26/2022]
Abstract
Knowledge of the structure of the electrical double layer in ionic liquids (IL) is crucial for their applications in electrochemical technologies. We report the synthesis and applicability of an imidazolium-based amphiphilic ionic liquid with a perdeuterated alkyl chain for studies of electric potential-dependent rearrangements, and changes in the microenvironment in a monolayer on a Au(111) surface. Electrochemical measurements show two states of the organization of ions on the electrode surface. In situ IR spectroscopy shows that the alkyl chains in imidazolium cations change their orientation depending on the adsorption state. The methylene-d2 stretching modes in the perdeuterated IL display a reversible, potential-dependent appearance of a new band. The presence of this mode also depends on the anion in the IL. Supported by quantum chemical calculations, this new mode is assigned to a second νas (CD2 ) band in alkyl-chain fragments embedded in a polar environment of the anions/solvent present in the vicinity of the imidazolium cation and electrode. It is a measure of the potential-dependent segregation between polar and nonpolar environments in the layers of an IL closest to the electrode.
Collapse
Affiliation(s)
- Thorben Sieling
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Thorben Petersen
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Torben Alpers
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | | | - Thorsten Klüner
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Izabella Brand
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| |
Collapse
|