1
|
Tchounwou C, Jobanputra AJ, Lasher D, Fletcher BJ, Jacinto J, Bhaduri A, Best RL, Fisher WS, Ewert KK, Li Y, Feinstein SC, Safinya CR. Mixtures of Intrinsically Disordered Neuronal Protein Tau and Anionic Liposomes Reveal Distinct Anionic Liposome-Tau Complexes Coexisting with Tau Liquid-Liquid Phase-Separated Coacervates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21041-21051. [PMID: 39340452 DOI: 10.1021/acs.langmuir.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Tau, an intrinsically disordered neuronal protein and polyampholyte with an overall positive charge, is a microtubule (MT) associated protein that binds to anionic domains of MTs and suppresses their dynamic instability. Aberrant tau-MT interactions are implicated in Alzheimer's and other neurodegenerative diseases. Here, we studied the interactions between full-length human protein tau and other negatively charged binding substrates, as revealed by differential interference contrast (DIC) and fluorescence microscopy. As a binding substrate, we chose anionic liposomes (ALs) containing either 1,2-dioleoyl-sn-glycero-3-phosphatidylserine (DOPS, -1e) or 1,2-dioleoyl-sn-glycero-3-phosphatidylglycerol (DOPG, -1e) mixed with zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) to mimic anionic plasma membranes of axons where tau resides. At low salt concentrations (0 to 10 mM KCl or NaCl) with minimal charge screening, reaction mixtures of tau and ALs resulted in the formation of distinct states of AL-tau complexes coexisting with liquid-liquid phase-separated tau self-coacervates arising from the polyampholytic nature of tau containing cationic and anionic domains. AL-tau complexes (i.e. tau-lipoplexes) exhibited distinct types of morphologies. This included large ∼20-30 μm tau-decorated giant vesicles with additional smaller liposomes with bound tau attached to the giant vesicles and tau-mediated finite-size assemblies of small liposomes. As the salt concentration was increased to near and above 150 mM for 1:1 electrolytes, AL-tau complexes remained stable, while tau self-coacervate droplets were found to dissolve, indicative of the breaking of (anionic/cationic) electrostatic bonds between tau chains due to increased charge screening. The findings are consistent with the hypothesis that distinct cationic domains of tau may interact with anionic lipid domains of the lumen-facing monolayer of the axon's plasma membrane, suggesting the possibility of transient yet robust interactions near relevant ionic strengths found in neurons.
Collapse
Affiliation(s)
- Christine Tchounwou
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
| | - Anjali J Jobanputra
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
| | - Dylan Lasher
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bretton J Fletcher
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
| | - Jorge Jacinto
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
| | - Arjun Bhaduri
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rebecca L Best
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
| | - William S Fisher
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Stuart C Feinstein
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Kohl PA, Song C, Fletcher BJ, Best RL, Tchounwou C, Garcia Arceo X, Chung PJ, Miller HP, Wilson L, Choi MC, Li Y, Feinstein SC, Safinya CR. Complexes of tubulin oligomers and tau form a viscoelastic intervening network cross-bridging microtubules into bundles. Nat Commun 2024; 15:2362. [PMID: 38491006 PMCID: PMC10943092 DOI: 10.1038/s41467-024-46438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The axon-initial-segment (AIS) of mature neurons contains microtubule (MT) fascicles (linear bundles) implicated as retrograde diffusion barriers in the retention of MT-associated protein (MAP) tau inside axons. Tau dysfunction and leakage outside of the axon is associated with neurodegeneration. We report on the structure of steady-state MT bundles in varying concentrations of Mg2+ or Ca2+ divalent cations in mixtures containing αβ-tubulin, full-length tau, and GTP at 37 °C in a physiological buffer. A concentration-time kinetic phase diagram generated by synchrotron SAXS reveals a wide-spacing MT bundle phase (Bws), a transient intermediate MT bundle phase (Bint), and a tubulin ring phase. SAXS with TEM of plastic-embedded samples provides evidence of a viscoelastic intervening network (IN) of complexes of tubulin oligomers and tau stabilizing MT bundles. In this model, αβ-tubulin oligomers in the IN are crosslinked by tau's MT binding repeats, which also link αβ-tubulin oligomers to αβ-tubulin within the MT lattice. The model challenges whether the cross-bridging of MTs is attributed entirely to MAPs. Tubulin-tau complexes in the IN or bound to isolated MTs are potential sites for enzymatic modification of tau, promoting nucleation and growth of tau fibrils in tauopathies.
Collapse
Affiliation(s)
- Phillip A Kohl
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Chaeyeon Song
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Amorepacific R&I Center, Yongin, 17074, Republic of Korea
| | - Bretton J Fletcher
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Rebecca L Best
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Serimmune Inc., 150 Castilian Dr., Goleta, CA, 93117, USA
| | - Christine Tchounwou
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ximena Garcia Arceo
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, 93106, USA
| | - Peter J Chung
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Herbert P Miller
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Leslie Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Korea
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Stuart C Feinstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
3
|
Raviv U, Asor R, Shemesh A, Ginsburg A, Ben-Nun T, Schilt Y, Levartovsky Y, Ringel I. Insight into structural biophysics from solution X-ray scattering. J Struct Biol 2023; 215:108029. [PMID: 37741561 DOI: 10.1016/j.jsb.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The current challenges of structural biophysics include determining the structure of large self-assembled complexes, resolving the structure of ensembles of complex structures and their mass fraction, and unraveling the dynamic pathways and mechanisms leading to the formation of complex structures from their subunits. Modern synchrotron solution X-ray scattering data enable simultaneous high-spatial and high-temporal structural data required to address the current challenges of structural biophysics. These data are complementary to crystallography, NMR, and cryo-TEM data. However, the analysis of solution scattering data is challenging; hence many different analysis tools, listed in the SAS Portal (http://smallangle.org/), were developed. In this review, we start by briefly summarizing classical X-ray scattering analyses providing insight into fundamental structural and interaction parameters. We then describe recent developments, integrating simulations, theory, and advanced X-ray scattering modeling, providing unique insights into the structure, energetics, and dynamics of self-assembled complexes. The structural information is essential for understanding the underlying physical chemistry principles leading to self-assembled supramolecular architectures and computational structural refinement.
Collapse
Affiliation(s)
- Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yaelle Schilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
4
|
Cho H, Lee J, Nho H, Lee K, Gim B, Lee J, Lee J, Ewert KK, Li Y, Feinstein SC, Safinya CR, Jin KS, Choi MC. Synchrotron X-ray study of intrinsically disordered and polyampholytic Tau 4RS and 4RL under controlled ionic strength. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:73. [PMID: 37653246 DOI: 10.1140/epje/s10189-023-00328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Aggregated and hyperphosphorylated Tau is one of the pathological hallmarks of Alzheimer's disease. Tau is a polyampholytic and intrinsically disordered protein (IDP). In this paper, we present for the first time experimental results on the ionic strength dependence of the radius of gyration (Rg) of human Tau 4RS and 4RL isoforms. Synchrotron X-ray scattering revealed that 4RS Rg is regulated from 65.4 to 58.5 Å and 4RL Rg is regulated from 70.9 to 57.9 Å by varying ionic strength from 0.01 to 0.592 M. The Rg of 4RL Tau is larger than 4RS at lower ionic strength. This result provides an insight into the ion-responsive nature of intrinsically disordered and polyampholytic Tau, and can be implicated to the further study of Tau-Tau and Tau-tubulin intermolecular structure in ionic environments.
Collapse
Affiliation(s)
- Hasaeam Cho
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea
| | - Jimin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea
| | - Hanjoon Nho
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea
| | - Keunmin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea
| | - Bopil Gim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea
| | - Juncheol Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea
| | - Jaehee Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea
| | - Kai K Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Stuart C Feinstein
- Molecular, Cellular, and Developmental Biology Department, College of Creative Studies Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Cyrus R Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, 93106, USA
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
- Division of Advanced Nuclear Engineering, POSTECH, Pohang, 37673, Korea
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Korea.
| |
Collapse
|
5
|
Cario A, Berger CL. Tau, microtubule dynamics, and axonal transport: New paradigms for neurodegenerative disease. Bioessays 2023; 45:e2200138. [PMID: 37489532 PMCID: PMC10630968 DOI: 10.1002/bies.202200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 07/26/2023]
Abstract
The etiology of Tauopathies, a diverse class of neurodegenerative diseases associated with the Microtubule Associated Protein (MAP) Tau, is usually described by a common mechanism in which Tau dysfunction results in the loss of axonal microtubule stability. Here, we reexamine and build upon the canonical disease model to encompass other Tau functions. In addition to regulating microtubule dynamics, Tau acts as a modulator of motor proteins, a signaling hub, and a scaffolding protein. This diverse array of functions is related to the dynamic nature of Tau isoform expression, post-translational modification (PTM), and conformational flexibility. Thus, there is no single mechanism that can describe Tau dysfunction. The effects of specific pathogenic mutations or aberrant PTMs need to be examined on all of the various functions of Tau in order to understand the unique etiology of each disease state.
Collapse
Affiliation(s)
- Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
6
|
Carmo GP, Grigioni J, Fernandes FAO, Alves de Sousa RJ. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. BIOLOGY 2023; 12:biology12010083. [PMID: 36671775 PMCID: PMC9855362 DOI: 10.3390/biology12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The biomechanics of traumatic injuries of the human body as a consequence of road crashes, falling, contact sports, and military environments have been studied for decades. In particular, traumatic brain injury (TBI), the so-called "silent epidemic", is the traumatic insult responsible for the greatest percentage of death and disability, justifying the relevance of this research topic. Despite its great importance, only recently have research groups started to seriously consider the sex differences regarding the morphology and physiology of women, which differs from men and may result in a specific outcome for a given traumatic event. This work aims to provide a summary of the contributions given in this field so far, from clinical reports to numerical models, covering not only the direct injuries from inertial loading scenarios but also the role sex plays in the conditions that precede an accident, and post-traumatic events, with an emphasis on neuroendocrine dysfunctions and chronic traumatic encephalopathy. A review on finite element head models and finite element neck models for the study of specific traumatic events is also performed, discussing whether sex was a factor in validating them. Based on the information collected, improvement perspectives and future directions are discussed.
Collapse
Affiliation(s)
- Gustavo P. Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jeroen Grigioni
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fábio A. O. Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Ricardo J. Alves de Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
- Correspondence: ; Tel.: +351-234-370-200
| |
Collapse
|
7
|
Kusano T, Kumano N, Yoshimune W, Munekata T, Matsunaga T, Harada M. Interplay between Interparticle Potential and Adsorption Structure in Nanoparticle Dispersions with Polymer Addition as Displayed by Small-Angle Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7503-7512. [PMID: 34110836 DOI: 10.1021/acs.langmuir.1c00968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of polymer adsorption on the dispersion stability of particles is an important subject applicable to various manufacturing processes. In this study, small-angle scattering was used to examine the relationship between interparticle potential and polymer adsorption in dispersions of nanoparticles with an 81 Å radius containing two types of polymers. Small-angle X-ray scattering (SAXS) measurements in a silica/polyacrylamide (PAAm) system showed an increase in interparticle attractive interactions as PAAm concentration was increased. In a silica/poly(ethylene oxide) (PEO) system, the correlation between PEO concentration and interparticle potential strength became negligible at higher concentrations. Hence, the contrast variation small-angle neutron scattering (CV-SANS) method was employed to evaluate the interparticle potential and polymer adsorption simultaneously. CV-SANS revealed that PAAm was adsorbed to silica particles with a polymer shell layer thickness of 186 Å. The attractive potential observed in the absorbed layer region can be attributed to bridging PAAm molecules between the silica particles. By contrast, CV-SANS of the silica/PEO system indicated a low-polymer-concentration layer with a thickness of 34 Å around silica particles, indicating weak adsorption of PEO molecules. Negligible interaction between PEO and silica particles was assumed to be the origin of the depletion stabilization from excess polymer addition. Thus, quantitative analyses conducted using SAXS and CV-SANS measurements for the first time clearly demonstrated a difference in the adsorption structure of the polymer, which induces changes in the interaction potential between nanoparticles.
Collapse
Affiliation(s)
- Takumi Kusano
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Naomi Kumano
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Wataru Yoshimune
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Toshihisa Munekata
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Takuro Matsunaga
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Masashi Harada
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
8
|
Safinya CR, Chung PJ, Song C, Li Y, Miller HP, Choi MC, Raviv U, Ewert KK, Wilson L, Feinstein SC. Minireview - Microtubules and Tubulin Oligomers: Shape Transitions and Assembly by Intrinsically Disordered Protein Tau and Cationic Biomolecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15970-15978. [PMID: 31539262 PMCID: PMC6988848 DOI: 10.1021/acs.langmuir.9b02208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this minireview, which is part of a special issue in honor of Jacob N. Israelachvili's remarkable research career on intermolecular forces and interfacial science, we present studies of structures, phase behavior, and forces in reaction mixtures of microtubules (MTs) and tubulin oligomers with either intrinsically disordered protein (IDP) Tau, cationic vesicles, or the polyamine spermine (4+). Bare MTs consist of 13 protofilaments (PFs), on average, where each PF is made of a linear stack of αβ-tubulin dimers (i.e., tubulin oligomers). We begin with a series of experiments which demonstrate the flexibility of PFs toward shape changes in response to local environmental cues. First, studies show that MT-associated protein (MAP) Tau controls the diameter of microtubules upon binding to the outer surface, implying a shape change in the cross-sectional area of PFs forming the MT perimeter. The diameter of a MT may also be controlled by the charge density of a lipid bilayer membrane that coats the outer surface. We further describe an experimental study where it is unexpectedly found that the biologically relevant polyamine spermine (+4e) is able to depolymerize taxol-stabilized microtubules with efficiency that increases with decreasing temperature. This MT destabilization drives a dynamical structural transition where inside-out curving of PFs, during the depolymerization peeling process, is followed by reassembly of ring-like curved PF building blocks into an array of helical inverted tubulin tubules. We finally turn to a very recent study on pressure-distance measurements in bundles of MTs employing the small-angle X-ray scattering (SAXS)-osmotic pressure technique, which complements the surface-forces-apparatus technique developed by Jacob N. Israelachvili. These latter studies are among the very few which are beginning to shed light on the precise nature of the interactions between MTs mediated by MAP Tau in 37 °C reaction mixtures containing GTP and lacking taxol.
Collapse
Affiliation(s)
- Cyrus R. Safinya
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Peter J. Chung
- James Franck Institute and Department of Chemistry, University of Chicago, Illinois 60637, USA
| | - Chaeyeon Song
- Amorepacific Corporation R&D Center, Yongin 17074, Republic of Korea
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Herbert P. Miller
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Kai K. Ewert
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Leslie Wilson
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Stuart C. Feinstein
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
9
|
McKibben KM, Rhoades E. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain. J Biol Chem 2019; 294:19381-19394. [PMID: 31699899 DOI: 10.1074/jbc.ra119.010172] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/06/2019] [Indexed: 11/06/2022] Open
Abstract
Tau is an intrinsically disordered, microtubule-associated protein that has a role in regulating microtubule dynamics. Despite intensive research, the molecular mechanisms of Tau-mediated microtubule polymerization are poorly understood. Here we used single-molecule fluorescence to investigate the role of Tau's N-terminal domain (NTD) and proline-rich region (PRR) in regulating interactions of Tau with soluble tubulin. We assayed both full-length Tau isoforms and truncated variants for their ability to bind soluble tubulin and stimulate microtubule polymerization. We found that Tau's PRR is an independent tubulin-binding domain that has tubulin polymerization capacity. In contrast to the relatively weak interactions with tubulin mediated by sites distributed throughout Tau's microtubule-binding region (MTBR), resulting in heterogeneous Tau: tubulin complexes, the PRR bound tubulin tightly and stoichiometrically. Moreover, we demonstrate that interactions between the PRR and MTBR are reduced by the NTD through a conserved conformational ensemble. On the basis of these results, we propose that Tau's PRR can serve as a core tubulin-binding domain, whereas the MTBR enhances polymerization capacity by increasing the local tubulin concentration. Moreover, the NTD appears to negatively regulate tubulin-binding interactions of both of these domains. The findings of our study draw attention to a central role of the PRR in Tau function and provide mechanistic insight into Tau-mediated polymerization of tubulin.
Collapse
Affiliation(s)
- Kristen M McKibben
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Elizabeth Rhoades
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104 .,Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Brosey CA, Tainer JA. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struct Biol 2019; 58:197-213. [PMID: 31204190 PMCID: PMC6778498 DOI: 10.1016/j.sbi.2019.04.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
Abstract
Small-angle X-ray scattering (SAXS) has emerged as an enabling integrative technique for comprehensive analyses of macromolecular structures and interactions in solution. Over the past two decades, SAXS has become a mainstay of the structural biologist's toolbox, supplying multiplexed measurements of molecular shape and dynamics that unveil biological function. Here, we discuss evolving SAXS theory, methods, and applications that extend the field of small-angle scattering beyond simple shape characterization. SAXS, coupled with size-exclusion chromatography (SEC-SAXS) and time-resolved (TR-SAXS) methods, is now providing high-resolution insight into macromolecular flexibility and ensembles, delineating biophysical landscapes, and facilitating high-throughput library screening to assess macromolecular properties and to create opportunities for drug discovery. Looking forward, we consider SAXS in the integrative era of hybrid structural biology methods, its potential for illuminating cellular supramolecular and mesoscale structures, and its capacity to complement high-throughput bioinformatics sequencing data. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Chris A Brosey
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Chakraborty I, Rahamim G, Avinery R, Roichman Y, Beck R. Nanoparticle Mobility over a Surface as a Probe for Weak Transient Disordered Peptide-Peptide Interactions. NANO LETTERS 2019; 19:6524-6534. [PMID: 31456409 DOI: 10.1021/acs.nanolett.9b02764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Weak interactions form the core basis of a vast number of biological processes, in particular, those involving intrinsically disordered proteins. Here, we establish a new technique capable of probing these weak interactions between synthetic unfolded polypeptides using a convenient yet efficient, quantitative method based on single particle tracking of peptide-coated gold nanoparticles over peptide-coated surfaces. We demonstrate that our technique is sensitive enough to observe the influence of a single amino acid mutation on the transient peptide-peptide interactions. Furthermore, the effects of buffer salinity, which are expected to alter weak electrostatic interactions, are also readily detected and examined in detail. The method presented here has the potential to evaluate, in a high-throughput manner, weak interactions for a wide range of disordered proteins, polypeptides, and other biomolecules.
Collapse
Affiliation(s)
| | - Gil Rahamim
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Ram Avinery
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Yael Roichman
- School of Chemistry , Tel Aviv University , Tel Aviv 6997801 , Israel
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Roy Beck
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| |
Collapse
|
12
|
Perini G, Ciasca G, Minelli E, Papi M, Palmieri V, Maulucci G, Nardini M, Latina V, Corsetti V, Florenzano F, Calissano P, De Spirito M, Amadoro G. Dynamic structural determinants underlie the neurotoxicity of the N-terminal tau 26-44 peptide in Alzheimer's disease and other human tauopathies. Int J Biol Macromol 2019; 141:278-289. [PMID: 31470053 DOI: 10.1016/j.ijbiomac.2019.08.220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
The intrinsically disordered tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and other human tauopathies. Abnormal post-translational modifications of tau, such as truncation, are causally involved in the onset/development of these neurodegenerative diseases. In this context, the AD-relevant N-terminal fragment mapping between 26 and 44 amino acids of protein (tau26-44) is interesting, being endowed with potent neurotoxic effects in vitro and in vivo. However, the understanding of the mechanism(s) of tau26-44 toxicity is a challenging task because, similarly to the full-length tau, it does not have a unique 3D structure but exists as dynamic ensemble of conformations. Here we use Atomic Force Spectroscopy, Small Angle X-ray Scattering and Molecular Dynamics simulation to gather structural and functional information on the tau26-44. We highlight the presence, the type and the location of its temporary secondary structures and we unveil the occurrence of relevant transient tertiary conformations that could contribute to tau26-44 toxicity. Data are compared with those obtained on the biologically-inactive, reverse-sequence (tau44-26 peptide) which has the same mass, charge, aminoacidic composition as well as the same overall unfolded character of tau26-44.
Collapse
Affiliation(s)
- Giordano Perini
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Gabriele Ciasca
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy.
| | - Eleonora Minelli
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Massimiliano Papi
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Valentina Palmieri
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Giuseppe Maulucci
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Matteo Nardini
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Veronica Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Marco De Spirito
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico A. Gemelli IRCCS, Roma, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
13
|
Melková K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Škrabana R, Zweckstetter M, Ringkjøbing Jensen M, Blackledge M, Žídek L. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules 2019; 9:biom9030105. [PMID: 30884818 PMCID: PMC6468450 DOI: 10.3390/biom9030105] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.
Collapse
Affiliation(s)
- Kateřina Melková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Vojtěch Zapletal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Subhash Narasimhan
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Séverine Jansen
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Rostislav Škrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, 811 02 Bratislava, Slovakia.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | - Lukáš Žídek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Fink L, Tekoah R, Levartovsky Y, Khaykelson D, Dharan R, Fellig A, Raviv U. D+: software for high-resolution hierarchical modeling of solution X-ray scattering from complex structures. J Appl Crystallogr 2019; 52:219-242. [PMID: 31057345 PMCID: PMC6495662 DOI: 10.1107/s1600576718018046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
This paper presents the computer program D+ (https://scholars.huji.ac.il/uriraviv/book/d-0), where the reciprocal-grid (RG) algorithm is implemented. D+ efficiently computes, at high-resolution, the X-ray scattering curves from complex structures that are isotropically distributed in random orientations in solution. Structures are defined in hierarchical trees in which subunits can be represented by geometric or atomic models. Repeating subunits can be docked into their assembly symmetries, describing their locations and orientations in space. The scattering amplitude of the entire structure can be calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the RGs of the larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures (containing over 100 protein subunits), a hybrid method can be used to avoid numerical artifacts. In the hybrid method, only grids of smaller subunits are summed and used as subunits in a direct computation of the scattering amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray scattering data. This article describes how D+ applies the RG algorithm, accounts for rotations and translations of subunits, processes atomic models, accounts for the contribution of the solvent as well as the solvation layer of complex structures in a scalable manner, writes and accesses RGs, interpolates between grid points, computes numerical integrals, enables the use of scripts to define complicated structures, applies fitting algorithms, accounts for several coexisting uncorrelated populations, and accelerates computations using GPUs. D+ may also account for different X-ray energies to analyze anomalous solution X-ray scattering data. An accessory tool that can identify repeating subunits in a Protein Data Bank file of a complex structure is provided. The tool can compute the orientation and translation of repeating subunits needed for exploiting the advantages of the RG algorithm in D+. A Python wrapper (https://scholars.huji.ac.il/uriraviv/book/python-api) is also available, enabling more advanced computations and integration of D+ with other computational tools. Finally, a large number of tests are presented. The results of D+ are compared with those of other programs when possible, and the use of D+ to analyze solution scattering data from dynamic microtubule structures with different protofilament number is demonstrated. D+ and its source code are freely available for academic users and developers (https://bitbucket.org/uriraviv/public-dplus/src/master/).
Collapse
Affiliation(s)
- Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Lea Fink
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Roee Tekoah
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Daniel Khaykelson
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Amos Fellig
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| |
Collapse
|
15
|
Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Fink L, Tekoah R, Levartovsky Y, Khaykelson D, Dharan R, Fellig A, Raviv U. D+: software for high-resolution hierarchical modeling of solution X-ray scattering from complex structures. J Appl Crystallogr 2019; 52:219-242. [PMID: 31057345 DOI: 10.26434/chemrxiv.7012622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 05/23/2023] Open
Abstract
This paper presents the computer program D+ (https://scholars.huji.ac.il/uriraviv/book/d-0), where the reciprocal-grid (RG) algorithm is implemented. D+ efficiently computes, at high-resolution, the X-ray scattering curves from complex structures that are isotropically distributed in random orientations in solution. Structures are defined in hierarchical trees in which subunits can be represented by geometric or atomic models. Repeating subunits can be docked into their assembly symmetries, describing their locations and orientations in space. The scattering amplitude of the entire structure can be calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the RGs of the larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures (containing over 100 protein subunits), a hybrid method can be used to avoid numerical artifacts. In the hybrid method, only grids of smaller subunits are summed and used as subunits in a direct computation of the scattering amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray scattering data. This article describes how D+ applies the RG algorithm, accounts for rotations and translations of subunits, processes atomic models, accounts for the contribution of the solvent as well as the solvation layer of complex structures in a scalable manner, writes and accesses RGs, interpolates between grid points, computes numerical integrals, enables the use of scripts to define complicated structures, applies fitting algorithms, accounts for several coexisting uncorrelated populations, and accelerates computations using GPUs. D+ may also account for different X-ray energies to analyze anomalous solution X-ray scattering data. An accessory tool that can identify repeating subunits in a Protein Data Bank file of a complex structure is provided. The tool can compute the orientation and translation of repeating subunits needed for exploiting the advantages of the RG algorithm in D+. A Python wrapper (https://scholars.huji.ac.il/uriraviv/book/python-api) is also available, enabling more advanced computations and integration of D+ with other computational tools. Finally, a large number of tests are presented. The results of D+ are compared with those of other programs when possible, and the use of D+ to analyze solution scattering data from dynamic microtubule structures with different protofilament number is demonstrated. D+ and its source code are freely available for academic users and developers (https://bitbucket.org/uriraviv/public-dplus/src/master/).
Collapse
Affiliation(s)
- Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Lea Fink
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Roee Tekoah
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Daniel Khaykelson
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Amos Fellig
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| |
Collapse
|
16
|
Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It's all about tau. Prog Neurobiol 2018; 175:54-76. [PMID: 30605723 DOI: 10.1016/j.pneurobio.2018.12.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Tau is a protein that is highly enriched in neurons and was originally defined by its ability to bind and stabilize microtubules. However, it is now becoming evident that the functions of tau extend beyond its ability to modulate microtubule dynamics. Tau plays a role in mediating axonal transport, synaptic structure and function, and neuronal signaling pathways. Although tau plays important physiological roles in neurons, its involvement in neurodegenerative diseases, and most prominently in the pathogenesis of Alzheimer disease (AD), has directed the majority of tau studies. However, a thorough knowledge of the physiological functions of tau and its post-translational modifications under normal conditions are necessary to provide the foundation for understanding its role in pathological settings. In this review, we will focus on human tau, summarizing tau structure and organization, as well as its posttranslational modifications associated with physiological processes. We will highlight possible mechanisms involved in mediating the turnover of tau and finally discuss newly elucidated tau functions in a physiological context.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Fabian Cabezas-Opazo
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Carol A Deaton
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Erick H Vergara
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIIA), Santiago, Chile.
| |
Collapse
|
17
|
de Rooij R, Kuhl E. Physical Biology of Axonal Damage. Front Cell Neurosci 2018; 12:144. [PMID: 29928193 PMCID: PMC5997835 DOI: 10.3389/fncel.2018.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022] Open
Abstract
Excessive physical impacts to the head have direct implications on the structural integrity at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury. However, the precise mechanisms of axonal damage remain incompletely understood. Here we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau proteins under external physical forces to the evolution of axonal damage. To propagate damage across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal response to external stretches and stretch rates for varying tau crosslink bond strengths using a discrete axonal damage model. Then, for each combination of stretch rates and bond strengths, we average the axonal force-stretch response of n = 10 discrete simulations, from which we derive and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges naturally from the interplay of physical forces and biological crosslinking. Our study reveals an emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our biophysical damage model can help explain the development and progression of axonal damage across the scales and will provide useful guidelines to identify critical damage level thresholds in response to excessive physical forces.
Collapse
Affiliation(s)
- Rijk de Rooij
- Department of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, United States
| | - Ellen Kuhl
- Department of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
Chung PJ, Song C, Deek J, Miller HP, Li Y, Choi MC, Wilson L, Feinstein SC, Safinya CR. Comparison between 102k and 20k Poly(ethylene oxide) Depletants in Osmotic Pressure Measurements of Interfilament Forces in Cytoskeletal Systems. ACS Macro Lett 2018; 7:228-232. [PMID: 35610898 DOI: 10.1021/acsmacrolett.7b00937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proliferation of successful, cell-free reconstitutions of cytoskeletal networks have prompted measurements of forces between network elements via induced osmotic pressure by the addition of depletants. Indeed, it was through osmotic pressurization that Tau, an intrinsically disordered protein found in neuronal axons, was recently discovered to mediate two distinct microtubule (MT) bundle states, one widely spaced and a second tightly packed, separated by an energy barrier due to polyelectrolyte repulsions between opposing Tau projection domains on neighboring MT surfaces. Here, we compare interfilament force measurements in Tau coated MT bundles using PEO20k (poly(ethylene oxide), Mw = 20000), a commonly used inert depletant, and recently published measurements with PEO102k. While force measurements with either depletant reveals the transition between the two bundled states, measurements with PEO20k cannot recapitulate the correct critical pressure (Pc) at which widely spaced MT bundles transition to tightly packed MT bundles due to depletant penetration into widely spaced bundles below Pc. Surprisingly, upon transitioning to the tightly packed bundle state data from both depletants are in quantitative agreement indicative of expulsion of the smaller PEO20k depletant, but only at distances comparable or less than the PEO20k radius of gyration, significantly smaller than the effective diameter of PEO20k. While PEO102k (with size larger than the wall-to-wall distance between MTs in bundles) can more accurately capture the force response behavior at low to intermediate pressures (<104 Pa), measurements with PEO20k, beyond the overlap regime with PEO102k, extend the achievable osmotic pressure range into the higher-pressure regime (∼5 × 104 Pa). The data underscores the importance of the use of polymeric depletants of different sizes to elucidate force response behavior of cytoskeletal filamentous networks over a more complete extended pressure range.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung Chul Choi
- Department
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|
19
|
The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones. J Neurosci 2017; 38:291-307. [PMID: 29167405 DOI: 10.1523/jneurosci.2281-17.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Proper organization and dynamics of the actin and microtubule (MT) cytoskeleton are essential for growth cone behaviors during axon growth and guidance. The MT-associated protein tau is known to mediate actin/MT interactions in cell-free systems but the role of tau in regulating cytoskeletal dynamics in living neurons is unknown. We used cultures of cortical neurons from postnatal day (P)0-P2 golden Syrian hamsters (Mesocricetus auratus) of either sex to study the role of tau in the organization and dynamics of the axonal growth cone cytoskeleton. Here, using super resolution microscopy of fixed growth cones, we found that tau colocalizes with MTs and actin filaments and is also located at the interface between actin filament bundles and dynamic MTs in filopodia, suggesting that tau links these two cytoskeletons. Live cell imaging in concert with shRNA tau knockdown revealed that reducing tau expression disrupts MT bundling in the growth cone central domain, misdirects trajectories of MTs in the transition region and prevents single dynamic MTs from extending into growth cone filopodia along actin filament bundles. Rescue experiments with human tau expression restored MT bundling, MT penetration into the growth cone periphery and close MT apposition to actin filaments in filopodia. Importantly, we found that tau knockdown reduced axon outgrowth and growth cone turning in Wnt5a gradients, likely due to disorganized MTs that failed to extend into the peripheral domain and enter filopodia. These results suggest an important role for tau in regulating cytoskeletal organization and dynamics during growth cone behaviors.SIGNIFICANCE STATEMENT Growth cones are the motile tips of growing axons whose guidance behaviors require interaction of the dynamic actin and microtubule cytoskeleton. Tau is a microtubule-associated protein that stabilizes microtubules in neurons and in cell-free systems regulates actin-microtubule interaction. Here, using super resolution microscopy, live-cell imaging, and tau knockdown, we show for the first time in living axonal growth cones that tau is important for microtubule bundling and microtubule exploration of the actin-rich growth cone periphery. Importantly tau knockdown reduced axon outgrowth and growth cone turning, due to disorganized microtubules that fail to enter filopodia and co-align with actin filaments. Understanding normal tau functions will be important for identifying mechanisms of tau in neurodegenerative diseases such as Alzheimer's.
Collapse
|
20
|
Donhauser ZJ, Saunders JT, D'Urso DS, Garrett TA. Dimerization and Long-Range Repulsion Established by Both Termini of the Microtubule-Associated Protein Tau. Biochemistry 2017; 56:5900-5909. [PMID: 29039655 DOI: 10.1021/acs.biochem.7b00653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tau is a microtubule-associated protein found in neuronal axons that has several well-known functions, such as promoting microtubule polymerization, stabilizing microtubules against depolymerization, and spatially organizing microtubules in axons. Two contrasting models have been previously described to explain tau's ability to organize the spacing between microtubules: complementary dimerization of the projection domains of taus on adjacent microtubules or tau's projection domain acting as a polyelectrolyte brush. In this study, atomic force microscopy was used to interrogate intermolecular interactions between layers of tau protein immobilized on mica substrates and on silicon nitride atomic force microscope tips. On these surfaces, tau adopts an orientation comparable to that when bound to microtubules, with the basic microtubule binding domain immobilized and the acidic domains extending into solution. Force-distance curves collected via atomic force microscopy reveal that full length human tau, when assembled into dense surface-bound layers, can participate in attractive electrostatic interactions consistent with the previously reported dimerization model. However, modulating the ionic strength of the surrounding solution can change the structure of these layers to produce purely repulsive interactions consistent with a polyelectrolyte brush structure, thus providing biophysical evidence to support both the zipper and brush models. In addition, a pair of projection domain deletion mutants were examined to investigate whether the projection domain of the protein is essential for the dimerization and brush models. Force-distance curves collected on layers of these proteins demonstrate that the C-terminus can play a role analogous to that of the projection domain.
Collapse
Affiliation(s)
- Zachary J Donhauser
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| | - Jared T Saunders
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| | - Dennis S D'Urso
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| | - Teresa A Garrett
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| |
Collapse
|
21
|
Florenzano F, Veronica C, Ciasca G, Ciotti MT, Pittaluga A, Olivero G, Feligioni M, Iannuzzi F, Latina V, Maria Sciacca MF, Sinopoli A, Milardi D, Pappalardo G, Marco DS, Papi M, Atlante A, Bobba A, Borreca A, Calissano P, Amadoro G. Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer's disease and other tauopathies. Oncotarget 2017; 8:64745-64778. [PMID: 29029390 PMCID: PMC5630290 DOI: 10.18632/oncotarget.17371] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.
Collapse
Affiliation(s)
| | | | - Gabriele Ciasca
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Gunedalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Marco Feligioni
- European Brain Research Institute, Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | | | | | | | | | - Danilo Milardi
- Institute of Biostructures and Bioimaging, CNR, Catania, Italy
| | | | - De Spirito Marco
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Borreca
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
22
|
Ginsburg A, Shemesh A, Millgram A, Dharan R, Levi-Kalisman Y, Ringel I, Raviv U. Structure of Dynamic, Taxol-Stabilized, and GMPPCP-Stabilized Microtubule. J Phys Chem B 2017; 121:8427-8436. [PMID: 28820593 DOI: 10.1021/acs.jpcb.7b01057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microtubule (MT) is made of αβ-tubulin heterodimers that dynamically assemble into a hollow nanotube composed of straight protofilaments. MT dynamics is facilitated by hydrolysis of guanosine-5'-triphosphate (GTP) and can be inhibited by either anticancer agents like taxol or the nonhydrolyzable GTP analogues like GMPPCP. Using high-resolution synchrotron X-ray scattering, we have measured and analyzed the scattering curves from solutions of dynamic MT (in other words, in the presence of excess GTP and free of dynamic-inhibiting agents) and examined the effect of two MT stabilizers: taxol and GMPPCP. Previously, we have analyzed the structure of dynamic MT by docking the atomic model of tubulin dimer onto a 3-start left handed helical lattice, derived from the PDB ID 3J6F . 3J6F corresponds to a MT with 14 protofilaments. In this paper, we took into account the possibility of having MT structures containing between 12 and 15 protofilaments. MTs with 12 protofilaments were never observed. We determined the radii, the pitch, and the distribution of protofilament number that best fit the scattering data from dynamic MT or stabilized MT by taxol or GMPPCP. We found that the protofilament number distribution shifted when the MT was stabilized. Taxol increased the mass fraction of MT with 13 protofilaments and decreased the mass fraction of MT with 14 protofilaments. GMPPCP reduced the mass fraction of MT with 15 protofilaments and increased the mass fraction of MT with 14 protofilaments. The pitch, however, remained unchanged regardless of whether the MT was dynamic or stabilized. Higher tubulin concentrations increased the fraction of dynamic MT with 14 protofilaments.
Collapse
Affiliation(s)
- Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel.,Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem , Jerusalem, 9112102, Israel.,Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel.,Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Abigail Millgram
- Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel.,Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel.,Azrieli College of Engineering , Jerusalem, 9103501, Israel
| | - Yael Levi-Kalisman
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem , Jerusalem, 9112102, Israel.,Azrieli College of Engineering , Jerusalem, 9103501, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel.,Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| |
Collapse
|
23
|
Ma X, Hartmann R, Jimenez de Aberasturi D, Yang F, Soenen SJH, Manshian BB, Franz J, Valdeperez D, Pelaz B, Feliu N, Hampp N, Riethmüller C, Vieker H, Frese N, Gölzhäuser A, Simonich M, Tanguay RL, Liang XJ, Parak WJ. Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. ACS NANO 2017; 11:7807-7820. [PMID: 28640995 DOI: 10.1021/acsnano.7b01760] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exposure of cells to colloidal nanoparticles (NPs) can have concentration-dependent harmful effects. Mostly, such effects are monitored with biochemical assays or probes from molecular biology, i.e., viability assays, gene expression profiles, etc., neglecting that the presence of NPs can also drastically affect cellular morphology. In the case of polymer-coated Au NPs, we demonstrate that upon NP internalization, cells undergo lysosomal swelling, alterations in mitochondrial morphology, disturbances in actin and tubulin cytoskeleton and associated signaling, and reduction of focal adhesion contact area and number of filopodia. Appropriate imaging and data treatment techniques allow for quantitative analyses of these concentration-dependent changes. Abnormalities in morphology occur at similar (or even lower) NP concentrations as the onset of reduced cellular viability. Cellular morphology is thus an important quantitative indicator to verify harmful effects of NPs to cells, without requiring biochemical assays, but relying on appropriate staining and imaging techniques.
Collapse
Affiliation(s)
- Xiaowei Ma
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | | | | | | | - Stefaan J H Soenen
- Biomedical MRI Unit/MoSAIC, Catholic University of Leuven , 3000 Leuven, Belgium
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Catholic University of Leuven , 3000 Leuven, Belgium
| | - Jonas Franz
- nAnostic Institute, Center for Nanotechnology, University of Münster , 48149 Münster, Germany
| | | | | | - Neus Feliu
- Department of Laboratory Medicine (LABMED), Karolinska Institutet , SE-17177 Stockholm, Sweden
- Medcom Advance S.A. , 08840 Barcelona, Spain
| | | | | | - Henning Vieker
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Natalie Frese
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Armin Gölzhäuser
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Michael Simonich
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University , Corvallis, Oregon 97331, United States
| | - Robert L Tanguay
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University , Corvallis, Oregon 97331, United States
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | | |
Collapse
|
24
|
Synchrotron small-angle X-ray scattering and electron microscopy characterization of structures and forces in microtubule/Tau mixtures. Methods Cell Biol 2017; 141:155-178. [PMID: 28882300 DOI: 10.1016/bs.mcb.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Tau, a neuronal protein known to bind to microtubules and thereby regulate microtubule dynamic instability, has been shown recently to not only undergo conformational transitions on the microtubule surface as a function of increasing microtubule coverage density (i.e., with increasing molar ratio of Tau to tubulin dimers) but also to mediate higher-order microtubule architectures, mimicking fascicles of microtubules found in the axon initial segment. These discoveries would not have been possible without fine structure characterization of microtubules, with and without applied osmotic pressure through the use of depletants. Herein, we discuss the two primary techniques used to elucidate the structure, phase behavior, and interactions in microtubule/Tau mixtures: transmission electron microscopy and synchrotron small-angle X-ray scattering. While the former is able to provide striking qualitative images of bundle morphologies and vacancies, the latter provides angstrom-level resolution of bundle structures and allows measurements in the presence of in situ probes, such as osmotic depletants. The presented structural characterization methods have been applied both to equilibrium mixtures, where paclitaxel is used to stabilize microtubules, and also to dissipative nonequilibrium mixtures at 37°C in the presence of GTP and lacking paclitaxel.
Collapse
|
25
|
Abramov G, Shaharabani R, Morag O, Avinery R, Haimovich A, Oz I, Beck R, Goldbourt A. Structural Effects of Single Mutations in a Filamentous Viral Capsid Across Multiple Length Scales. Biomacromolecules 2017; 18:2258-2266. [PMID: 28657731 DOI: 10.1021/acs.biomac.7b00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filamentous bacteriophage (phage) are single-stranded DNA viruses that infect bacteria. Single-site mutants of fd phage have been studied by magic-angle spinning nuclear magnetic resonance and by small-angle X-ray scattering. Detailed analysis has been performed that provides insight into structural variations on three length scales. The results, analyzed in conjunction with existing literature data, suggest that a single charge mutation on the capsid surface affects direct interviral interactions but not the structure of individual particles or the macroscale organization. On the other hand, a single hydrophobic mutation located at the hydrophobic interface that stabilizes capsid assembly alters the atomic structure of the phage, mainly affecting intersubunit interactions, affects its macroscale organization, that is, the pitch of the cholesteric liquid crystal formed by the particles, but skips the nanoscale hence does not affect direct interparticle interactions. An X-ray scattering under osmotic pressure assay provides the effective linear charge density of the phage and we obtain values of 0.6 Å-1 and 0.4 Å-1 for fd and M13 phage, respectively. These values agree with a simple consideration of a single cylinder with protein and DNA charges spread according to the most recent atomic-resolution models of the phage.
Collapse
Affiliation(s)
- Gili Abramov
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Rona Shaharabani
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Ram Avinery
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Anat Haimovich
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Inbal Oz
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Roy Beck
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
26
|
|
27
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
28
|
Kandel ME, Teng KW, Selvin PR, Popescu G. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy. ACS NANO 2017; 11:647-655. [PMID: 27997798 DOI: 10.1021/acsnano.6b06945] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to their diameter, of only 24 nm, single microtubules are extremely challenging to image without the use of extrinsic contrast agents. As a result, fluorescence tagging is the common method to visualize their motility. However, such investigation is limited by photobleaching and phototoxicity. We experimentally demonstrate the capability of combining label-free spatial light interference microscopy (SLIM) with numerical processing for imaging single microtubules in a gliding assay. SLIM combines four different intensity images to obtain the optical path length map associated with the sample. Because of the use of broadband fields, the sensitivity to path length is better than 1 nm without (temporal) averaging and better than 0.1 nm upon averaging. Our results indicate that SLIM can image the dynamics of microtubules in a full field of view, of 200 × 200 μm2, over many hours. Modeling the microtubule transport via the diffusion-advection equation, we found that the dispersion relation yields the standard deviation of the velocity distribution, without the need for tracking individual tubes. Interestingly, during a 2 h window, the microtubules begin to decelerate, at 100 pm/s2 over a 20 min period. Thus, SLIM is likely to serve as a useful tool for understanding molecular motor activity, especially over large time scales, where fluorescence methods are of limited utility.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| | - Kai Wen Teng
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| | - Paul R Selvin
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Krieg M, Stühmer J, Cueva JG, Fetter R, Spilker K, Cremers D, Shen K, Dunn AR, Goodman MB. Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. eLife 2017; 6. [PMID: 28098556 PMCID: PMC5298879 DOI: 10.7554/elife.20172] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/17/2017] [Indexed: 12/24/2022] Open
Abstract
Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 β-spectrin, PTL-1 tau/MAP2-like and MEC-7 β-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution, and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress and propose that defects in β-spectrin and tau may sensitize neurons to damage. DOI:http://dx.doi.org/10.7554/eLife.20172.001
Collapse
Affiliation(s)
- Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Chemical Engineering, Stanford University, Stanford, United States
| | - Jan Stühmer
- Department of Informatics, Technical University of Munich, , Germany
| | - Juan G Cueva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Richard Fetter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Kerri Spilker
- Department of Biology, Stanford University, Stanford, United States
| | - Daniel Cremers
- Department of Informatics, Technical University of Munich, , Germany
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, United States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
30
|
Abstract
Tau is an intrinsically disordered protein with an important role in maintaining the dynamic instability of neuronal microtubules. Despite intensive study, a detailed understanding of the functional mechanism of tau is lacking. Here, we address this deficiency by using intramolecular single-molecule Förster Resonance Energy Transfer (smFRET) to characterize the conformational ensemble of tau bound to soluble tubulin heterodimers. Tau adopts an open conformation on binding tubulin, in which the long-range contacts between both termini and the microtubule binding region that characterize its compact solution structure are diminished. Moreover, the individual repeats within the microtubule binding region that directly interface with tubulin expand to accommodate tubulin binding, despite a lack of extension in the overall dimensions of this region. These results suggest that the disordered nature of tau provides the significant flexibility required to allow for local changes in conformation while preserving global features. The tubulin-associated conformational ensemble is distinct from its aggregation-prone one, highlighting differences between functional and dysfunctional states of tau. Using constraints derived from our measurements, we construct a model of tubulin-bound tau, which draws attention to the importance of the role of tau's conformational plasticity in function.
Collapse
|
31
|
Méphon-Gaspard A, Boca M, Pioche-Durieu C, Desforges B, Burgo A, Hamon L, Piétrement O, Pastré D. Role of tau in the spatial organization of axonal microtubules: keeping parallel microtubules evenly distributed despite macromolecular crowding. Cell Mol Life Sci 2016; 73:3745-60. [PMID: 27076215 PMCID: PMC5002045 DOI: 10.1007/s00018-016-2216-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
Abstract
Opposing views have been proposed regarding the role of tau, the principal microtubule-associated protein in axons. On the one hand, tau forms cross-bridges at the interface between microtubules and induces microtubule bundling in neurons. On the other hand, tau is also considered a polymer brush which efficiently separates microtubules. In mature axons, microtubules are indeed arranged in parallel arrays and are well separated from each other. To reconcile these views, we developed a mechanistic model based on in vitro and cellular approaches combined to analytical and numerical analyses. The results indicate that tau forms long-range cross-bridges between microtubules under macromolecular crowding conditions. Tau cross-bridges prevent the redistribution of tau away from the interface between microtubules, which would have occurred in the polymer brush model. Consequently, the short-range attractive force between microtubules induced by macromolecular crowding is avoided and thus microtubules remain well separated from each other. Interestingly, in this unified model, tau diffusion on microtubules enables to keep microtubules evenly distributed in axonal sections at low tau levels.
Collapse
Affiliation(s)
- Alix Méphon-Gaspard
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1204, Université Evry-Val d'Essonne, Evry, 91025, France
| | - Mirela Boca
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1204, Université Evry-Val d'Essonne, Evry, 91025, France
| | - Catherine Pioche-Durieu
- UMR 8126, CNRS, Gustave Roussy Université Paris Sud, Université Paris-Saclay, Villejuif, 94805, France
| | - Bénédicte Desforges
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1204, Université Evry-Val d'Essonne, Evry, 91025, France
| | - Andrea Burgo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1204, Université Evry-Val d'Essonne, Evry, 91025, France
| | - Loic Hamon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1204, Université Evry-Val d'Essonne, Evry, 91025, France
| | - Olivier Piétrement
- UMR 8126, CNRS, Gustave Roussy Université Paris Sud, Université Paris-Saclay, Villejuif, 94805, France
| | - David Pastré
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1204, Université Evry-Val d'Essonne, Evry, 91025, France.
| |
Collapse
|
32
|
Kornreich M, Malka-Gibor E, Zuker B, Laser-Azogui A, Beck R. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins. PHYSICAL REVIEW LETTERS 2016; 117:148101. [PMID: 27740787 DOI: 10.1103/physrevlett.117.148101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 05/02/2023]
Abstract
What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.
Collapse
Affiliation(s)
- Micha Kornreich
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Eti Malka-Gibor
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ben Zuker
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Adi Laser-Azogui
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roy Beck
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Choi MC, Chung PJ, Song C, Miller HP, Kiris E, Li Y, Wilson L, Feinstein SC, Safinya CR. Paclitaxel suppresses Tau-mediated microtubule bundling in a concentration-dependent manner. Biochim Biophys Acta Gen Subj 2016; 1861:3456-3463. [PMID: 27632200 DOI: 10.1016/j.bbagen.2016.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Microtubules (MTs) are protein nanotubes comprised of straight protofilaments (PFs), head to tail assemblies of αβ-tubulin heterodimers. Previously, it was shown that Tau, a microtubule-associated protein (MAP) localized to neuronal axons, regulates the average number of PFs in microtubules with increasing inner radius <RinMT> observed for increasing Tau/tubulin-dimer molar ratio ΦTau at paclitaxel/tubulin-dimer molar ratio ΛPtxl=1/1. METHODS We report a synchrotron SAXS and TEM study of the phase behavior of microtubules as a function of varying concentrations of paclitaxel (1/32≤ΛPtxl≤1/4) and Tau (human isoform 3RS, 0≤Φ3RS≤1/2) at room temperature. RESULTS Tau and paclitaxel have opposing regulatory effects on microtubule bundling architectures and microtubule diameter. Surprisingly and in contrast to previous results at ΛPtxl=1/1 where microtubule bundles are absent, in the lower paclitaxel concentration regime (ΛPtxl≤1/4), we observe both microtubule doublets and triplets with increasing Tau. Furthermore, increasing paclitaxel concentration (up to ΛPtxl=1/1) slightly decreased the average microtubule diameter (by ~1 PF) while increasing Tau concentration (up to Φ3RS=1/2) significantly increased the diameter (by ~2-3 PFs). CONCLUSIONS The suppression of Tau-mediated microtubule bundling with increasing paclitaxel is consistent with paclitaxel seeding more, but shorter, microtubules by rapidly exhausting tubulin available for polymerization. Microtubule bundles require the aggregate Tau-Tau attractions along the microtubule length to overcome individual microtubule thermal energies disrupting bundles. GENERAL SIGNIFICANCE Investigating MAP-mediated interactions between microtubules (as it relates to in vivo behavior) requires the elimination or minimization of paclitaxel.
Collapse
Affiliation(s)
- Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Peter J Chung
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Chaeyeon Song
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Herbert P Miller
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - E Kiris
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Leslie Wilson
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
34
|
Niewidok B, Igaev M, Sündermann F, Janning D, Bakota L, Brandt R. Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes. Mol Biol Cell 2016; 27:3537-3549. [PMID: 27582388 PMCID: PMC5221586 DOI: 10.1091/mbc.e16-06-0402] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
A refined FDAP approach is used to analyze tau’s behavior in axon-like processes. A conserved C-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau’s microtubule interaction. The results contribute to an understanding of pathological processes that lead to tau’s redistribution during disease. A current challenge of cell biology is to investigate molecular interactions in subcellular compartments of living cells to overcome the artificial character of in vitro studies. To dissect the interaction of the neuronal microtubule (MT)-associated protein tau with MTs in axon-like processes, we used a refined fluorescence decay after photoactivation approach and single-molecule tracking. We found that isoform variation had only a minor influence on the tau–MT interaction, whereas the presence of a C-terminal pseudorepeat region (PRR) greatly increased MT binding by a greater-than-sixfold reduction of the dissociation rate. Bioinformatic analysis revealed that the PRR contained a highly conserved motif of 18 amino acids. Disease-associated tau mutations in the PRR (K369I, G389R) did not influence apparent MT binding but increased its dynamicity. Simulation of disease-like tau hyperphosphorylation dramatically diminished the tau–MT interaction by a greater-than-fivefold decrease of the association rate with no major change in the dissociation rate. Apparent binding of tau to MTs was similar in axons and dendrites but more sensitive to increased phosphorylation in axons. Our data indicate that under the conditions of high MT density that prevail in the axon, tau’s MT binding and localization are crucially affected by the presence of the PRR and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Benedikt Niewidok
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Maxim Igaev
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Dennis Janning
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
35
|
Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Ringel I, Raviv U. Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution. J Chem Inf Model 2016; 56:1518-27. [DOI: 10.1021/acs.jcim.6b00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Israel Ringel
- Azrieli College of Engineering, Jerusalem 9103501, Israel
| | | |
Collapse
|
36
|
Tau mediates microtubule bundle architectures mimicking fascicles of microtubules found in the axon initial segment. Nat Commun 2016; 7:12278. [PMID: 27452526 PMCID: PMC4962469 DOI: 10.1038/ncomms12278] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/17/2016] [Indexed: 11/24/2022] Open
Abstract
Tau, an intrinsically disordered protein confined to neuronal axons, binds to and regulates microtubule dynamics. Although there have been observations of string-like microtubule fascicles in the axon initial segment (AIS) and hexagonal bundles in neurite-like processes in non-neuronal cells overexpressing Tau, cell-free reconstitutions have not replicated either geometry. Here we map out the energy landscape of Tau-mediated, GTP-dependent ‘active' microtubule bundles at 37 °C, as revealed by synchrotron SAXS and TEM. Widely spaced bundles (wall-to-wall distance Dw–w≈25–41 nm) with hexagonal and string-like symmetry are observed, the latter mimicking bundles found in the AIS. A second energy minimum (Dw–w≈16–23 nm) is revealed under osmotic pressure. The wide spacing results from a balance between repulsive forces, due to Tau's projection domain (PD), and a stabilizing sum of transient sub-kBT cationic/anionic charge–charge attractions mediated by weakly penetrating opposing PDs. This landscape would be significantly affected by charge-altering modifications of Tau associated with neurodegeneration. Tau, an intrinsically disordered axonal protein, binds to and regulates microtubule dynamics. Here, the authors use SAXS and electron microscopy to examine the architectures of microtubule bundles, including those mimicking microtubule fascicles in the axon initial segment.
Collapse
|
37
|
Fischer S, Hartl C, Frank K, Rädler JO, Liedl T, Nickel B. Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. NANO LETTERS 2016; 16:4282-7. [PMID: 27184452 PMCID: PMC6544510 DOI: 10.1021/acs.nanolett.6b01335] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Scaffolded DNA origami nanostructures enable the self-assembly of arbitrarily shaped objects with unprecedented accuracy. Yet, varying physiological conditions are prone to induce slight structural changes in the nanoscale architecture. Here, we report on high precision measurements of overall shape and interhelical distance of three prototypic DNA origami structures in solution using synchrotron small-angle X-ray scattering. Sheet-, brick-, and cylinder-shaped DNA constructs were assembled and the shape factors determined with angstrom resolution from fits to the scattering profiles. With decreasing MgCl2 concentration electrostatic swelling of both shape cross section and interhelical DNA spacing of the DNA origami structures is observed. The structures tolerate up to 10% interhelical expansion before they disintegrate. In contrast, with increasing temperature, the cylinder-shaped structures show no thermal expansion in a wide temperature window before they abruptly melt above 50 °C. Details on molecular structure of DNA origami can also be obtained using in-house X-ray scattering equipment and, hence, allow for routine folding and stability testing of DNA-based agents that are designed to operate under varying salt conditions.
Collapse
Affiliation(s)
- Stefan Fischer
- Fakultät für Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Caroline Hartl
- Fakultät für Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Kilian Frank
- Fakultät für Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Joachim O. Rädler
- Fakultät für Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Tim Liedl
- Fakultät für Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Bert Nickel
- Fakultät für Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
38
|
Feinstein HE, Benbow SJ, LaPointe NE, Patel N, Ramachandran S, Do TD, Gaylord MR, Huskey NE, Dressler N, Korff M, Quon B, Cantrell KL, Bowers MT, Lal R, Feinstein SC. Oligomerization of the microtubule-associated protein tau is mediated by its N-terminal sequences: implications for normal and pathological tau action. J Neurochem 2016; 137:939-54. [PMID: 26953146 PMCID: PMC4899250 DOI: 10.1111/jnc.13604] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/10/2016] [Accepted: 03/06/2016] [Indexed: 11/28/2022]
Abstract
Despite extensive structure-function analyses, the molecular mechanisms of normal and pathological tau action remain poorly understood. How does the C-terminal microtubule-binding region regulate microtubule dynamics and bundling? In what biophysical form does tau transfer trans-synaptically from one neuron to another, promoting neurodegeneration and dementia? Previous biochemical/biophysical work led to the hypothesis that tau can dimerize via electrostatic interactions between two N-terminal 'projection domains' aligned in an anti-parallel fashion, generating a multivalent complex capable of interacting with multiple tubulin subunits. We sought to test this dimerization model directly. Native gel analyses of full-length tau and deletion constructs demonstrate that the N-terminal region leads to multiple bands, consistent with oligomerization. Ferguson analyses of native gels indicate that an N-terminal fragment (tau(45-230) ) assembles into heptamers/octamers. Ferguson analyses of denaturing gels demonstrates that tau(45-230) can dimerize even in sodium dodecyl sulfate. Atomic force microscopy reveals multiple levels of oligomerization by both full-length tau and tau(45-230) . Finally, ion mobility-mass spectrometric analyses of tau(106-144) , a small peptide containing the core of the hypothesized dimerization region, also demonstrate oligomerization. Thus, multiple independent strategies demonstrate that the N-terminal region of tau can mediate higher order oligomerization, which may have important implications for both normal and pathological tau action. The microtubule-associated protein tau is essential for neuronal development and maintenance, but is also central to Alzheimer's and related dementias. Unfortunately, the molecular mechanisms underlying normal and pathological tau action remain poorly understood. Here, we demonstrate that tau can homo-oligomerize, providing novel mechanistic models for normal tau action (promoting microtubule growth and bundling, suppressing microtubule shortening) and pathological tau action (poisoning of oligomeric complexes).
Collapse
Affiliation(s)
- H Eric Feinstein
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Sarah J Benbow
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Nichole E LaPointe
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Nirav Patel
- Department of Bioengineering, Department of Mechanical Engineering and Materials Science Graduate Program, University of California, San Diego, California, USA
| | - Srinivasan Ramachandran
- Department of Bioengineering, Department of Mechanical Engineering and Materials Science Graduate Program, University of California, San Diego, California, USA
| | - Thanh D Do
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Michelle R Gaylord
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Noelle E Huskey
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Nicolette Dressler
- Department of Chemistry, Westmont College, Santa Barbara, California, USA
| | - Megan Korff
- Department of Chemistry, Westmont College, Santa Barbara, California, USA
| | - Brady Quon
- Department of Chemistry, Westmont College, Santa Barbara, California, USA
| | | | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Ratnesh Lal
- Department of Bioengineering, Department of Mechanical Engineering and Materials Science Graduate Program, University of California, San Diego, California, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
39
|
|
40
|
Regulation of Microtubule Assembly by Tau and not by Pin1. J Mol Biol 2016; 428:1742-59. [PMID: 26996940 DOI: 10.1016/j.jmb.2016.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/21/2022]
Abstract
The molecular mechanism by which the microtubule-associated protein (MAP) tau regulates the formation of microtubules (MTs) is poorly understood. The activity of tau is controlled via phosphorylation at specific Ser/Thr sites. Of those phosphorylation sites, 17 precede a proline, making them potential recognition sites for the peptidyl-prolyl isomerase Pin1. Pin1 binding and catalysis of phosphorylated tau at the AT180 epitope, which was implicated in Alzheimer's disease, has been reported to be crucial for restoring tau's ability to promote MT polymerization in vitro and in vivo [1]. Surprisingly, we discover that Pin1 does not promote phosphorylated tau-induced MT formation in vitro, refuting the commonly accepted model in which Pin1 binding and catalysis on the A180 epitope restores the function of the Alzheimer's associated phosphorylated tau in tubulin assembly [1, 2]. Using turbidity assays, time-resolved small angle X-ray scattering (SAXS), and time-resolved negative stain electron microscopy (EM), we investigate the mechanism of tau-mediated MT assembly and the role of the Thr231 and Ser235 phosphorylation on this process. We discover novel GTP-tubulin ring-shaped species, which are detectable in the earliest stage of tau-induced polymerization and may play a crucial role in the early nucleation phase of MT assembly. Finally, by NMR and SAXS experiments, we show that the tau molecules must be located on the surface of MTs and tubulin rings during the polymerization reaction. The interaction between tau and tubulin is multipartite, with a high affinity interaction of the four tubulin-binding repeats, and a weaker interaction with the proline-rich sequence and the termini of tau.
Collapse
|