1
|
Dwivedi D, Dumontier D, Sherer M, Lin S, Mirow AMC, Qiu Y, Xu Q, Liebman SA, Joseph D, Datta SR, Fishell G, Pouchelon G. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. Nat Commun 2024; 15:5421. [PMID: 38926335 PMCID: PMC11208423 DOI: 10.1038/s41467-024-49732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies in mice. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this process impacts the development of normal exploratory behaviors of adult mice.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | | | - Mia Sherer
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Sherry Lin
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Andrea M C Mirow
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Yanjie Qiu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Qing Xu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel A Liebman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Djeckby Joseph
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Sandeep R Datta
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
| | - Gabrielle Pouchelon
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA.
| |
Collapse
|
2
|
Dwivedi D, Dumontier D, Sherer M, Lin S, Mirow AM, Qiu Y, Xu Q, Liebman SA, Joseph D, Datta SR, Fishell G, Pouchelon G. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558862. [PMID: 37790336 PMCID: PMC10542166 DOI: 10.1101/2023.09.21.558862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this developmental process impacts the development of normal exploratory behaviors of adult mice.
Collapse
|
3
|
Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M. Heterosynaptic Plasticity and the Experience-Dependent Refinement of Developing Neuronal Circuits. Front Neural Circuits 2021; 15:803401. [PMID: 34949992 PMCID: PMC8689143 DOI: 10.3389/fncir.2021.803401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Neurons remodel the structure and strength of their synapses during critical periods of development in order to optimize both perception and cognition. Many of these developmental synaptic changes are thought to occur through synapse-specific homosynaptic forms of experience-dependent plasticity. However, homosynaptic plasticity can also induce or contribute to the plasticity of neighboring synapses through heterosynaptic interactions. Decades of research in vitro have uncovered many of the molecular mechanisms of heterosynaptic plasticity that mediate local compensation for homosynaptic plasticity, facilitation of further bouts of plasticity in nearby synapses, and cooperative induction of plasticity by neighboring synapses acting in concert. These discoveries greatly benefited from new tools and technologies that permitted single synapse imaging and manipulation of structure, function, and protein dynamics in living neurons. With the recent advent and application of similar tools for in vivo research, it is now feasible to explore how heterosynaptic plasticity contribute to critical periods and the development of neuronal circuits. In this review, we will first define the forms heterosynaptic plasticity can take and describe our current understanding of their molecular mechanisms. Then, we will outline how heterosynaptic plasticity may lead to meaningful refinement of neuronal responses and observations that suggest such mechanisms are indeed at work in vivo. Finally, we will use a well-studied model of cortical plasticity—ocular dominance plasticity during a critical period of visual cortex development—to highlight the molecular overlap between heterosynaptic and developmental forms of plasticity, and suggest potential avenues of future research.
Collapse
Affiliation(s)
- Kyle R Jenks
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Katya Tsimring
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jose C Zepeda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Gonzalez-Lozano MA, Wortel J, van der Loo RJ, van Weering JRT, Smit AB, Li KW. Reduced mGluR5 Activity Modulates Mitochondrial Function. Cells 2021; 10:cells10061375. [PMID: 34199502 PMCID: PMC8228325 DOI: 10.3390/cells10061375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is an essential modulator of synaptic plasticity, learning and memory; whereas in pathological conditions, it is an acknowledged therapeutic target that has been implicated in multiple brain disorders. Despite robust pre-clinical data, mGluR5 antagonists failed in several clinical trials, highlighting the need for a better understanding of the mechanisms underlying mGluR5 function. In this study, we dissected the molecular synaptic modulation mediated by mGluR5 using genetic and pharmacological mouse models to chronically and acutely reduce mGluR5 activity. We found that next to dysregulation of synaptic proteins, the major regulation in protein expression in both models concerned specific processes in mitochondria, such as oxidative phosphorylation. Second, we observed morphological alterations in shape and area of specifically postsynaptic mitochondria in mGluR5 KO synapses using electron microscopy. Third, computational and biochemical assays suggested an increase of mitochondrial function in neurons, with increased level of NADP/H and oxidative damage in mGluR5 KO. Altogether, our observations provide diverse lines of evidence of the modulation of synaptic mitochondrial function by mGluR5. This connection suggests a role for mGluR5 as a mediator between synaptic activity and mitochondrial function, a finding which might be relevant for the improvement of the clinical potential of mGluR5.
Collapse
Affiliation(s)
- Miguel A. Gonzalez-Lozano
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| | - Joke Wortel
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
| | - Rolinka J. van der Loo
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Jan R. T. van Weering
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
- Center for Neurogenomics and Cognitive Research, Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 Amsterdam, The Netherlands
| | - August B. Smit
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Ka Wan Li
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| |
Collapse
|
6
|
Chakraborty R, Vijay Kumar MJ, Clement JP. Critical aspects of neurodevelopment. Neurobiol Learn Mem 2021; 180:107415. [PMID: 33647449 DOI: 10.1016/j.nlm.2021.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India.
| |
Collapse
|
7
|
Lee J, Jang D, Jeong H, Kim KS, Yang S. Impairment of synaptic plasticity and novel object recognition in the hypergravity-exposed rats. Sci Rep 2020; 10:15813. [PMID: 32978417 PMCID: PMC7519067 DOI: 10.1038/s41598-020-72639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/24/2020] [Indexed: 01/03/2023] Open
Abstract
The gravity is necessary for living organisms to operate various biological events including hippocampus-related functions of learning and memory. Until now, it remains inconclusive how altered gravity is associated with hippocampal functions. It is mainly due to the difficulties in generating an animal model experiencing altered gravity. Here, we demonstrate the effects of hypergravity on hippocampus-related functions using an animal behavior and electrophysiology with our hypergravity animal model. The hypergravity (4G, 4 weeks) group showed impaired synaptic efficacy and long-term potentiation in CA1 neurons of the hippocampus along with the poor performance of a novel object recognition task. Our studies suggest that altered gravity affects hippocampus-related cognitive functions, presumably through structural and functional adaptation to various conditions of gravity shift.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Doohyeong Jang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Hyerin Jeong
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Kyu-Sung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University, College of Medicine, Incheon, South Korea. .,Inha Institute of Aerospace Medicine, Incheon, South Korea.
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea.
| |
Collapse
|
8
|
Joo Y, Xue Y, Wang Y, McDevitt RA, Sah N, Bossi S, Su S, Lee SK, Peng W, Xie A, Zhang Y, Ding Y, Ku WL, Ghosh S, Fishbein K, Shen W, Spencer R, Becker K, Zhao K, Mattson MP, van Praag H, Sharov A, Wang W. Topoisomerase 3β knockout mice show transcriptional and behavioural impairments associated with neurogenesis and synaptic plasticity. Nat Commun 2020; 11:3143. [PMID: 32561719 PMCID: PMC7305123 DOI: 10.1038/s41467-020-16884-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
Topoisomerase 3β (Top3β) is the only dual-activity topoisomerase in animals that can change topology for both DNA and RNA, and facilitate transcription on DNA and translation on mRNAs. Top3β mutations have been linked to schizophrenia, autism, epilepsy, and cognitive impairment. Here we show that Top3β knockout mice exhibit behavioural phenotypes related to psychiatric disorders and cognitive impairment. The mice also display impairments in hippocampal neurogenesis and synaptic plasticity. Notably, the brains of the mutant mice exhibit impaired global neuronal activity-dependent transcription in response to fear conditioning stress, and the affected genes include many with known neuronal functions. Our data suggest that Top3β is essential for normal brain function, and that defective neuronal activity-dependent transcription may be a mechanism by which Top3β deletion causes cognitive impairment and psychiatric disorders.
Collapse
Affiliation(s)
- Yuyoung Joo
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yue Wang
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ross A McDevitt
- The Comparative Medicine Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nirnath Sah
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Simone Bossi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Wei Peng
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Aoji Xie
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yi Ding
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wai Lim Ku
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Soumita Ghosh
- Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kenneth Fishbein
- Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Richard Spencer
- Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kevin Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark P Mattson
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Henriette van Praag
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Brain Institute and Charles E. Schmidt College of Medicine, Jupiter, FL, 33458, USA
| | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
9
|
JBPOS0101 attenuates amyloid-β accumulation and memory loss in a mouse model of Alzheimer's disease. Neuroreport 2020; 30:741-747. [PMID: 31095107 DOI: 10.1097/wnr.0000000000001269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) in the brain. Defects in Aβ clearance or the interference of Aβ homeostasis could result in Aβ aggregation. JBPOS0101 has been studied for its antiepileptic activity. It showed a neuroprotective effect and prevented memory deficits in lithium-pilocarpine-induced status epilepticus rats. In this study, we tested the effect of JBPOS0101 in an AD model. We showed that JBPOS0101 attenuated the accumulation of Aβ in 5XFAD mouse brains. Moreover, the treatment of JBPOS0101 rescued the deficits in learning and memory in 5XFAD mice. These data suggest that JBPOS0101 could be a potential therapeutic drug candidate for AD.
Collapse
|
10
|
Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Cereb Cortex 2020; 30:2555-2572. [PMID: 31832634 PMCID: PMC7174998 DOI: 10.1093/cercor/bhz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.
Collapse
Affiliation(s)
- Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Sb Finnie
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taekeun Kim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eitan S Kaplan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Samuel F Cooke
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Maurice Wohl Institute for Clinical Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- The Medical Research Council Centre for Neurodevelopmental Disorders (MRC CNDD), King's College London, London SE5 8AF, UK
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Feldmann M, Beckmann D, Eysel UT, Manahan-Vaughan D. Early Loss of Vision Results in Extensive Reorganization of Plasticity-Related Receptors and Alterations in Hippocampal Function That Extend Through Adulthood. Cereb Cortex 2020; 29:892-905. [PMID: 30535137 PMCID: PMC6319173 DOI: 10.1093/cercor/bhy297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/07/2018] [Indexed: 11/15/2022] Open
Abstract
Although by adulthood cortical structures and their capacity for processing sensory information have become established and stabilized, under conditions of cortical injury, or sensory deprivation, rapid reorganization occurs. Little is known as to the impact of this kind of adaptation on cellular processes related to memory encoding. However, imaging studies in humans suggest that following loss or impairment of a sensory modality, not only cortical but also subcortical structures begin to reorganize. It is likely that these processes are supported by neurotransmitter receptors that enable synaptic and cortical plasticity. Here, we explored to what extent the expression of plasticity-related proteins (GABA-A, GABA-B, GluN1, GluN2A, GluN2B) is altered following early vision loss, and whether this impacts on hippocampal function. We observed that in the period of 2-4 months postnatally in CBA/J-mice that experience hereditary postnatal retinal degeneration, systematic changes of GABA-receptor and NMDA-receptor subunit expression occurred that emerged first in the hippocampus and developed later in the cortex, compared to control mice that had normal vision. Changes were accompanied by significant impairments in hippocampal long-term potentiation and hippocampus-dependent learning. These data indicate that during cortical adaptation to early loss of vision, hippocampal information processing is compromised, and this status impacts on the acquisition of spatial representations.
Collapse
Affiliation(s)
- Mirko Feldmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Daniela Beckmann
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Ulf T Eysel
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
12
|
Dong Y, Xiong M, Chen Y, Tao Y, Li X, Bhattacharyya A, Zhang SC. Plasticity of Synaptic Transmission in Human Stem Cell-Derived Neural Networks. iScience 2020; 23:100829. [PMID: 31981924 PMCID: PMC6993006 DOI: 10.1016/j.isci.2020.100829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Long-term potentiation and depression, inferred from analysis on brain slices, are considered the cellular processes underlying learning and memory formation. They have not so far been demonstrated in human stem cell-derived neurons. By expressing channelrhodopsin in hESCs-derived glutamate neurons and co-culturing them with GABA neurons, we found that blue light stimulation increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and decreased the ratio of paired pulse facilitation (PPF) in non-ChR2-expressing GABA neurons, indicating a facilitating action at the presynaptic terminals. When paired with postsynaptic depolarization, the repetitive stimulation significantly increased the amplitude of light-evoked EPSCs that persisted during the period, indicating long-term potentiation (LTP). In contrast, low-frequency light stimulation induced long-term depression (LTD). These effects were blocked by N-methyl-D-aspartic acid (NMDA) receptor antagonists, suggesting NMDA receptor-mediated synaptic plasticity in human neural networks. Furthermore, induced pluripotent stem cell (iPSC)-derived neurons of patient with Down syndrome showed absence of LTP or LTD. Thus, our platform offers a versatile model for assessing human neural plasticity under physiological and pathological conditions.
Collapse
Affiliation(s)
- Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China; Waisman Center, University of Wisconsin, Madison, WI 53705, USA.
| | - Man Xiong
- Institute of Pediatrics, Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yuejun Chen
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yezheng Tao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Xiang Li
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
13
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
14
|
Jiang R, Zhang J, Zou S, Jia S, Leng X, Qi Y, Zou X, Shen B, Li W, Lu W, Zhong H. Electron Acceptive Mass Tag for Mass Spectrometric Imaging-Guided Synergistic Targeting to Mice Brain Glutamate Receptors. ACS Chem Neurosci 2019; 10:757-767. [PMID: 30576595 DOI: 10.1021/acschemneuro.8b00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dysfunctional glutamate receptors (GluRs) have been implicated in neurological disorders and injuries. Hetero-tetrameric assemblies of different GluR subunits or splicing variants have distinct spatiotemporal expression patterns and pharmacological properties. Mass spectrometric imaging of GluRs-targeted small molecules is important for determining the regional preferences of these compounds. We report herein the development of a mass tag covalently bonded with glutamate or N-methyl-d-aspartate that functions as both an electron acceptor to generate mass spectrometric signals on irradiated (Bi2O3)0.07(CoO)0.03(ZnO)0.9 nanoparticles with the third harmonic (355 nm) of Nd3+:YAG laser and as the core component to target bilobed clamshell-like structures of GluRs. In this approach, different molecules produce the same tag ion. It provides a new avenue for quantitative assessment of spatial densities of different compounds, which cannot be achieved with well-established stable isotope labeling technique due to different ionization efficiency of different compounds. Various coexisting endogenous molecules are also simultaneously detected for investigation of overall physiological changes induced by these compounds. Because semiconductors do not generate background peaks, this method eliminates interferences from organic matrix materials that are used in regular MALDI (matrix assisted laser desorption ionization). The localized ionization provides high spatial resolution that can be down to sub-micrometers.
Collapse
Affiliation(s)
- Ruowei Jiang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Juan Zhang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Si Zou
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Shanshan Jia
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiebin Leng
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yinghua Qi
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xuekun Zou
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Baojie Shen
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Weidan Li
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Wenting Lu
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Hongying Zhong
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
15
|
Jenks KR, Kim T, Pastuzyn ED, Okuno H, Taibi AV, Bito H, Bear MF, Shepherd JD. Arc restores juvenile plasticity in adult mouse visual cortex. Proc Natl Acad Sci U S A 2017; 114:9182-9187. [PMID: 28790183 PMCID: PMC5576785 DOI: 10.1073/pnas.1700866114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation.
Collapse
Affiliation(s)
- Kyle R Jenks
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112
| | - Taekeun Kim
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elissa D Pastuzyn
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112
| | - Hiroyuki Okuno
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Andrew V Taibi
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
16
|
Infantile Amnesia: A Critical Period of Learning to Learn and Remember. J Neurosci 2017; 37:5783-5795. [PMID: 28615475 DOI: 10.1523/jneurosci.0324-17.2017] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Infantile amnesia, the inability of adults to recollect early episodic memories, is associated with the rapid forgetting that occurs in childhood. It has been suggested that infantile amnesia is due to the underdevelopment of the infant brain, which would preclude memory consolidation, or to deficits in memory retrieval. Although early memories are inaccessible to adults, early-life events, such as neglect or aversive experiences, can greatly impact adult behavior and may predispose individuals to various psychopathologies. It remains unclear how a brain that rapidly forgets, or is not yet able to form long-term memories, can exert such a long-lasting and important influence. Here, with a particular focus on the hippocampal memory system, we review the literature and discuss new evidence obtained in rats that illuminates the paradox of infantile amnesia. We propose that infantile amnesia reflects a developmental critical period during which the learning system is learning how to learn and remember.
Collapse
|
17
|
Andersen N, Krauth N, Nabavi S. Hebbian plasticity in vivo: relevance and induction. Curr Opin Neurobiol 2017; 45:188-192. [PMID: 28683352 DOI: 10.1016/j.conb.2017.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Hebbian plasticity, as represented by long-term potentiation (LTP) and long-term depression (LTD) of synapses, has been the most influential hypothesis to account for encoding of memories. The evidence for the physiological relevance of LTP is indisputable. However, until recently the ways by which LTP physiologically is induced in its natural environment, the brain, was less clear. Nonetheless, current evidence points to neuromodulators as an indispensable element. The case for LTD in vivo is less certain. Even its relevance has been a matter of speculation and doubts. However, emerging evidence for a physiological role for LTD is promising, as the phenomenon has been observed at different brain regions. More needs to be done before LTD can claim an equal status alongside LTP.
Collapse
Affiliation(s)
- Niels Andersen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Nathalie Krauth
- DANDRITE - Danish Research Institute of Translational Neuroscience, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Sadegh Nabavi
- DANDRITE - Danish Research Institute of Translational Neuroscience, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark.
| |
Collapse
|
18
|
Braz BY, Belforte JE, Murer MG, Galiñanes GL. Properties of the corticostriatal long term depression induced by medial prefrontal cortex high frequency stimulation in vivo. Neuropharmacology 2017; 121:278-286. [DOI: 10.1016/j.neuropharm.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
|
19
|
Glazewski S, Greenhill S, Fox K. Time-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160150. [PMID: 28093546 PMCID: PMC5247584 DOI: 10.1098/rstb.2016.0150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 11/12/2022] Open
Abstract
Recent studies have shown that ocular dominance plasticity in layer 2/3 of the visual cortex exhibits a form of homeostatic plasticity that is related to synaptic scaling and depends on TNFα. In this study, we tested whether a similar form of plasticity was present in layer 2/3 of the barrel cortex and, therefore, whether the mechanism was likely to be a general property of cortical neurons. We found that whisker deprivation could induce homeostatic plasticity in layer 2/3 of barrel cortex, but not in a mouse strain lacking synaptic scaling. The time-course of homeostatic plasticity in layer 2/3 was similar to that of L5 regular spiking (RS) neurons (L5RS), but slower than that of L5 intrinsic bursting (IB) neurons (L5IB). In layer 5, the strength of evoked whisker responses and ex vivo miniature excitatory post-synaptic currents (mEPSCs) amplitudes showed an identical time-course for homeostatic plasticity, implying that plasticity at excitatory synapses contacting layer 5 neurons is sufficient to explain the changes in evoked responses. Spontaneous firing rate also showed homeostatic behaviour for L5IB cells, but was absent for L5RS cells over the time-course studied. Spontaneous firing rate homeostasis was found to be independent of evoked response homeostasis suggesting that the two depend on different mechanisms.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
| | - Stuart Greenhill
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
20
|
Piochon C, Kano M, Hansel C. LTD-like molecular pathways in developmental synaptic pruning. Nat Neurosci 2016; 19:1299-310. [PMID: 27669991 PMCID: PMC5070480 DOI: 10.1038/nn.4389] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
In long-term depression (LTD) at synapses in the adult brain, synaptic strength is reduced in an experience-dependent manner. LTD thus provides a cellular mechanism for information storage in some forms of learning. A similar activity-dependent reduction in synaptic strength also occurs in the developing brain and there provides an essential step in synaptic pruning and the postnatal development of neural circuits. Here we review evidence suggesting that LTD and synaptic pruning share components of their underlying molecular machinery and may thus represent two developmental stages of the same type of synaptic modulation that serve different, but related, functions in neural circuit plasticity. We also assess the relationship between LTD and synaptic pruning in the context of recent findings of LTD dysregulation in several mouse models of autism spectrum disorder (ASD) and discuss whether LTD deficits can indicate impaired pruning processes that are required for proper brain development.
Collapse
Affiliation(s)
- Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
- Department of Physiology, Northwestern University, Chicago, Illinois, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|