1
|
Kalaitzidou C, Grekas G, Zilian A, Makridakis C, Rosakis P. Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions. PLoS Comput Biol 2024; 20:e1012238. [PMID: 38950077 PMCID: PMC11244807 DOI: 10.1371/journal.pcbi.1012238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/12/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024] Open
Abstract
We present a new model and extensive computations that explain the dramatic remodelling undergone by a fibrous collagen extracellular matrix (ECM), when subjected to contractile mechanical forces from embedded cells or cell clusters. This remodelling creates complex patterns, comprising multiple narrow localised bands of severe densification and fiber alignment, extending far into the ECM, often joining distant cells or cell clusters (such as tumours). Most previous models cannot capture this behaviour, as they assume stable mechanical fiber response with stress an increasing function of fiber stretch, and a restriction to small displacements. Our fully nonlinear network model distinguishes between two types of single-fiber nonlinearity: fibers that undergo stable (supercritical) buckling (as in previous work) versus fibers that suffer unstable (subcritical) buckling collapse. The model allows unrestricted, arbitrarily large displacements (geometric nonlinearity). Our assumptions on single-fiber instability are supported by recent simulations and experiments on buckling of individual beams with a hierarchical microstructure, such as collagen fibers. We use simple scenarios to illustrate, for the first time, two distinct compressive-instability mechanisms at work in our model: unstable buckling collapse of single fibers, and snap-through of multiple-fiber groups. The latter is possible even when single fibers are stable. Through simulations of large fiber networks, we show how these instabilities lead to spatially extended patterns of densification, fiber alignment and ECM remodelling induced by cell contraction. Our model is simple, but describes a very complex, multi-stable energy landscape, using sophisticated numerical optimisation methods that overcome the difficulties caused by instabilities in large systems. Our work opens up new ways of understanding the unique biomechanics of fibrous-network ECM, by fully accounting for nonlinearity and associated loss of stability in fiber networks. Our results provide new insights on tumour invasion and metastasis.
Collapse
Affiliation(s)
- Chrysovalantou Kalaitzidou
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg
| | - Georgios Grekas
- Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Andreas Zilian
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg
| | - Charalambos Makridakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece
- Department of Mathematics, MPS, University of Sussex, Brighton, United Kingdom
| | - Phoebus Rosakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece
| |
Collapse
|
2
|
Ang I, Yousafzai MS, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioeng 2024; 8:026109. [PMID: 38706957 PMCID: PMC11069407 DOI: 10.1063/5.0191765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.
Collapse
Affiliation(s)
- Ida Ang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Goren S, Ergaz B, Barak D, Sorkin R, Lesman A. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy. Acta Biomater 2024; 181:272-281. [PMID: 38685460 DOI: 10.1016/j.actbio.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Semiflexible fiber gels such as collagen and fibrin have unique nonlinear mechanical properties that play an important role in tissue morphogenesis, wound healing, and cancer metastasis. Optical tweezers microrheology has greatly contributed to the understanding of the mechanics of fibrous gels at the microscale, including its heterogeneity and anisotropy. However, the explicit relationship between micromechanical properties and gel deformation has been largely overlooked. We introduce a unique gel-stretching apparatus and employ it to study the relationship between microscale strain and stiffening in fibrin and collagen gels, focusing on the development of anisotropy in the gel. We find that gels stretched by as much as 15 % stiffen significantly both in parallel and perpendicular to the stretching axis, and that the parallel axis is 2-3 times stiffer than the transverse axis. We also measure the stiffening and anisotropy along bands of aligned fibers created by aggregates of cancer cells, and find similar effects as in gels stretched with the tensile apparatus. Our results illustrate that the extracellular microenvironment is highly sensitive to deformation, with implications for tissue homeostasis and pathology. STATEMENT OF SIGNIFICANCE: The inherent fibrous architecture of the extracellular matrix (ECM) gives rise to unique strain-stiffening mechanics. The micromechanics of fibrous networks has been studied extensively, but the deformations involved in its stiffening at the microscale were not quantified. Here we introduce an apparatus that enables measuring the deformations in the gel as it is being stretched while simultaneously using optical tweezers to measure its microscale anisotropic stiffness. We reveal that fibrin and collagen both stiffen dramatically already at ∼10 % deformation, accompanied by the emergence of significant, yet moderate anisotropy. We measure similar stiffening and anisotropy in the matrix remodeled by the tensile apparatus to those found between cancer cell aggregates. Our results emphasize that small strains are enough to introduce substantial stiffening and anisotropy. These have been shown to result in directional cell migration and enhanced force propagation, and possibly control processes like morphogenesis and cancer metastasis.
Collapse
Affiliation(s)
- Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Bar Ergaz
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Daniel Barak
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| | - Ayelet Lesman
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| |
Collapse
|
4
|
Flommersfeld J, Stöberl S, Shah O, Rädler JO, Broedersz CP. Geometry-Sensitive Protrusion Growth Directs Confined Cell Migration. PHYSICAL REVIEW LETTERS 2024; 132:098401. [PMID: 38489624 DOI: 10.1103/physrevlett.132.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
The migratory dynamics of cells can be influenced by the complex microenvironment through which they move. It remains unclear how the motility machinery of confined cells responds and adapts to their microenvironment. Here, we propose a biophysical mechanism for a geometry-dependent coupling between cellular protrusions and the nucleus that leads to directed migration. We apply our model to geometry-guided cell migration to obtain insights into the origin of directed migration on asymmetric adhesive micropatterns and the polarization enhancement of cells observed under strong confinement. Remarkably, for cells that can choose between channels of different size, our model predicts an intricate dependence for cellular decision making as a function of the two channel widths, which we confirm experimentally.
Collapse
Affiliation(s)
- Johannes Flommersfeld
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| | - Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Omar Shah
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| |
Collapse
|
5
|
Golkov R, Shokef Y. Many-body interactions between contracting living cells. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:14. [PMID: 38372851 PMCID: PMC10876807 DOI: 10.1140/epje/s10189-024-00407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The organization of live cells into tissues and their subsequent biological function involves inter-cell mechanical interactions, which are mediated by their elastic environment. To model this interaction, we consider cells as spherical active force dipoles surrounded by an unbounded elastic matrix. Even though we assume that this elastic medium responds linearly, each cell's regulation of its mechanical activity leads to nonlinearities in the emergent interactions between cells. We study the many-body nature of these interactions by considering several geometries that include three or more cells. We show that for different regulatory behaviors of the cells' activity, the total elastic energy stored in the medium differs from the superposition of all two-body interactions between pairs of cells within the system. Specifically, we find that the many-body interaction energy between cells that regulate their position is smaller than the sum of interactions between all pairs of cells in the system, while for cells that do not regulate their position, the many-body interaction is larger than the superposition prediction. Thus, such higher-order interactions should be considered when studying the mechanics of multiple cells in proximity.
Collapse
Affiliation(s)
- Roman Golkov
- Department of Mechanical Engineering, Shamoon College of Engineering, Ashdod, 77245, Israel
| | - Yair Shokef
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
- Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 69978, Israel.
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
6
|
Zakharov A, Awan M, Cheng T, Gopinath A, Lee SJJ, Ramasubramanian AK, Dasbiswas K. Clots reveal anomalous elastic behavior of fiber networks. SCIENCE ADVANCES 2024; 10:eadh1265. [PMID: 38198546 PMCID: PMC10780871 DOI: 10.1126/sciadv.adh1265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The adaptive mechanical properties of soft and fibrous biological materials are relevant to their functionality. The emergence of the macroscopic response of these materials to external stress and intrinsic cell traction from local deformations of their structural components is not well understood. Here, we investigate the nonlinear elastic behavior of blood clots by combining microscopy, rheology, and an elastic network model that incorporates the stretching, bending, and buckling of constituent fibrin fibers. By inhibiting fibrin cross-linking in blood clots, we observe an anomalous softening regime in the macroscopic shear response as well as a reduction in platelet-induced clot contractility. Our model explains these observations from two independent macroscopic measurements in a unified manner, through a single mechanical parameter, the bending stiffness of individual fibers. Supported by experimental evidence, our mechanics-based model provides a framework for predicting and comprehending the nonlinear elastic behavior of blood clots and other active biopolymer networks in general.
Collapse
Affiliation(s)
- Andrei Zakharov
- Department of Physics, University of California, Merced, Merced, CA 95343, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Myra Awan
- Department of Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Terrence Cheng
- Department of Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Arvind Gopinath
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Sang-Joon John Lee
- Department of Mechanical Engineering, San José State University, San José, CA 95192, USA
| | - Anand K. Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
7
|
Najma B, Wei WS, Baskaran A, Foster PJ, Duclos G. Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors. Proc Natl Acad Sci U S A 2024; 121:e2300174121. [PMID: 38175870 PMCID: PMC10786313 DOI: 10.1073/pnas.2300174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/07/2023] [Indexed: 01/06/2024] Open
Abstract
Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.
Collapse
Affiliation(s)
- Bibi Najma
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Wei-Shao Wei
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Peter J. Foster
- Department of Physics, Brandeis University, Waltham, MA02453
| | | |
Collapse
|
8
|
Bernheim-Groswasser A, Livne G, Nardinocchi P, Recrosi F, Teresi L. Interplay between activity, elasticity, and liquid transport in self-contractile biopolymer gels. Phys Rev E 2024; 109:014601. [PMID: 38366464 DOI: 10.1103/physreve.109.014601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
Active gels play an important role in biology and in inspiring biomimetic active materials, due to their ability to change shape, size, and create their own morphology. We study a particular class of active gels, generated by polymerizing actin in the presence of cross-linkers and clusters of myosin as molecular motors, which exhibit large contractions. The relevant mechanics for these highly swollen gels is the result of the interplay between activity and liquid flow: gel activity yields a structural reorganization of the gel network and produces a flow of liquid that eventually exits from the gel boundary. This dynamics inherits lengthscales that are typical of the liquid flow processes. The analyses we present provide insights into the contraction dynamics, and they focus on the effects of the geometry on both gel velocity and fluid flow.
Collapse
Affiliation(s)
| | - Gefen Livne
- Department of Chemical Engineering, Ben-Gurion University, Be'er Sheva 8774624, Israel
| | - Paola Nardinocchi
- Department of Structural Engineering & Geotechnic, Sapienza Università di Roma, 00184 Roma, Italy
| | - Filippo Recrosi
- Department of Structural Engineering & Geotechnic, Sapienza Università di Roma, 00184 Roma, Italy
| | - Luciano Teresi
- Department of Mathematics & Physics, Università Roma Tre, 00146 Roma, Italy
| |
Collapse
|
9
|
Davidson CD, Midekssa FS, DePalma SJ, Kamen JL, Wang WY, Jayco DKP, Wieger ME, Baker BM. Mechanical Intercellular Communication via Matrix-Borne Cell Force Transmission During Vascular Network Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306210. [PMID: 37997199 PMCID: PMC10797481 DOI: 10.1002/advs.202306210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 11/25/2023]
Abstract
Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.
Collapse
Affiliation(s)
| | - Firaol S. Midekssa
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Samuel J. DePalma
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Jordan L. Kamen
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - William Y. Wang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Megan E. Wieger
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Brendon M. Baker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
10
|
Shivers JL, Sharma A, MacKintosh FC. Strain-Controlled Critical Slowing Down in the Rheology of Disordered Networks. PHYSICAL REVIEW LETTERS 2023; 131:178201. [PMID: 37955486 DOI: 10.1103/physrevlett.131.178201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023]
Abstract
Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid (or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computationally and demonstrate its rheological consequences in simulations of strained filament networks and dense suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer networks near the strain stiffening transition.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Abhinav Sharma
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
11
|
Liu JX, Haataja MP, Košmrlj A, Datta SS, Arnold CB, Priestley RD. Liquid-liquid phase separation within fibrillar networks. Nat Commun 2023; 14:6085. [PMID: 37770446 PMCID: PMC10539382 DOI: 10.1038/s41467-023-41528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Complex fibrillar networks mediate liquid-liquid phase separation of biomolecular condensates within the cell. Mechanical interactions between these condensates and the surrounding networks are increasingly implicated in the physiology of the condensates and yet, the physical principles underlying phase separation within intracellular media remain poorly understood. Here, we elucidate the dynamics and mechanics of liquid-liquid phase separation within fibrillar networks by condensing oil droplets within biopolymer gels. We find that condensates constrained within the network pore space grow in abrupt temporal bursts. The subsequent restructuring of condensates and concomitant network deformation is contingent on the fracture of network fibrils, which is determined by a competition between condensate capillarity and network strength. As a synthetic analog to intracellular phase separation, these results further our understanding of the mechanical interactions between biomolecular condensates and fibrillar networks in the cell.
Collapse
Affiliation(s)
- Jason X Liu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Craig B Arnold
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Rodney D Priestley
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
12
|
Nahum A, Koren Y, Ergaz B, Natan S, Miller G, Tamir Y, Goren S, Kolel A, Jagadeeshan S, Elkabets M, Lesman A, Zaritsky A. Inference of long-range cell-cell force transmission from ECM remodeling fluctuations. Commun Biol 2023; 6:811. [PMID: 37537232 PMCID: PMC10400639 DOI: 10.1038/s42003-023-05179-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Cells sense, manipulate and respond to their mechanical microenvironment in a plethora of physiological processes, yet the understanding of how cells transmit, receive and interpret environmental cues to communicate with distant cells is severely limited due to lack of tools to quantitatively infer the complex tangle of dynamic cell-cell interactions in complicated environments. We present a computational method to systematically infer and quantify long-range cell-cell force transmission through the extracellular matrix (cell-ECM-cell communication) by correlating ECM remodeling fluctuations in between communicating cells and demonstrating that these fluctuations contain sufficient information to define unique signatures that robustly distinguish between different pairs of communicating cells. We demonstrate our method with finite element simulations and live 3D imaging of fibroblasts and cancer cells embedded in fibrin gels. While previous studies relied on the formation of a visible fibrous 'band' extending between cells to inform on mechanical communication, our method detected mechanical propagation even in cases where visible bands never formed. We revealed that while contractility is required, band formation is not necessary, for cell-ECM-cell communication, and that mechanical signals propagate from one cell to another even upon massive reduction in their contractility. Our method sets the stage to measure the fundamental aspects of intercellular long-range mechanical communication in physiological contexts and may provide a new functional readout for high content 3D image-based screening. The ability to infer cell-ECM-cell communication using standard confocal microscopy holds the promise for wide use and democratizing the method.
Collapse
Affiliation(s)
- Assaf Nahum
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yoni Koren
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Bar Ergaz
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Sari Natan
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Gad Miller
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yuval Tamir
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Shahar Goren
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Avraham Kolel
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Sankar Jagadeeshan
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel.
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
13
|
Kumar A, Quint DA, Dasbiswas K. Range and strength of mechanical interactions of force dipoles in elastic fiber networks. SOFT MATTER 2023. [PMID: 37470114 DOI: 10.1039/d3sm00381g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Mechanical forces generated by myosin II molecular motors drive diverse cellular processes, most notably shape change, division and locomotion. These forces may be transmitted over long range through the cytoskeletal medium - a disordered, viscoelastic network of biopolymers. The resulting cell size scale force chains can in principle mediate mechanical interactions between distant actomyosin units, leading to self-organized structural order in the cell cytoskeleton. Inspired by such force transmission through elastic structures in the cytoskeleton, we consider a percolated fiber lattice network, where fibers are represented as linear elastic elements that can both bend and stretch, and the contractile activity of myosin motors is represented by force dipoles. Then, by using a variety of metrics, we show how two such contractile force dipoles interact with each other through their mutual mechanical deformations of the elastic fiber network. As a prelude to two-dipole interactions, we quantify how forces propagate through the network from a single anisotropic force dipole by analyzing clusters of nodes connected by highly strained bonds, as well as through the decay rate of strain energy with distance from a force dipole. We show that predominant fiber bending screens out force propagation, resulting in reduced and strongly network configuration-dependent dipole interactions. On the other hand, stretching-dominated networks support longer-ranged inter-dipole interactions that recapitulate the predictions of linear elasticity theory. By characterizing the differences between tensile and compressive force propagation in the fiber network, we show how inter-dipole interaction depends on the dipoles' mutual separation and orientation. The resulting elastic interaction energy may mediate a force between multiple distant dipoles, leading to their self-organization into ordered configurations. This provides a potential pathway for active mechanical force-driven structural order in elastic biopolymer networks.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| | - David A Quint
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
14
|
Tsingos E, Bakker BH, Keijzer KAE, Hupkes HJ, Merks RMH. Hybrid cellular Potts and bead-spring modeling of cells in fibrous extracellular matrix. Biophys J 2023; 122:2609-2622. [PMID: 37183398 PMCID: PMC10397577 DOI: 10.1016/j.bpj.2023.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
The mechanical interaction between cells and the extracellular matrix (ECM) is fundamental to coordinate collective cell behavior in tissues. Relating individual cell-level mechanics to tissue-scale collective behavior is a challenge that cell-based models such as the cellular Potts model (CPM) are well-positioned to address. These models generally represent the ECM with mean-field approaches, which assume substrate homogeneity. This assumption breaks down with fibrous ECM, which has nontrivial structure and mechanics. Here, we extend the CPM with a bead-spring model of ECM fiber networks modeled using molecular dynamics. We model a contractile cell pulling with discrete focal adhesion-like sites on the fiber network and demonstrate agreement with experimental spatiotemporal fiber densification and displacement. We show that at high network cross-linking, contractile cell forces propagate over at least eight cell diameters, decaying with distance with power law exponent n= 0.35 - 0.65 typical of viscoelastic ECMs. Further, we use in silico atomic force microscopy to measure local cell-induced network stiffening consistent with experiments. Our model lays the foundation for investigating how local and long-ranged cell-ECM mechanobiology contributes to multicellular morphogenesis.
Collapse
Affiliation(s)
- Erika Tsingos
- Mathematical Institute, Leiden University, Leiden, the Netherlands.
| | | | - Koen A E Keijzer
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | | | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, the Netherlands; Institute for Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
15
|
Wei M, Ben Zion MY, Dauchot O. Reconfiguration, Interrupted Aging, and Enhanced Dynamics of a Colloidal Gel Using Photoswitchable Active Doping. PHYSICAL REVIEW LETTERS 2023; 131:018301. [PMID: 37478452 DOI: 10.1103/physrevlett.131.018301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
We study quasi-2D gels made of a colloidal network doped with Janus particles activated by light. Following the gel formation, we monitor both the structure and dynamics before, during, and after the activation period. Before activity is switched on, the gel is slowly aging. During the activation, the mobility of the passive particles exhibits a characteristic scale-dependent response, while the colloidal network remains connected, and the gel maintains its structural integrity. Once activity is switched off, the gel stops aging and keeps the memory of the structure inherited from the active phase. Remarkably, the motility remains larger than that of the gel, before the active period. The system has turned into a genuinely softer gel, with frozen dynamics, but with more space for thermal fluctuations. The above conclusions remain valid long after the activity period.
Collapse
Affiliation(s)
- Mengshi Wei
- Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Matan Yah Ben Zion
- School of Physics and Astronomy, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
16
|
Yang H, Berthier E, Li C, Ronceray P, Han YL, Broedersz CP, Cai S, Guo M. Local response and emerging nonlinear elastic length scale in biopolymer matrices. Proc Natl Acad Sci U S A 2023; 120:e2304666120. [PMID: 37252962 PMCID: PMC10265995 DOI: 10.1073/pnas.2304666120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.
Collapse
Affiliation(s)
- Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Estelle Berthier
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Pierre Ronceray
- Aix Marseille University, CNRS, CINAM, Turing Center for Living Systems, 13288Marseille, France
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Chase P. Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
17
|
Ni H, Ni Q, Papoian GA, Trache A, Jiang Y. Myosin and [Formula: see text]-actinin regulation of stress fiber contractility under tensile stress. Sci Rep 2023; 13:8662. [PMID: 37248294 PMCID: PMC10227020 DOI: 10.1038/s41598-023-35675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023] Open
Abstract
Stress fibers are actomyosin bundles that regulate cellular mechanosensation and force transduction. Interacting with the extracellular matrix through focal adhesion complexes, stress fibers are highly dynamic structures regulated by myosin motors and crosslinking proteins. Under external mechanical stimuli such as tensile forces, the stress fiber remodels its architecture to adapt to external cues, displaying properties of viscoelastic materials. How the structural remodeling of stress fibers is related to the generation of contractile force is not well understood. In this work, we simulate mechanochemical dynamics and force generation of stress fibers using the molecular simulation platform MEDYAN. We model stress fiber as two connecting bipolar bundles attached at the ends to focal adhesion complexes. The simulated stress fibers generate contractile force that is regulated by myosin motors and [Formula: see text]-actinin crosslinkers. We find that stress fibers enhance contractility by reducing the distance between actin filaments to increase crosslinker binding, and this structural remodeling ability depends on the crosslinker turnover rate. Under tensile pulling force, the stress fiber shows an instantaneous increase of the contractile forces followed by a slow relaxation into a new steady state. While the new steady state contractility after pulling depends only on the overlap between actin bundles, the short-term contractility enhancement is sensitive to the tensile pulling distance. We further show that this mechanical response is also sensitive to the crosslinker turnover rate. Our results provide new insights into the stress fiber mechanics that have significant implications for understanding cellular adaptation to mechanical signaling.
Collapse
Affiliation(s)
- Haoran Ni
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Qin Ni
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Garegin A. Papoian
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Andreea Trache
- Department of Medical Physiology, Texas A &M University Health Science Center, Bryan, TX, USA
- Department of Biomedical Engineering, Texas A &M University, College Station, TX, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
18
|
Stam S, Gardel ML, Weirich KL. Direct detection of deformation modes on varying length scales in active biopolymer networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540780. [PMID: 37292666 PMCID: PMC10245561 DOI: 10.1101/2023.05.15.540780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Correlated flows and forces that emerge from active matter orchestrate complex processes such as shape regulation and deformations in biological cells and tissues. The active materials central to cellular mechanics are cytoskeletal networks, where molecular motor activity drives deformations and remodeling. Here, we investigate deformation modes in actin networks driven by the molecular motor myosin II through quantitative fluorescence microscopy. We examine the deformation anisotropy at different length scales in networks of entangled, cross-linked, and bundled actin. In sparsely cross-linked networks, we find myosin-dependent biaxial buckling modes across length scales. In cross-linked bundled networks, uniaxial contraction is predominate on long length scales, while the uniaxial or biaxial nature of the deformation depends on bundle microstructure at shorter length scales. The anisotropy of deformations may provide insight to regulation of collective behavior in a variety of active materials.
Collapse
Affiliation(s)
- Samantha Stam
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
| | - Kimberly L Weirich
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634
| |
Collapse
|
19
|
Benoist F, Saggiorato G, Lenz M. Generic stress rectification in nonlinear elastic media. SOFT MATTER 2023; 19:2970-2976. [PMID: 37014008 PMCID: PMC10131159 DOI: 10.1039/d2sm01606k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Stress propagation in nonlinear media is crucial in cell biology, where molecular motors exert anisotropic force dipoles on the fibrous cytoskeleton. While the force dipoles can be either contractile or expansile, a medium made of fibers which buckle under compression rectifies these stresses towards a biologically crucial contraction. A general understanding of this rectification phenomenon as a function of the medium's elasticity is however lacking. Here we use theoretical continuum elasticity to show that rectification is actually a very general effect in nonlinear materials subjected to anisotropic internal stresses. We analytically show that both bucklable and constitutively linear materials subjected to geometrical nonlinearities rectify small forces towards contraction, while granular-like materials rectify towards expansion. Using simulations, we moreover show that these results extend to larger forces. Beyond fiber networks, these results could shed light on the propagation of stresses in brittle or granular materials following a local plastic rearrangement.
Collapse
Affiliation(s)
- Félix Benoist
- Université Paris-Saclay, CNRS, LPTMS, 91400, Orsay, France.
| | | | - Martin Lenz
- Université Paris-Saclay, CNRS, LPTMS, 91400, Orsay, France.
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-, 75005, Paris, France
| |
Collapse
|
20
|
Kroo LA, Bull MS, Prakash M. Active foam: the adaptive mechanics of 2D air-liquid foam under cyclic inflation. SOFT MATTER 2023; 19:2539-2553. [PMID: 36942719 DOI: 10.1039/d3sm00019b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Foam is a canonical example of disordered soft matter where local force balance leads to the competition of many metastable configurations. We present an experimental and theoretical framework for "active foam" where an individual voxel inflates and deflates periodically. Local periodic activity leads to irreversible and reversible T1 transitions throughout the foam, eventually reaching a reversible limit cycle. Individual vertices displace outwards and subsequently return back to their approximate original radial position; this radial displacement follows an inverse law. Surprisingly, each return trajectory does not retrace its outbound path but encloses a finite area, with a clockwise (CW) or counterclockwise (CCW) direction, which we define as a local swirl. These swirls form coherent patterns spanning the scale of the material. Using a dynamical model, we demonstrate that swirl arises from disorder in the local micro-structure. We demonstrate that disorder and strain-rate control a crossover between cooperation and competition between swirls in adjacent vertices. Over 5-10 cycles, the region around the active voxel structurally adapts from a higher-energy metastable state to a lower-energy state, locally ordering and stiffening the structure. The coherent domains of CW/CCW swirl become smaller as the system stabilizes, indicative of a process similar to the Hall-Petch effect. Finally, we introduce a statistical model that evolves edge lengths with a set of rules to explore how this class of materials adapts as a function of initial structure. Adding activity to foam couples structural disorder and adaptive dynamics to encourage the development of a new class of abiotic, cellularized active matter.
Collapse
Affiliation(s)
- L A Kroo
- Department of Mechanical Engineering, Stanford University, USA
| | | | - Manu Prakash
- Department of Bioengineering, Stanford University, USA.
| |
Collapse
|
21
|
Baconnier P, Shohat D, Dauchot O. Discontinuous Tension-Controlled Transition between Collective Actuations in Active Solids. PHYSICAL REVIEW LETTERS 2023; 130:028201. [PMID: 36706411 DOI: 10.1103/physrevlett.130.028201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The recent finding of collective actuation in active solids-solids embedded with active units-is a new promise for the design of multifunctional materials with genuine autonomy, and a better understanding of dense biological systems. Here, we combine the experimental study of centimetric model active solids, the numerical study of an agent-based model, and theoretical arguments to reveal a new form of collective actuation and how mechanical tension can serve as a general mechanism for transitioning between different collective actuation regimes. The presence of hysteresis when varying tension back and forth highlights the nontrivial selectivity of collective actuations.
Collapse
Affiliation(s)
- Paul Baconnier
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Dor Shohat
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Olivier Dauchot
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
22
|
Goren S, Levin M, Brand G, Lesman A, Sorkin R. Probing Local Force Propagation in Tensed Fibrous Gels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202573. [PMID: 36433830 DOI: 10.1002/smll.202202573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Fibrous hydrogels are a key component of soft animal tissues. They support cellular functions and facilitate efficient mechanical communication between cells. Due to their nonlinear mechanical properties, fibrous materials display non-trivial force propagation at the microscale, that is enhanced compared to that of linear-elastic materials. In the body, tissues are constantly subjected to external loads that tense or compress them, modifying their micro-mechanical properties into an anisotropic state. However, it is unknown how force propagation is modified by this isotropic-to-anisotropic transition. Here, force propagation in tensed fibrin hydrogels is directly measured. Local perturbations are induced by oscillating microspheres using optical tweezers. 1-point and 2-point microrheology are combined to simultaneously measure the shear modulus and force propagation. A mathematical framework to quantify anisotropic force propagation trends is suggested. Results show that force propagation becomes anisotropic in tensed gels, with, surprisingly, stronger response to perturbations perpendicular to the axis of tension. Importantly, external tension can also increase the range of force transmission. Possible implications and future directions for research are discussed. These results suggest a mechanism for favored directions of mechanical communication between cells in a tissue under external loads.
Collapse
Affiliation(s)
- Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interactions, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Maayan Levin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Guy Brand
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interactions, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| |
Collapse
|
23
|
Panchenko AY, Tchaicheeyan O, Berinskii IE, Lesman A. Does the Extracellular Matrix Support Cell-Cell Communication by Elastic Wave Packets? ACS Biomater Sci Eng 2022; 8:5155-5170. [PMID: 36346743 DOI: 10.1021/acsbiomaterials.2c01049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular matrix (ECM) is a fibrous network supporting biological cells and provides them a medium for interaction. Cells modify the ECM by applying traction forces, and these forces can propagate to long ranges and establish a mechanism of mechanical communication between neighboring cells. Previous studies have mainly focused on analysis of static force transmission across the ECM. In this study, we explore the plausibility of dynamic mechanical interaction, expressed as vibrations or abrupt fluctuations, giving rise to elastic waves propagating along ECM fibers. We use a numerical mass-spring model to simulate the longitudinal and transversal waves propagating along a single ECM fiber and across a 2D random fiber network. The elastic waves are induced by an active contracting cell (signaler) and received by a passive neighboring cell (receiver). We show that dynamic wave propagation may amplify the signal at the receiver end and support up to an order of magnitude stronger mechanical cues and longer-ranged communication relative to static transmission. Also, we report an optimal impulse duration corresponding to the most effective transmission, as well as extreme fast impulses, in which the waves are encaged around the active cell and do not reach the neighboring cell, possibly due to the Anderson localization effect. Finally, we also demonstrate that extracellular fluid viscosity reduces, but still allows, dynamic propagation along embedded ECM fibers. Our results motivate future biological experiments in mechanobiology to investigate, on the one hand, the mechanosensitivity of cells to dynamic forces traveling and guided by the ECM and, on the other hand, the impact of ECM architecture and remodeling on dynamic force transmission and its spectral filtering, dispersion, and decay.
Collapse
Affiliation(s)
- Artem Y Panchenko
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Igor E Berinskii
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
24
|
Erlich A, Étienne J, Fouchard J, Wyatt T. How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale. Interface Focus 2022; 12:20220038. [PMID: 36330322 PMCID: PMC9560792 DOI: 10.1098/rsfs.2022.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 10/16/2023] Open
Abstract
Cells and tissues change shape both to carry out their function and during pathology. In most cases, these deformations are driven from within the systems themselves. This is permitted by a range of molecular actors, such as active crosslinkers and ion pumps, whose activity is biologically controlled in space and time. The resulting stresses are propagated within complex and dynamical architectures like networks or cell aggregates. From a mechanical point of view, these effects can be seen as the generation of prestress or prestrain, resulting from either a contractile or growth activity. In this review, we present this concept of prestress and the theoretical tools available to conceptualize the statics and dynamics of living systems. We then describe a range of phenomena where prestress controls shape changes in biopolymer networks (especially the actomyosin cytoskeleton and fibrous tissues) and cellularized tissues. Despite the diversity of scale and organization, we demonstrate that these phenomena stem from a limited number of spatial distributions of prestress, which can be categorized as heterogeneous, anisotropic or differential. We suggest that in addition to growth and contraction, a third type of prestress-topological prestress-can result from active processes altering the microstructure of tissue.
Collapse
Affiliation(s)
| | - Jocelyn Étienne
- Université Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France
| | - Jonathan Fouchard
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS (UMR 7622), INSERM (URL 1156), 7 quai Saint Bernard, 75005 Paris, France
| | - Tom Wyatt
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Muresan CG, Sun ZG, Yadav V, Tabatabai AP, Lanier L, Kim JH, Kim T, Murrell MP. F-actin architecture determines constraints on myosin thick filament motion. Nat Commun 2022; 13:7008. [PMID: 36385016 PMCID: PMC9669029 DOI: 10.1038/s41467-022-34715-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Active stresses are generated and transmitted throughout diverse F-actin architectures within the cell cytoskeleton, and drive essential behaviors of the cell, from cell division to migration. However, while the impact of F-actin architecture on the transmission of stress is well studied, the role of architecture on the ab initio generation of stresses remains less understood. Here, we assemble F-actin networks in vitro, whose architectures are varied from branched to bundled through F-actin nucleation via Arp2/3 and the formin mDia1. Within these architectures, we track the motions of embedded myosin thick filaments and connect them to the extent of F-actin network deformation. While mDia1-nucleated networks facilitate the accumulation of stress and drive contractility through enhanced actomyosin sliding, branched networks prevent stress accumulation through the inhibited processivity of thick filaments. The reduction in processivity is due to a decrease in translational and rotational motions constrained by the local density and geometry of F-actin.
Collapse
Affiliation(s)
- Camelia G Muresan
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zachary Gao Sun
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - A Pasha Tabatabai
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Laura Lanier
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - June Hyung Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
26
|
Mondal A, Morrison G. Compression-induced buckling of a semiflexible filament in two and three dimensions. J Chem Phys 2022; 157:104903. [DOI: 10.1063/5.0104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of biologically relevant contexts. For filaments in the low-temperature limit and under a constant compressive force, Euler buckling theory predicts a sudden transition from a compressed to a bent state in these slender rods. In this paper, we use a mean-field theory to show that if a semiflexible chain is compressed at a finite temperature with a fixed end-to-end distance (permitting fluctuations in the compressive forces), it exhibits a continuous phase transition to a buckled state at a critical level of compression. We determine a quantitatively accurate prediction of the transverse position distribution function of the midpoint of the chain that indicates this transition. We find the mean compressive forces are non-monotonic as the extension of the filament varies, consistent with the observation that strongly buckled filaments are less able to bear an external load. We also find that for the fixed extension (isometric) ensemble, the buckling transition does not coincide with the local minimum of the mean force (in contrast to Euler buckling). We also show the theory is highly sensitive to fluctuations in length in two dimensions, and that the buckling transition can still be accurately recovered by accounting for those fluctuations. These predictions may be useful in understanding the behavior of filamentous biomolecules compressed by fluctuating forces, relevant in a variety of biological contexts.
Collapse
Affiliation(s)
- Ananya Mondal
- Physics, University of Houston, United States of America
| | - Greg Morrison
- Physics, University of Houston, United States of America
| |
Collapse
|
27
|
Mechanical coupling of supracellular stress amplification and tissue fluidization during exit from quiescence. Proc Natl Acad Sci U S A 2022; 119:e2201328119. [PMID: 35914175 PMCID: PMC9371707 DOI: 10.1073/pnas.2201328119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Most cells in the human body reside in a dormant state characterized by slow growth and minimal motility. During episodes such as wound healing, stem cell activation, and cancer growth, cells adapt to a more dynamic behavior characterized by proliferation and migration. However, little is known about the mechanical forces controlling the transition from static to motile following exit from dormancy. We demonstrate that keratinocyte monolayers install a mechanical system during dormancy that produces a coordinated burst of intercellular mechanical tension only minutes after dormancy exit. The activated forces are essential for large-scale displacements of otherwise motility-restricted cell sheets. Thus, cells sustain a mechanical system during dormancy that idles in anticipation of cell cycle entry and prompt activation of motion. Cellular quiescence is a state of reversible cell cycle arrest that is associated with tissue dormancy. Timely regulated entry into and exit from quiescence is important for processes such as tissue homeostasis, tissue repair, stem cell maintenance, developmental processes, and immunity. However, little is known about processes that control the mechanical adaption to cell behavior changes during the transition from quiescence to proliferation. Here, we show that quiescent human keratinocyte monolayers sustain an actinomyosin-based system that facilitates global cell sheet displacements upon serum-stimulated exit from quiescence. Mechanistically, exposure of quiescent cells to serum-borne mitogens leads to rapid amplification of preexisting contractile sites, leading to a burst in monolayer tension that subsequently drives large-scale displacements of otherwise motility-restricted monolayers. The stress level after quiescence exit correlates with the level of quiescence depth at the time of activation, and a critical stress magnitude must be reached to overcome the cell sheet displacement barrier. The study shows that static quiescent cell monolayers are mechanically poised for motility, and it identifies global stress amplification as a mechanism for overcoming motility restrictions in confined confluent cell monolayers.
Collapse
|
28
|
Tam AKY, Mogilner A, Oelz DB. F-actin bending facilitates net actomyosin contraction By inhibiting expansion with plus-end-located myosin motors. J Math Biol 2022; 85:4. [PMID: 35788426 PMCID: PMC9252981 DOI: 10.1007/s00285-022-01737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Contraction of actomyosin networks underpins important cellular processes including motility and division. The mechanical origin of actomyosin contraction is not fully-understood. We investigate whether contraction arises on the scale of individual filaments, without needing to invoke network-scale interactions. We derive discrete force-balance and continuum partial differential equations for two symmetric, semi-flexible actin filaments with an attached myosin motor. Assuming the system exists within a homogeneous background material, our method enables computation of the stress tensor, providing a measure of contractility. After deriving the model, we use a combination of asymptotic analysis and numerical solutions to show how F-actin bending facilitates contraction on the scale of two filaments. Rigid filaments exhibit polarity-reversal symmetry as the motor travels from the minus to plus-ends, such that contractile and expansive components cancel. Filament bending induces a geometric asymmetry that brings the filaments closer to parallel as a myosin motor approaches their plus-ends, decreasing the effective spring force opposing motor motion. The reduced spring force enables the motor to move faster close to filament plus-ends, which reduces expansive stress and gives rise to net contraction. Bending-induced geometric asymmetry provides both new understanding of actomyosin contraction mechanics, and a hypothesis that can be tested in experiments.
Collapse
Affiliation(s)
- Alexander K Y Tam
- UniSA STEM, The University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia. .,School of Mathematics and Physics, The University of Queensland, St Lucia Campus, St Lucia, 4072, Queensland, Australia.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, 10012-1185, NY, USA
| | - Dietmar B Oelz
- School of Mathematics and Physics, The University of Queensland, St Lucia Campus, St Lucia, 4072, Queensland, Australia
| |
Collapse
|
29
|
Lemma B, Mitchell NP, Subramanian R, Needleman DJ, Dogic Z. Active Microphase Separation in Mixtures of Microtubules and Tip-Accumulating Molecular Motors. PHYSICAL REVIEW. X 2022; 12:031006. [PMID: 36643940 PMCID: PMC9835929 DOI: 10.1103/physrevx.12.031006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mixtures of filaments and molecular motors form active materials with diverse dynamical behaviors that vary based on their constituents' molecular properties. To develop a multiscale of these materials, we map the nonequilibrium phase diagram of microtubules and tip-accumulating kinesin-4 molecular motors. We find that kinesin-4 can drive either global contractions or turbulentlike extensile dynamics, depending on the concentrations of both microtubules and a bundling agent. We also observe a range of spatially heterogeneous nonequilibrium phases, including finite-sized radial asters, 1D wormlike chains, extended 2D bilayers, and system-spanning 3D active foams. Finally, we describe intricate kinetic pathways that yield microphase separated structures and arise from the inherent frustration between the orientational order of filamentous microtubules and the positional order of tip-accumulating molecular motors. Our work reveals a range of novel active states. It also shows that the form of active stresses is not solely dictated by the properties of individual motors and filaments, but is also contingent on the constituent concentrations and spatial arrangement of motors on the filaments.
Collapse
Affiliation(s)
- Bezia Lemma
- Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Noah P. Mitchell
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Radhika Subramanian
- Molecular Biology Department, Massachusetts General Hospital Boston, Massachusetts 02114, USA
- Genetics Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel J. Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Molecular and Cellular Biology Department, Harvard University, Cambridge, Massachusetts 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Zvonimir Dogic
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
30
|
Ruiz-Franco J, van Der Gucht J. Force Transmission in Disordered Fibre Networks. Front Cell Dev Biol 2022; 10:931776. [PMID: 35846368 PMCID: PMC9280074 DOI: 10.3389/fcell.2022.931776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 01/23/2023] Open
Abstract
Cells residing in living tissues apply forces to their immediate surroundings to promote the restructuration of the extracellular matrix fibres and to transmit mechanical signals to other cells. Here we use a minimalist model to study how these forces, applied locally by cell contraction, propagate through the fibrous network in the extracellular matrix. In particular, we characterize how the transmission of forces is influenced by the connectivity of the network and by the bending rigidity of the fibers. For highly connected fiber networks the stresses spread out isotropically around the cell over a distance that first increases with increasing contraction of the cell and then saturates at a characteristic length. For lower connectivity, however, the stress pattern is highly asymmetric and is characterised by force chains that can transmit stresses over very long distances. We hope that our analysis of force transmission in fibrous networks can provide a new avenue for future studies on how the mechanical feedback between the cell and the ECM is coupled with the microscopic environment around the cells.
Collapse
|
31
|
Jia H, Flommersfeld J, Heymann M, Vogel SK, Franquelim HG, Brückner DB, Eto H, Broedersz CP, Schwille P. 3D printed protein-based robotic structures actuated by molecular motor assemblies. NATURE MATERIALS 2022; 21:703-709. [PMID: 35618822 PMCID: PMC9156402 DOI: 10.1038/s41563-022-01258-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/13/2022] [Indexed: 06/10/2023]
Abstract
Upscaling motor protein activity to perform work in man-made devices has long been an ambitious goal in bionanotechnology. The use of hierarchical motor assemblies, as realized in sarcomeres, has so far been complicated by the challenges of arranging sufficiently high numbers of motor proteins with nanoscopic precision. Here, we describe an alternative approach based on actomyosin cortex-like force production, allowing low complexity motor arrangements in a contractile meshwork that can be coated onto soft objects and locally activated by ATP. The design is reminiscent of a motorized exoskeleton actuating protein-based robotic structures from the outside. It readily supports the connection and assembly of micro-three-dimensional printed modules into larger structures, thereby scaling up mechanical work. We provide an analytical model of force production in these systems and demonstrate the design flexibility by three-dimensional printed units performing complex mechanical tasks, such as microhands and microarms that can grasp and wave following light activation.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Johannes Flommersfeld
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Sven K Vogel
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
32
|
Tauber J, van der Gucht J, Dussi S. Stretchy and disordered: Toward understanding fracture in soft network materials via mesoscopic computer simulations. J Chem Phys 2022; 156:160901. [PMID: 35490006 DOI: 10.1063/5.0081316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Soft network materials exist in numerous forms ranging from polymer networks, such as elastomers, to fiber networks, such as collagen. In addition, in colloidal gels, an underlying network structure can be identified, and several metamaterials and textiles can be considered network materials as well. Many of these materials share a highly disordered microstructure and can undergo large deformations before damage becomes visible at the macroscopic level. Despite their widespread presence, we still lack a clear picture of how the network structure controls the fracture processes of these soft materials. In this Perspective, we will focus on progress and open questions concerning fracture at the mesoscopic scale, in which the network architecture is clearly resolved, but neither the material-specific atomistic features nor the macroscopic sample geometries are considered. We will describe concepts regarding the network elastic response that have been established in recent years and turn out to be pre-requisites to understand the fracture response. We will mostly consider simulation studies, where the influence of specific network features on the material mechanics can be cleanly assessed. Rather than focusing on specific systems, we will discuss future challenges that should be addressed to gain new fundamental insights that would be relevant across several examples of soft network materials.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
33
|
Chang CL, Chin TH, Hsu YC, Hsueh AJ. Whole ovary laparoscopic incisions improve hormonal response and fertility in extremely poor ovarian response patients. J Minim Invasive Gynecol 2022; 29:905-914. [PMID: 35489579 DOI: 10.1016/j.jmig.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
STUDY OBJECTIVE Recent findings have shown mechanical fragmentation of ovarian cortex and ovarian drilling could promote follicle growth in patients with premature ovarian insufficiency (POI) and polycystic ovarian syndrome, respectively. A common element shared by these treatments is the mechanical disturbance of ovarian extracellular matrix (ECM) tissues. We thus hypothesized a simplified whole ovary laparoscopic incision (WOLI) procedure may provide the intrinsic stimuli needed to activate resting follicles in extremely poor ovarian response (EPOR) patients who had negligible chance of becoming pregnant with their own oocytes via modern IVF practice. DESIGN Retrospective pilot study SETTING: The study was conducted in a research medical center in Taiwan. PATIENTS Women who had multiple canceled ovarian stimulation cycles due to the lack of follicle growth were recruited. A total of 6 EPOR patients received the WOLI procedure, which covers the whole surface of ovaries, in 2015-2017. INTERVENTIONS After receiving an outpatient WOLI procedure, ovarian response and follicle growth were monitored for 90 days with or without gonadotropin stimulation. Embryo quality and clinical outcomes were analyzed. MEASUREMENTS AND MAIN RESULTS Following the WOLI treatment, 5 out of 6 patients had significant increases in serum estradiol level and improved follicle growth (p = 0.000537). Multiple oocytes were retrieved from each of these patients, and it led to thawed embryo transfer cycles in four patients (p = 0.010). On average, the duration from the WOLI procedure to the first ovum pickup was 24 days (11-58 days). Following embryo transfer, two patients became pregnant and delivered healthy babies. Two other patients received embryo transfer, and one led to a chemical pregnancy. One patient had cryopreserved embryos with pending transfer. CONCLUSION The standardizable WOLI procedure restored hormonal responses in a majority of EPOR patients. Further validation of this novel and yet simple laparoscopic procedure, which requires only one laparoscopic surgery, may provide a practical option to reactivate the aging ovarian environment in EPOR and POI patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, 5 Fu-Shin Street, Kweishan, Taoyuan, Taiwan.
| | - Tzu Hsuan Chin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, 5 Fu-Shin Street, Kweishan, Taoyuan, Taiwan
| | - Ya Chiung Hsu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, 5 Fu-Shin Street, Kweishan, Taoyuan, Taiwan
| | - Aaron J Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
34
|
Merson J, Picu RC. Random Fiber Network Loaded by a Point Force. JOURNAL OF APPLIED MECHANICS 2022; 89:044501. [PMID: 35783110 PMCID: PMC9247584 DOI: 10.1115/1.4053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article presents the displacement field produced by a point force acting on an athermal random fiber network (the Green function for the network). The problem is defined within the limits of linear elasticity, and the field is obtained numerically for nonaffine networks characterized by various parameter sets. The classical Green function solution applies at distances from the point force larger than a threshold which is independent of the network parameters in the range studied. At smaller distances, the nonlocal nature of fiber interactions modifies the solution.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
35
|
Berezney J, Goode BL, Fraden S, Dogic Z. Extensile to contractile transition in active microtubule-actin composites generates layered asters with programmable lifetimes. Proc Natl Acad Sci U S A 2022; 119:e2115895119. [PMID: 35086931 PMCID: PMC8812548 DOI: 10.1073/pnas.2115895119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
We study a reconstituted composite system consisting of an active microtubule network interdigitated with a passive network of entangled F-actin filaments. Increasing the concentration of filamentous actin controls the emergent dynamics, inducing a transition from turbulent-like flows to bulk contractions. At intermediate concentrations, where the active stresses change their symmetry from anisotropic extensile to isotropic contracting, the composite separates into layered asters that coexist with the background turbulent fluid. Contracted onion-like asters have a radially extending microtubule-rich cortex that envelops alternating layers of microtubules and F-actin. These self-regulating structures undergo internal reorganization, which appears to minimize the surface area and maintain the ordered layering, even when undergoing aster merging events. Finally, the layered asters are metastable structures. Their lifetime, which ranges from minutes to hours, is encoded in the material properties of the composite. These results challenge the current models of active matter. They demonstrate self-organized dynamical states and patterns evocative of those observed in the cytoskeleton do not require precise biochemical regulation, but can arise from purely mechanical interactions of actively driven filamentous materials.
Collapse
Affiliation(s)
- John Berezney
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02454;
- Department of Physics, University of California, Santa Barbara, CA 93106
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106
| |
Collapse
|
36
|
Wang X, Chen S, Nan H, Liu R, Ding Y, Song K, Shuai J, Fan Q, Zheng Y, Ye F, Jiao Y, Liu L. Abnormal Aggregation of Invasive Cancer Cells Induced by Collective Polarization and ECM-Mediated Mechanical Coupling in Coculture Systems. Research (Wash D C) 2021; 2021:9893131. [PMID: 34957406 PMCID: PMC8678614 DOI: 10.34133/2021/9893131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Studies on pattern formation in coculture cell systems can provide insights into many physiological and pathological processes. Here, we investigate how the extracellular matrix (ECM) may influence the patterning in coculture systems. The model coculture system we use is composed of highly motile invasive breast cancer cells, initially mixed with inert nonmetastatic cells on a 2D substrate and covered with a Matrigel layer introduced to mimic ECM. We observe that the invasive cells exhibit persistent centripetal motion and yield abnormal aggregation, rather than random spreading, due to a “collective pulling” effect resulting from ECM-mediated transmission of active contractile forces generated by the polarized migration of the invasive cells along the vertical direction. The mechanism we report may open a new window for the understanding of biological processes that involve multiple types of cells.
Collapse
Affiliation(s)
- Xiaochen Wang
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Shaohua Chen
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Ruchuan Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Yu Ding
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kena Song
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Liyu Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.,Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| |
Collapse
|
37
|
Slater B, Li J, Indana D, Xie Y, Chaudhuri O, Kim T. Transient mechanical interactions between cells and viscoelastic extracellular matrix. SOFT MATTER 2021; 17:10274-10285. [PMID: 34137758 PMCID: PMC8695121 DOI: 10.1039/d0sm01911a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
During various physiological processes, such as wound healing and cell migration, cells continuously interact mechanically with a surrounding extracellular matrix (ECM). Contractile forces generated by the actin cytoskeleton are transmitted to a surrounding ECM, resulting in structural remodeling of the ECM. To better understand how matrix remodeling takes place, a myriad of in vitro experiments and simulations have been performed during recent decades. However, physiological ECMs are viscoelastic, exhibiting stress relaxation or creep over time. The time-dependent nature of matrix remodeling induced by cells remains poorly understood. Here, we employed a discrete model to investigate how the viscoelastic nature of ECMs affects matrix remodeling and stress profiles. In particular, we used explicit transient cross-linkers with varied density and unbinding kinetics to capture viscoelasticity unlike most of the previous models. Using this model, we quantified the time evolution of generation, propagation, and relaxation of stresses induced by a contracting cell in an ECM. It was found that matrix connectivity, regulated by fiber concentration and cross-linking density, significantly affects the magnitude and propagation of stress and subsequent matrix remodeling, as characterized by fiber displacements and local net deformation. In addition, we demonstrated how the base rate and force sensitivity of cross-linker unbinding regulate stress profiles and matrix remodeling. We verified simulation results using in vitro experiments performed with fibroblasts encapsulated in a three-dimensional collagen matrix. Our study provides key insights into the dynamics of physiologically relevant mechanical interactions between cells and a viscoelastic ECM.
Collapse
Affiliation(s)
- Brandon Slater
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Yihao Xie
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 452 Escondido Mall, Stanford, CA, 94305, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| |
Collapse
|
38
|
Mao X, Shokef Y. Introduction to force transmission by nonlinear biomaterials. SOFT MATTER 2021; 17:10172-10176. [PMID: 34755159 DOI: 10.1039/d1sm90194j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xiaoming Mao and Yair Shokef introduce the Soft Matter themed collection on force transmission by nonlinear biomaterials.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Yair Shokef
- School of Mechanical Engineering, Sackler Center for Computational Molecular and Materials Science, and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
39
|
Abstract
The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.
Collapse
Affiliation(s)
- Daniel W Swartz
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Physics, Massachusetts Institute of Technology, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Biophysics, Johns Hopkins University, USA
| |
Collapse
|
40
|
A blueprint of the topology and mechanics of the human ovary for next-generation bioengineering and diagnosis. Nat Commun 2021; 12:5603. [PMID: 34556652 PMCID: PMC8460685 DOI: 10.1038/s41467-021-25934-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Although the first dissection of the human ovary dates back to the 17th century, the biophysical characteristics of the ovarian cell microenvironment are still poorly understood. However, this information is vital to deciphering cellular processes such as proliferation, morphology and differentiation, as well as pathologies like tumor progression, as demonstrated in other biological tissues. Here, we provide the first readout of human ovarian fiber morphology, interstitial and perifollicular fiber orientation, pore geometry, topography and surface roughness, and elastic and viscoelastic properties. By determining differences between healthy prepubertal, reproductive-age, and menopausal ovarian tissue, we unravel and elucidate a unique biophysical phenotype of reproductive-age tissue, bridging biophysics and female fertility. While these data enable to design of more biomimetic scaffolds for the tissue-engineered ovary, our analysis pipeline is applicable for the characterization of other organs in physiological or pathological states to reveal their biophysical markers or design their bioinspired analogs. Although the first dissection of the human ovary dates back to the 17th century, its characterization is still limited. Here, the authors have unraveled a unique biophysical and topological phenotype of reproductive-age tissue, bridging biophysics and female fertility and providing a blueprint for the artificial ovary.
Collapse
|
41
|
Das D, Acharya P, Ramola K. Long-range correlations in pinned athermal networks. Phys Rev E 2021; 104:014503. [PMID: 34412209 DOI: 10.1103/physreve.104.014503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We derive exact results for displacement fields that develop as a response to external pinning forces in two-dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Green's function formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as 1/r at large distances r away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a nontrivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
Collapse
Affiliation(s)
- Debankur Das
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Pappu Acharya
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Kabir Ramola
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
42
|
Eichinger JF, Grill MJ, Kermani ID, Aydin RC, Wall WA, Humphrey JD, Cyron CJ. A computational framework for modeling cell-matrix interactions in soft biological tissues. Biomech Model Mechanobiol 2021; 20:1851-1870. [PMID: 34173132 PMCID: PMC8450219 DOI: 10.1007/s10237-021-01480-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023]
Abstract
Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.
Collapse
Affiliation(s)
- Jonas F Eichinger
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany.,Institute for Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Maximilian J Grill
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany
| | - Iman Davoodi Kermani
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany
| | - Roland C Aydin
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Christian J Cyron
- Institute for Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, 21073, Germany. .,Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany.
| |
Collapse
|
43
|
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells. Proc Natl Acad Sci U S A 2021; 118:2026786118. [PMID: 34140336 DOI: 10.1073/pnas.2026786118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.
Collapse
|
44
|
Fan Q, Zheng Y, Wang X, Xie R, Ding Y, Wang B, Yu X, Lu Y, Liu L, Li Y, Li M, Zhao Y, Jiao Y, Ye F. Dynamically Re‐Organized Collagen Fiber Bundles Transmit Mechanical Signals and Induce Strongly Correlated Cell Migration and Self‐Organization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Yu Zheng
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruipei Xie
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Ding
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Boyi Wang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyu Yu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Liyu Liu
- College of Physics Chongqing University Chongqing 401331 China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Yuanjin Zhao
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
- Department of Rheumatology and Immunology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Yang Jiao
- Department of Physics Arizona State University Tempe AZ 85287 USA
- Materials Science and Engineering Arizona State University Tempe AZ 85287 USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| |
Collapse
|
45
|
Zhang XD, Thai PN, Ren L, Perez Flores MC, Ledford HA, Park S, Lee JH, Sihn CR, Chang CW, Chen WC, Timofeyev V, Zuo J, Chan JW, Yamoah EN, Chiamvimonvat N. Prestin amplifies cardiac motor functions. Cell Rep 2021; 35:109097. [PMID: 33951436 PMCID: PMC8720583 DOI: 10.1016/j.celrep.2021.109097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/27/2020] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac cells generate and amplify force in the context of cardiac load, yet the membranous sheath enclosing the muscle fibers-the sarcolemma-does not experience displacement. That the sarcolemma sustains beat-to-beat pressure changes without experiencing significant distortion is a muscle-contraction paradox. Here, we report that an elastic element-the motor protein prestin (Slc26a5)-serves to amplify actin-myosin force generation in mouse and human cardiac myocytes, accounting partly for the nonlinear capacitance of cardiomyocytes. The functional significance of prestin is underpinned by significant alterations of cardiac contractility in Prestin-knockout mice. Prestin was previously considered exclusive to the inner ear's outer hair cells; however, our results show that prestin serves a broader cellular motor function.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, VA Northern California Health Care System, Mather, CA 95655, USA.
| | - Phung N Thai
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Maria Cristina Perez Flores
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hannah A Ledford
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jeong Han Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Choong-Ryoul Sihn
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Wei Chun Chen
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, VA Northern California Health Care System, Mather, CA 95655, USA.
| |
Collapse
|
46
|
Fan Q, Zheng Y, Wang X, Xie R, Ding Y, Wang B, Yu X, Lu Y, Liu L, Li Y, Li M, Zhao Y, Jiao Y, Ye F. Dynamically Re-Organized Collagen Fiber Bundles Transmit Mechanical Signals and Induce Strongly Correlated Cell Migration and Self-Organization. Angew Chem Int Ed Engl 2021; 60:11858-11867. [PMID: 33533087 DOI: 10.1002/anie.202016084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Indexed: 01/23/2023]
Abstract
Correlated cell migration in fibrous extracellular matrix (ECM) is important in many biological processes. During migration, cells can remodel the ECM, leading to the formation of mesoscale structures such as fiber bundles. However, how such mesoscale structures regulate correlated single-cells migration remains to be elucidated. Here, using a quasi-3D in vitro model, we investigate how collagen fiber bundles are dynamically re-organized and guide cell migration. By combining laser ablation technique with 3D tracking and active-particle simulations, we definitively show that only the re-organized fiber bundles that carry significant tensile forces can guide strongly correlated cell migration, providing for the first time a direct experimental evidence supporting that matrix-transmitted long-range forces can regulate cell migration and self-organization. This force regulation mechanism can provide new insights for studies on cellular dynamics, fabrication or selection of biomedical materials in tissue repairing, and many other biomedical applications.
Collapse
Affiliation(s)
- Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruipei Xie
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Ding
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boyi Wang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Yu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, 401331, China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Yuanjin Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.,Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA.,Materials Science and Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
47
|
Grekas G, Proestaki M, Rosakis P, Notbohm J, Makridakis C, Ravichandran G. Cells exploit a phase transition to mechanically remodel the fibrous extracellular matrix. J R Soc Interface 2021; 18:20200823. [PMID: 33593211 DOI: 10.1098/rsif.2020.0823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through mechanical forces, biological cells remodel the surrounding collagen network, generating striking deformation patterns. Tethers-tracts of high densification and fibre alignment-form between cells, thinner bands emanate from cell clusters. While tethers facilitate cell migration and communication, how they form is unclear. Combining modelling, simulation and experiment, we show that tether formation is a densification phase transition of the extracellular matrix, caused by buckling instability of network fibres under cell-induced compression, featuring unexpected similarities with martensitic microstructures. Multiscale averaging yields a two-phase, bistable continuum energy landscape for fibrous collagen, with a densified/aligned second phase. Simulations predict strain discontinuities between the undensified and densified phase, which localizes within tethers as experimentally observed. In our experiments, active particles induce similar localized patterns as cells. This shows how cells exploit an instability to mechanically remodel the extracellular matrix simply by contracting, thereby facilitating mechanosensing, invasion and metastasis.
Collapse
Affiliation(s)
- Georgios Grekas
- Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Proestaki
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Phoebus Rosakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Charalambos Makridakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Mathematics, MPS, University of Sussex, Brighton, UK
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
48
|
Mulligan JA, Ling L, Leartprapun N, Fischbach C, Adie SG. Computational 4D-OCM for label-free imaging of collective cell invasion and force-mediated deformations in collagen. Sci Rep 2021; 11:2814. [PMID: 33531512 PMCID: PMC7854660 DOI: 10.1038/s41598-021-81470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Traction force microscopy (TFM) is an important family of techniques used to measure and study the role of cellular traction forces (CTFs) associated with many biological processes. However, current standard TFM methods rely on imaging techniques that do not provide the experimental capabilities necessary to study CTFs within 3D collective and dynamic systems embedded within optically scattering media. Traction force optical coherence microscopy (TF-OCM) was developed to address these needs, but has only been demonstrated for the study of isolated cells embedded within optically clear media. Here, we present computational 4D-OCM methods that enable the study of dynamic invasion behavior of large tumor spheroids embedded in collagen. Our multi-day, time-lapse imaging data provided detailed visualizations of evolving spheroid morphology, collagen degradation, and collagen deformation, all using label-free scattering contrast. These capabilities, which provided insights into how stromal cells affect cancer progression, significantly expand access to critical data about biophysical interactions of cells with their environment, and lay the foundation for future efforts toward volumetric, time-lapse reconstructions of collective CTFs with TF-OCM.
Collapse
Affiliation(s)
- Jeffrey A. Mulligan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
49
|
Ronellenfitsch H. Optimal Elasticity of Biological Networks. PHYSICAL REVIEW LETTERS 2021; 126:038101. [PMID: 33543959 DOI: 10.1103/physrevlett.126.038101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Reinforced elastic sheets surround us in daily life, from concrete shell buildings to biological structures such as the arthropod exoskeleton or the venation network of dicotyledonous plant leaves. Natural structures are often highly optimized through evolution and natural selection, leading to the biologically and practically relevant problem of understanding and applying the principles of their design. Inspired by the hierarchically organized scaffolding networks found in plant leaves, here we model networks of bending beams that capture the discrete and nonuniform nature of natural materials. Using the principle of maximal rigidity under natural resource constraints, we show that optimal discrete beam networks reproduce the structural features of real leaf venation. Thus, in addition to its ability to efficiently transport water and nutrients, the venation network also optimizes leaf rigidity using the same hierarchical reticulated network topology. We study the phase space of optimal mechanical networks, providing concrete guidelines for the construction of elastic structures. We implement these natural design rules by fabricating efficient, biologically inspired metamaterials.
Collapse
Affiliation(s)
- Henrik Ronellenfitsch
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA
- Physics Department, Williams College, 33 Lab Campus Drive, Williamstown, Massachusetts 01267, USA
| |
Collapse
|
50
|
Alisafaei F, Chen X, Leahy T, Janmey PA, Shenoy VB. Long-range mechanical signaling in biological systems. SOFT MATTER 2021; 17:241-253. [PMID: 33136113 PMCID: PMC8385661 DOI: 10.1039/d0sm01442g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells can respond to signals generated by other cells that are remarkably far away. Studies from at least the 1920's showed that cells move toward each other when the distance between them is on the order of a millimeter, which is many times the cell diameter. Chemical signals generated by molecules diffusing from the cell surface would move too slowly and dissipate too fast to account for these effects, suggesting that they might be physical rather than biochemical. The non-linear elastic responses of sparsely connected networks of stiff or semiflexible filament such as those that form the extracellular matrix (ECM) and the cytoskeleton have unusual properties that suggest multiple mechanisms for long-range signaling in biological tissues. These include not only direct force transmission, but also highly non-uniform local deformations, and force-generated changes in fiber alignment and density. Defining how fibrous networks respond to cell-generated forces can help design new methods to characterize abnormal tissues and can guide development of improved biomimetic materials.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Leahy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA and McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA 19104, USA and Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|