1
|
Parvin S, Aryal A, Yin S, Fell GG, Davids MS, Wu CJ, Letai A. Targeting conditioned media dependencies and FLT-3 in chronic lymphocytic leukemia. Blood Adv 2023; 7:5877-5889. [PMID: 37428863 PMCID: PMC10558618 DOI: 10.1182/bloodadvances.2022008207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
The importance of the stromal microenvironment in chronic lymphocytic leukemia (CLL) pathogenesis and drug resistance is well established. Despite recent advances in CLL therapy, identifying novel ways to disrupt interactions between CLL and its microenvironment may identify new combination partners for the drugs currently in use. To understand the role of microenvironmental factors on primary CLL cells, we took advantage of an observation that conditioned media (CM) collected from stroma was protective of CLL cells from spontaneous cell death ex vivo. The cytokine in the CM-dependent cells that most supports CLL survival in short-term ex vivo culture was CCL2. Pretreatment of CLL cells with anti-CCL2 antibody enhanced venetoclax-mediated killing. Surprisingly, we found a group of CLL samples (9/23 cases) that are less likely to undergo cell death in the absence of CM support. Functional studies revealed that CM-independent (CMI) CLL cells are less sensitive to apoptosis than conventional stroma-dependent CLL. In addition, a majority of the CMI CLL samples (80%) harbored unmutated immunoglobulin heavy-chain variable (IGHV) region. Bulk-RNA sequence analysis revealed upregulation of the focal adhesion and RAS signaling pathways in this group, along with expression of fms-like tyrosine kinase 3 (FLT3) and CD135. Treatment with FLT3 inhibitors caused a significant reduction in cell viability among CMI samples. In summary, we were able to discriminate and target 2 biologically distinct subgroups of CLL based on CM dependence with distinct microenvironmental vulnerabilities.
Collapse
Affiliation(s)
- Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Aditi Aryal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Geoffrey G. Fell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J. Advances in the Xenopus immunome: Diversification, expansion, and contraction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104734. [PMID: 37172665 PMCID: PMC10230362 DOI: 10.1016/j.dci.2023.104734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.
Collapse
Affiliation(s)
- Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Collins N Khwatenge
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eleanor Wise Bellin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yun Tian
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Nivitha Sundararaj
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Polak
- Biology Department, Worcester State University, MA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daron Barnard
- Biology Department, Worcester State University, MA, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marko Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yongming Sang
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Matz H, Taylor RS, Redmond AK, Hill TM, Ruiz Daniels R, Beltran M, Henderson NC, Macqueen DJ, Dooley H. Organized B cell sites in cartilaginous fishes reveal the evolutionary foundation of germinal centers. Cell Rep 2023; 42:112664. [PMID: 37342909 PMCID: PMC10529500 DOI: 10.1016/j.celrep.2023.112664] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/28/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023] Open
Abstract
The absence of germinal centers (GCs) in cartilaginous fishes lies at odds with data showing that nurse sharks can produce robust antigen-specific responses and affinity mature their B cell repertoires. To investigate this apparent incongruity, we performed RNA sequencing on single nuclei, allowing us to characterize the cell types present in the nurse shark spleen, and RNAscope to provide in situ cellular resolution of key marker gene expression following immunization with R-phycoerythrin (PE). We tracked PE to the splenic follicles where it co-localizes with CXCR5high centrocyte-like B cells and a population of putative T follicular helper (Tfh) cells, surrounded by a peripheral ring of Ki67+ AID+ CXCR4+ centroblast-like B cells. Further, we reveal selection of mutations in B cell clones dissected from these follicles. We propose that the B cell sites identified here represent the evolutionary foundation of GCs, dating back to the jawed vertebrate ancestor.
Collapse
Affiliation(s)
- Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Anthony K Redmond
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Thomas M Hill
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
4
|
Paiola M, Ma S, Robert J. Evolution and Potential Subfunctionalization of Duplicated fms-Related Class III Receptor Tyrosine Kinase flt3s and Their Ligands in the Allotetraploid Xenopus laevis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:960-969. [PMID: 36130129 PMCID: PMC9512362 DOI: 10.4049/jimmunol.2200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022]
Abstract
The fms-related tyrosine kinase 3 (Flt3) and its ligand (Flt3lg) are important regulators of hematopoiesis and dendritic cell (DC) homeostasis with unsettled coevolution. Gene synteny and deduced amino acid sequence analyses identified conserved flt3 gene orthologs across all jawed vertebrates. In contrast, flt3lg orthologs were not retrieved in ray-finned fish, and the gene locus exhibited more variability among species. Interestingly, duplicated flt3/flt3lg genes were maintained in the allotetraploid Xenopus laevis Comparison of modeled structures of X. laevis Flt3 and Flt3lg homoeologs with the related diploid Xenopus tropicalis and with humans indicated a higher conformational divergence between the homoeologous pairs than their respective counterparts. The distinctive developmental and tissue expression patterns of Flt3 and Flt3lg homoeologs in tadpoles and adult frogs suggest a subfunctionalization of these homoeologs. To characterize Flt3 cell surface expression, X. laevis-tagged rFlt3lg.S and rFlt3lg.L were produced. Both rFlt3lg.S and rFlt3lg.L bind in vitro Flt3.S and Flt3.L and can trigger Erk1/2 signaling, which is consistent with a partial overlapping function between homoeologs. In spleen, Flt3.S/L cell surface expression was detected on a fraction of B cells and a population of MHC class IIhigh/CD8+ leukocytes phenotypically similar to the recently described dual follicular/conventional DC-like XL cells. Our result suggests that 1) Flt3lg.S and Flt3lg.L are both involved in XL cell homeostasis and that 2) XL cells have hematopoietic origin. Furthermore, we detected surface expression of the macrophage/monocyte marker Csf1r.S on XL cells as in mammalian and chicken DCs, which points to a common evolutionary origin in vertebrate DCs.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Siyuan Ma
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
5
|
Erlandsson MC, Erdogan S, Wasén C, Andersson KME, Silfverswärd ST, Pullerits R, Bemark M, Bokarewa MI. IGF1R signalling is a guardian of self-tolerance restricting autoantibody production. Front Immunol 2022; 13:958206. [PMID: 36105797 PMCID: PMC9464816 DOI: 10.3389/fimmu.2022.958206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Insulin-like growth factor 1 receptor (IGF1R) acts at the crossroad between immunity and cancer, being an attractive therapeutic target in these areas. IGF1R is broadly expressed by antigen-presenting cells (APC). Using mice immunised with the methylated albumin from bovine serum (BSA-immunised mice) and human CD14+ APCs, we investigated the role that IGF1R plays during adaptive immune responses. Methods The mBSA-immunised mice were treated with synthetic inhibitor NT157 or short hairpin RNA to inhibit IGF1R signalling, and spleens were analysed by immunohistology and flow cytometry. The levels of autoantibody and cytokine production were measured by microarray or conventional ELISA. The transcriptional profile of CD14+ cells from blood of 55 patients with rheumatoid arthritis (RA) was analysed with RNA-sequencing. Results Inhibition of IGF1R resulted in perifollicular infiltration of functionally compromised S256-phosphorylated FoxO1+ APCs, and an increased frequency of IgM+CD21+ B cells, which enlarged the marginal zone (MZ). Enlargement of MHCII+CD11b+ APCs ensured favourable conditions for their communication with IgM+ B cells in the MZ. The reduced expression of ICOSL and CXCR5 by APCs after IGF1R inhibition led to impaired T cell control, which resulted in autoreactivity of extra-follicular B cells and autoantibody production. In the clinical setting, the low expression of IGF1R on CD14+ APCs was associated with an involuted FOXO pathway, non-inflammatory cell metabolism and a high IL10 production characteristic for tolerogenic macrophages. Furthermore, autoantibody positivity was associated with low IGF1R signalling in CD14+ APCs. Conclusions In experimental model and in patient material, this study demonstrates that IGF1R plays an important role in preventing autoimmunity. The study raises awareness of that immune tolerance may be broken during therapeutic IGF1R targeting.
Collapse
Affiliation(s)
- Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Seval Erdogan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Bemark
- Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Maria I. Bokarewa,
| |
Collapse
|
6
|
Flt3 Signaling in B Lymphocyte Development and Humoral Immunity. Int J Mol Sci 2022; 23:ijms23137289. [PMID: 35806293 PMCID: PMC9267047 DOI: 10.3390/ijms23137289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Class III receptor tyrosine kinase Flt3 and its ligand, the Flt3-ligand (FL), play an integral role in regulating the proliferation, differentiation, and survival of multipotent hematopoietic and lymphoid progenitors from which B cell precursors derive in bone marrow (BM). More recently, essential roles for Flt3 signaling in the regulation of peripheral B cell development and affinity maturation have come to light. Experimental findings derived from a multitude of mouse models have reinforced the importance of molecular and cellular regulation of Flt3 and FL in lymphohematopoiesis and adaptive immunity. Here, we provide a comprehensive review of the current state of the knowledge regarding molecular and cellular regulation of Flt3/FL and the roles of Flt3 signaling in hematopoietic stem cell (HSC) activation, lymphoid development, BM B lymphopoiesis, and peripheral B cell development. Cumulatively, the literature has reinforced the importance of Flt3 signaling in B cell development and function. However, it has also identified gaps in the knowledge regarding Flt3-dependent developmental-stage specific gene regulatory circuits essential for steady-state B lymphopoiesis that will be the focus of future studies.
Collapse
|
7
|
Luo W, Liang P, Zhao T, Cheng Q, Liu H, He L, Zhang L, Huang B, Zhang Y, He T, Yang D. Reversely immortalized mouse salivary gland cells presented a promising metabolic and fibrotic response upon BMP9/Gdf2 stimulation. Cell Mol Biol Lett 2022; 27:46. [PMID: 35690719 PMCID: PMC9188258 DOI: 10.1186/s11658-022-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/19/2022] [Indexed: 11/10/2022] Open
Abstract
The submandibular gland (SMG) and the sublingual gland (SLG) are two of the three major salivary glands in mammals. In mice, they are adjacent to each other and open into the oral cavity, producing saliva to lubricate the mouth and aid in food digestion. Though salivary gland dysfunction accompanied with fibrosis and metabolic disturbance is common in clinic, in-depth mechanistic research is lacking. Currently, research on how to rescue salivary function is challenging, as it must resort to using terminally differentiated acinar cells or precursor acinar cells with unknown differentiation. In this study, we established reversely immortalized mouse primary SMG cells (iSMGCs) and SLG cells (iSLGCs) on the first postnatal day (P0). The iSMGCs and iSLGCs grew well, exhibited many salivary gland characteristics, and retained the metabolism-related genes derived from the original tissue as demonstrated using transcriptome sequencing (RNA-seq) analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two cell lines, which overlapped with those of the SMG and SLG, were enriched in cysteine and methionine metabolism. Furthermore, we investigated the role of bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), on metabolic and fibrotic functions in the SMG and SLG. We demonstrated that iSMGCs and iSLGCs presented promising adipogenic and fibrotic responses upon BMP9/Gdf2 stimulation. Thus, our findings indicate that iSMGCs and iSLGCs faithfully reproduce characteristics of SMG and SLG cells and present a promising prospect for use in future study of salivary gland metabolism and fibrosis upon BMP9/Gdf2 stimulation.
Collapse
Affiliation(s)
- Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Tianyu Zhao
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Qianyu Cheng
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Huikai Liu
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Liwen He
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang, 330006, China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Tongchuan He
- Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China. .,Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
8
|
Malmhäll-Bah E, Andersson KME, Erlandsson MC, Akula MK, Brisslert M, Wiel C, El Zowalaty AE, Sayin VI, Bergö MO, Bokarewa MI. Rho-GTPase dependent leukocyte interaction generates pro-inflammatory thymic Tregs and causes arthritis. J Autoimmun 2022; 130:102843. [PMID: 35643017 DOI: 10.1016/j.jaut.2022.102843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022]
Abstract
Conditional mutation of protein geranylgeranyltransferase type I (GGTase-I) in macrophages (GLC) activates Rho-GTPases and causes arthritis in mice. Knocking out Rag1 in GLC mice alleviates arthritis which indicates that lymphocytes are required for arthritis development in those mice. To study GLC dependent changes in the adaptive immunity, we isolated CD4+ T cells from GLC mice (CD4+GLCs). Spleen and joint draining lymph nodes (dLN) CD4+GLCs exhibited high expression of Cdc42 and Rac1, which repressed the caudal HOXA proteins and activated the mechanosensory complex to facilitate migration. These CDC42/RAC1 rich CD4+GLCs presented a complete signature of GARP+NRP1+IKZF2+FOXP3+ regulatory T cells (Tregs) of thymic origin. Activation of the β-catenin/Lef1 axis promoted a pro-inflammatory Th1 phenotype of Tregs, which was strongly associated with arthritis severity. Knockout of Cdc42 in macrophages of GLC mice affected CD4+ cell biology and triggered development of non-thymic Tregs. Knockout of Rac1 and RhoA had no such effects on CD4+ cells although it alleviated arthritis in GLC mice. Disrupting macrophage and T cell interaction with CTLA4 fusion protein reduced the Th1-driven inflammation and enrichment of thymic Tregs into dLNs. Antigen challenge reinforced the CD4+GLC phenotype in non-arthritic heterozygote GLC mice and increased accumulation of Rho-GTPase expressing thymic Tregs in dLNs. Our study demonstrates an unexpected role of macrophages in stimulating the development of pro-inflammatory thymic Tregs and reveal activation of Rho-GTPases behind their arthritogenic phenotype.
Collapse
Affiliation(s)
- Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden
| | - Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 16, 41346, Gothenburg, Sweden
| | - Murali K Akula
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brisslert
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden
| | - Clotilde Wiel
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Ahmed E El Zowalaty
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Volkan I Sayin
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Martin O Bergö
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, 14183, Huddinge, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 16, 41346, Gothenburg, Sweden.
| |
Collapse
|
9
|
Fu Y, Wang Z, Yu B, Lin Y, Huang E, Liu R, Zhao C, Lu M, Xu W, Liu H, Liu Y, Wang L, Chu Y. Intestinal CD11b + B Cells Ameliorate Colitis by Secreting Immunoglobulin A. Front Immunol 2021; 12:697725. [PMID: 34804004 PMCID: PMC8595478 DOI: 10.3389/fimmu.2021.697725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal mucosal immune environment requires multiple immune cells to maintain homeostasis. Although intestinal B cells are among the most important immune cells, little is known about the mechanism that they employ to regulate immune homeostasis. In this study, we found that CD11b+ B cells significantly accumulated in the gut lamina propria and Peyer's patches in dextran sulfate sodium-induced colitis mouse models and patients with ulcerative colitis. Adoptive transfer of CD11b+ B cells, but not CD11b-/- B cells, effectively ameliorated colitis and exhibited therapeutic effects. Furthermore, CD11b+ B cells were found to produce higher levels of IgA than CD11b- B cells. CD11b deficiency in B cells dampened IgA production, resulting in the loss of their ability to ameliorate colitis. Mechanistically, CD11b+ B cells expressed abundant TGF-β and TGF-β receptor II, as well as highly activate phosphorylated Smad2/3 signaling pathway, consequently promoting the class switch to IgA. Collectively, our findings demonstrate that CD11b+ B cells are essential intestinal suppressive immune cells and the primary source of intestinal IgA, which plays an indispensable role in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiming Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuli Lin
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Enyu Huang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chujun Zhao
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Cueto FJ, Sancho D. The Flt3L/Flt3 Axis in Dendritic Cell Biology and Cancer Immunotherapy. Cancers (Basel) 2021; 13:1525. [PMID: 33810248 PMCID: PMC8037622 DOI: 10.3390/cancers13071525] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) prime anti-tumor T cell responses in tumor-draining lymph nodes and can restimulate T effector responses in the tumor site. Thus, in addition to unleashing T cell effector activity, current immunotherapies should be directed to boost DC function. Herein, we review the potential function of Flt3L as a tool for cancer immunotherapy. Flt3L is a growth factor that acts in Flt3-expressing multipotent progenitors and common lymphoid progenitors. Despite the broad expression of Flt3 in the hematopoietic progenitors, the main effect of the Flt3/Flt3L axis, revealed by the characterization of mice deficient in these genes, is the generation of conventional DCs (cDCs) and plasmacytoid DCs (pDCs). However, Flt3 signaling through PI3K and mTOR may also affect the function of mature DCs. We recapitulate the use of Flt3L in preclinical studies either as a single agent or in combination with other cancer therapies. We also analyze the use of Flt3L in clinical trials. The strong correlation between type 1 cDC (cDC1) infiltration of human cancers with overall survival in many cancer types suggests the potential use of Flt3L to boost expansion of this DC subset. However, this may need the combination of Flt3L with other immunomodulatory agents to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Francisco J. Cueto
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
11
|
Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain 2020; 143:266-288. [PMID: 31848580 DOI: 10.1093/brain/awz363] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.
Collapse
Affiliation(s)
- Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jack C Reidling
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Reguera-Nuñez E, Man S, Xu P, Hilberg F, Kerbel RS. Variable impact of three different antiangiogenic drugs alone or in combination with chemotherapy on multiple bone marrow-derived cell populations involved in angiogenesis and immunity. Angiogenesis 2019; 22:535-546. [DOI: 10.1007/s10456-019-09677-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
13
|
Tsapogas P, Mooney CJ, Brown G, Rolink A. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:E1115. [PMID: 28538663 PMCID: PMC5485939 DOI: 10.3390/ijms18061115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
The cytokine Fms-like tyrosine kinase 3 ligand (FL) is an important regulator of hematopoiesis. Its receptor, Flt3, is expressed on myeloid, lymphoid and dendritic cell progenitors and is considered an important growth and differentiation factor for several hematopoietic lineages. Activating mutations of Flt3 are frequently found in acute myeloid leukemia (AML) patients and associated with a poor clinical prognosis. In the present review we provide an overview of our current knowledge on the role of FL in the generation of blood cell lineages. We examine recent studies on Flt3 expression by hematopoietic stem cells and its potential instructive action at early stages of hematopoiesis. In addition, we review current findings on the role of mutated FLT3 in leukemia and the development of FLT3 inhibitors for therapeutic use to treat AML. The importance of mouse models in elucidating the role of Flt3-ligand in normal and malignant hematopoiesis is discussed.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| | - Ciaran James Mooney
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Geoffrey Brown
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| |
Collapse
|