1
|
Inberg S, Iosilevskii Y, Calatayud-Sanchez A, Setty H, Oren-Suissa M, Krieg M, Podbilewicz B. Sensory experience controls dendritic structure and behavior by distinct pathways involving degenerins. eLife 2025; 14:e83973. [PMID: 39791349 PMCID: PMC11756856 DOI: 10.7554/elife.83973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.
Collapse
Affiliation(s)
- Sharon Inberg
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Yael Iosilevskii
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Alba Calatayud-Sanchez
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | |
Collapse
|
2
|
Wan J, Ding JL, Lu H. Microfluidic approach to correlate C. elegans neuronal functional aging and underlying changes of gene expression in mechanosensation. LAB ON A CHIP 2024; 24:2811-2824. [PMID: 38700452 PMCID: PMC11091955 DOI: 10.1039/d3lc01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The aging process has broad physiological impacts, including a significant decline in sensory function, which threatens both physical health and quality of life. One ideal model to study aging, neuronal function, and gene expression is the nematode Caenorhabditis elegans, which has a short lifespan and relatively simple, thoroughly mapped nervous system and genome. Previous works have identified that mechanosensory neuronal structure changes with age, but importantly, the actual age-related changes in the function and health of neurons, as well as the underlying genetic mechanisms responsible for these declines, are not fully understood. While advanced techniques such as single-cell RNA-sequencing have been developed to quantify gene expression, it is difficult to relate this information to functional changes in aging due to a lack of tools available. To address these limitations, we present a platform capable of measuring both physiological function and its associated gene expression throughout the aging process in individuals. Using our pipeline, we investigate the age-related changes in function of the mechanosensing ALM neuron in C. elegans, as well as some relevant gene expression patterns (mec-4 and mec-10). Using a series of devices for animals of different ages, we examined subtle changes in neuronal function and found that while the magnitude of neuronal response to a large stimulus declines with age, sensory capability does not significantly decline with age; further, gene expression is well maintained throughout aging. Additionally, we examine PVD, a harsh-touch mechanosensory neuron, and find that it exhibits a similar age-related decline in magnitude of neuronal response. Together, our data demonstrate that our strategy is useful for identifying genetic factors involved in the decline in neuronal health. We envision that this framework could be applied to other systems as a useful tool for discovering new biology.
Collapse
Affiliation(s)
- Jason Wan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jimmy L Ding
- Petit Institute for Bioengineering and Bioscience, Interdisciplinary BioEngineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Petit Institute for Bioengineering and Bioscience, Interdisciplinary BioEngineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Cordeiro LM, Soares MV, da Silva AF, Dos Santos LV, de Souza LI, da Silveira TL, Baptista FBO, de Oliveira GV, Pappis C, Dressler VL, Arantes LP, Zheng F, Soares FAA. Toxicity of Copper and Zinc alone and in combination in Caenorhabditis elegans model of Huntington's disease and protective effects of rutin. Neurotoxicology 2023:S0161-813X(23)00085-2. [PMID: 37302585 DOI: 10.1016/j.neuro.2023.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Copper (Cu) and Zinc (Zn) are required in small concentrations for metabolic functions, but are also toxic. There is a great concern about soil pollution by heavy metals, which may exposure the population to these toxicants, either by inhalation of dust or exposure to toxicants through ingestion of food derived from contaminated soils. In addition, the toxicity of metals in combination is questionable, as soil quality guidelines only assess them separately. It is well known that metal accumulation is often found in the pathologically affected regions of many neurodegenerative diseases, including Huntington's disease (HD). HD is caused by an autosomal dominantly inherited CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. This results in the formation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD results in loss of neuronal cells, motor changes, and dementia. Rutin is a flavonoid found in various food sources, and previous studies indicate it has protective effects in HD models and acts as a metal chelator. However, further studies are needed to unravel its effects on metal dyshomeostasis and to discern the underlying mechanisms. In the present study, we investigated the toxic effects of long-term exposure to copper, zinc, and their mixture, and the relationship with the progression of neurotoxicity and neurodegeneration in a C. elegans-based HD model. Furthermore, we investigated the effects of rutin post metal exposure. Overall, we demonstrate that chronic exposure to the metals and their mixture altered body parameters, locomotion, and developmental delay, in addition to increasing polyQ protein aggregates in muscles and neurons causing neurodegeneration. We also propose that rutin has protective effects acting through mechanisms involving antioxidant and chelating properties. Altogether, our data provides new indications about the higher toxicity of metals in combination, the chelating potential of rutin in the C. elegans model of HD and possible strategies for future treatments of neurodegenerative diseases caused by the aggregation of proteins related to metals.
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Marcell Valandro Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Luiza Venturini Dos Santos
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Larissa Ilha de Souza
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Tássia Limana da Silveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Obetine Baptista
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Vitória de Oliveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Pappis
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Valderi Luiz Dressler
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- State University of Minas Gerais, Department of Biomedical Sciences and Health, Zip code 37900-106, Passos, MG, Brazil
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Felix Alexandre Antunes Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Zhang L, Wang X, Chen J, Sheng S, Kleyman TR. Extracellular intersubunit interactions modulate epithelial Na + channel gating. J Biol Chem 2023; 299:102914. [PMID: 36649907 PMCID: PMC9975279 DOI: 10.1016/j.jbc.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the β-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking βE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging βE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging βE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Kaulich E, Grundy LJ, Schafer WR, Walker DS. The diverse functions of the DEG/ENaC family: linking genetic and physiological insights. J Physiol 2022; 601:1521-1542. [PMID: 36314992 PMCID: PMC10148893 DOI: 10.1113/jp283335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The DEG/ENaC family of ion channels was defined based on the sequence similarity between degenerins (DEG) from the nematode Caenorhabditis elegans and subunits of the mammalian epithelial sodium channel (ENaC), and also includes a diverse array of non-voltage-gated cation channels from across animal phyla, including the mammalian acid-sensing ion channels (ASICs) and Drosophila pickpockets. ENaCs and ASICs have wide ranging medical importance; for example, ENaCs play an important role in respiratory and renal function, and ASICs in ischaemia and inflammatory pain, as well as being implicated in memory and learning. Electrophysiological approaches, both in vitro and in vivo, have played an essential role in establishing the physiological properties of this diverse family, identifying an array of modulators and implicating them in an extensive range of cellular functions, including mechanosensation, acid sensation and synaptic modulation. Likewise, genetic studies in both invertebrates and vertebrates have played an important role in linking our understanding of channel properties to function at the cellular and whole animal/behavioural level. Drawing together genetic and physiological evidence is essential to furthering our understanding of the precise cellular roles of DEG/ENaC channels, with the diversity among family members allowing comparative physiological studies to dissect the molecular basis of these diverse functions.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
6
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Shi S, Buck TM, Nickerson AJ, Brodsky JL, Kleyman TR. Paraoxonase 2 is an ER chaperone that regulates the epithelial Na + channel. Am J Physiol Cell Physiol 2022; 322:C111-C121. [PMID: 34852210 PMCID: PMC8759969 DOI: 10.1152/ajpcell.00335.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mammalian paraoxonases (PONs) have been linked to protection against oxidative stress. However, the physiological roles of members in this family (PON1, PON2, and PON3) are still being characterized. PON2 and PON3 are expressed in the aldosterone-sensitive distal nephron of the kidney and have been shown to negatively regulate expression of the epithelial sodium channel (ENaC), a trimeric ion channel that orchestrates salt and water homeostasis. To date, the nature of this phenomenon has not been explored. Therefore, to investigate the mechanism by which PON2 regulates ENaC, we expressed PON2 along with the ENaC subunits in fisher rat thyroid (FRT) cells, a system that is amenable to biochemical analyses of ENaC assembly and trafficking. We found that PON2 primarily resides in the endoplasmic reticulum (ER) in FRT cells, and its expression reduces the abundance of each ENaC subunit, reflecting enhanced subunit turnover. In contrast, no effect on the levels of mRNAs encoding the ENaC subunits was evident. Inhibition of lysosome function with chloroquine or NH4Cl did not alter the inhibitory effect of PON2 on ENaC expression. In contrast, PON2 accelerates ENaC degradation in a proteasome-dependent manner and acts before ENaC subunit ubiquitination. As a result of enhanced ENaC subunit ubiquitination and degradation, both channel surface expression and ENaC-mediated Na+ transport in FRT cells were reduced by PON2. Together, our data suggest that PON2 functions as an ER chaperone to monitor ENaC biogenesis and redirects the channel for ER-associated degradation.
Collapse
Affiliation(s)
- Shujie Shi
- 1Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Teresa M. Buck
- 2Deparment of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J. Nickerson
- 1Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeffrey L. Brodsky
- 2Deparment of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- 1Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,3Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania,4Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res 2022; 23:366. [PMID: 36539808 PMCID: PMC9764320 DOI: 10.1186/s12931-022-02303-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Collapse
Affiliation(s)
- Qi Jia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Yang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Klipp RC, Cullinan MM, Bankston JR. Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol 2021; 152:133684. [PMID: 32012213 PMCID: PMC7054857 DOI: 10.1085/jgp.201912471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Stomatin (STOM) is a monotopic integral membrane protein found in all classes of life that has been shown to regulate members of the acid-sensing ion channel (ASIC) family. However, the mechanism by which STOM alters ASIC function is not known. Using chimeric channels, we combined patch-clamp electrophysiology and FRET to search for regions of ASIC3 critical for binding to and regulation by STOM. With this approach, we found that regulation requires two distinct sites on ASIC3: the distal C-terminus and the first transmembrane domain (TM1). The C-terminal site is critical for formation of the STOM–ASIC3 complex, while TM1 is required only for the regulatory effect. We then looked at the mechanism of STOM-dependent regulation of ASIC3 and found that STOM does not alter surface expression of ASIC3 or shift the pH dependence of channel activation. However, a point mutation (Q269G) that prevents channel desensitization also prevents STOM regulation, suggesting that STOM may alter ASIC3 currents by stabilizing the desensitized state of the channel. Based on these findings, we propose a model whereby STOM is anchored to the channel via a site on the distal C-terminus and stabilizes the desensitized state of the channel via an interaction with TM1.
Collapse
Affiliation(s)
| | - Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| |
Collapse
|
10
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
11
|
Abstract
Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.
Collapse
|
12
|
DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:165-192. [DOI: 10.1007/978-981-16-4254-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus. Mol Biochem Parasitol 2020; 241:111345. [PMID: 33290763 DOI: 10.1016/j.molbiopara.2020.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
As the larvae of the date palm pest, the red palm weevil, Rhynchophorus ferrugineus, feeds on the host tissue, they emit a distinctive sound which can be recorded outside of the infected tree. We evaluated the response of infective juveniles (IJs) of the entomopathogenic nematodes Steinernema carpocapsae to the R. ferrugineus larvae and it's sound source, separately. In the presence of the insect larvae, 50.2 % of total IJs moved toward those larvae. Recorded insect larvae sound emitted by the speaker resulted in 7% of total IJs near the sound source. RNA-Seq data indicated that more genes were downregulated in S. carpocapsae IJs exposed to insect and speaker compared to non-stimulated IJs. IJs exposed to insect exhibited more up-regulated genes than IJs exposed to speaker. Enriched pathways and biological processes in IJs were similar for both stimuli. The inhibition of locomotion, regulation of neurotransmitter secretion, response to biotic stimulus, and cellular response to chemical stimuli were enriched with unique GO terms for speaker treatment. The regulation of localization, sodium ion transmembrane transport, regulation of response to stress and response to organic substances were the GO categories enriched unique to insect. The host-parasitic interaction was regulated by the differential expression of Ras/MAP kinase, TGF-beta signaling, insulin signaling, AMPK signaling, PPAR signaling pathways and many developmental pathways. More prominent R. ferrugineus host localization by S. carpocapsae was primarily due to the differential transcriptional regulation of olfactory signal transduction, FOXO-family proteins, calcium signaling, WNT and mTOR signaling pathway. The neural basis for the nematode attraction to insect host is based on the chemosensation and the mechanosensation. Many neuropeptides and neuromodulators are involved in regulating the foraging behavior of S. carpocapsae. The results of this study provide new insights into the molecular mechanisms that allow these nematodes to seek insect hosts. Our finding, especially the molecular ones suggest that chemical cues emitted by the active insect host are stimulants of nematodes attraction. Whereas the sound emitted by the insect has minor effects on the nematode behavior.
Collapse
|
14
|
Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020; 587:567-576. [PMID: 33239794 DOI: 10.1038/s41586-020-2933-1] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023]
Abstract
The ability to sense physical forces is conserved across all organisms. Cells convert mechanical stimuli into electrical or chemical signals via mechanically activated ion channels. In recent years, the identification of new families of mechanosensitive ion channels-such as PIEZO and OSCA/TMEM63 channels-along with surprising insights into well-studied mechanosensitive channels have driven further developments in the mechanotransduction field. Several well-characterized mechanosensory roles such as touch, blood-pressure sensing and hearing are now linked with primary mechanotransducers. Unanticipated roles of mechanical force sensing continue to be uncovered. Furthermore, high-resolution structures representative of nearly every family of mechanically activated channel described so far have underscored their diversity while advancing our understanding of the biophysical mechanisms of pressure sensing. Here we summarize recent discoveries in the physiology and structures of known mechanically activated ion channel families and discuss their implications for understanding the mechanisms of mechanical force sensing.
Collapse
|
15
|
Jin P, Jan LY, Jan YN. Mechanosensitive Ion Channels: Structural Features Relevant to Mechanotransduction Mechanisms. Annu Rev Neurosci 2020; 43:207-229. [PMID: 32084327 DOI: 10.1146/annurev-neuro-070918-050509] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of mechanosensitive ion channels underlies a variety of fundamental physiological processes that require sensation of mechanical force. Different mechanosensitive channels adapt distinctive structures and mechanotransduction mechanisms to fit their biological roles. How mechanosensitive channels work, especially in animals, has been extensively studied in the past decade. Here we review key findings in the functional and structural characterizations of these channels and highlight the structural features relevant to the mechanotransduction mechanism of each specific channel.
Collapse
Affiliation(s)
- Peng Jin
- Department of Physiology, University of California, San Francisco, California 94158, USA;
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| |
Collapse
|
16
|
Tao L, Porto D, Li Z, Fechner S, Lee SA, Goodman MB, Xu XZS, Lu H, Shen K. Parallel Processing of Two Mechanosensory Modalities by a Single Neuron in C. elegans. Dev Cell 2019; 51:617-631.e3. [PMID: 31735664 DOI: 10.1016/j.devcel.2019.10.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/24/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Neurons convert synaptic or sensory inputs into cellular outputs. It is not well understood how a single neuron senses, processes multiple stimuli, and generates distinct neuronal outcomes. Here, we describe the mechanism by which the C. elegans PVD neurons sense two mechanical stimuli: external touch and proprioceptive body movement. These two stimuli are detected by distinct mechanosensitive DEG/ENaC/ASIC channels, which trigger distinct cellular outputs linked to mechanonociception and proprioception. Mechanonociception depends on DEGT-1 and activates PVD's downstream command interneurons through its axon, while proprioception depends on DEL-1, UNC-8, and MEC-10 to induce local dendritic Ca2+ increase and dendritic release of a neuropeptide NLP-12. NLP-12 directly modulates neuromuscular junction activity through the cholecystokinin receptor homolog on motor axons, setting muscle tone and movement vigor. Thus, the same neuron simultaneously uses both its axon and dendrites as output apparatus to drive distinct sensorimotor outcomes.
Collapse
Affiliation(s)
- Li Tao
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel Porto
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhaoyu Li
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Sol Ah Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
18
|
Jang W, Lee S, Choi SI, Chae HS, Han J, Jo H, Hwang SW, Park CS, Kim C. Impairment of proprioceptive movement and mechanical nociception in Drosophila melanogaster larvae lacking Ppk30, a Drosophila member of the Degenerin/Epithelial Sodium Channel family. GENES BRAIN AND BEHAVIOR 2019; 18:e12545. [PMID: 30675754 DOI: 10.1111/gbb.12545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/07/2018] [Indexed: 12/23/2022]
Abstract
The mechanosensory neurons of Drosophila larvae are demonstrably activated by diverse mechanical stimuli, but the mechanisms underlying this function are not completely understood. Here we report a genetic, immunohistochemical, and electrophysiological analysis of the Ppk30 ion channel, a member of the Drosophila pickpocket (ppk) family, counterpart of the mammalian Degenerin/Epithelial Na+ Channel family. Ppk30 mutant larvae displayed deficits in proprioceptive movement and mechanical nociception, which are detected by class IV sensory (mdIV) neurons. The same neurons also detect heat nociception, which was not impaired in ppk30 mutant larvae. Similarly, Ppk30 mutation did not alter gentle touch mechanosensation, a distinct mechanosensation detected by other neurons, suggesting that Ppk30 has a functional role in mechanosensation in mdIV neurons. Consistently, Ppk30 was expressed in class IV neurons, but was not detectable in other larval skin sensory neurons. Mutant phenotypes were rescued by expressing Ppk30 in mdIV neurons. Electrophysiological analysis of heterologous cells expressing Ppk30 did not detect mechanosensitive channel activities, but did detect acid-induced currents. These data show that Ppk30 has a role in mechanosensation, but not in thermosensation, in class IV neurons, and possibly has other functions related to acid response.
Collapse
Affiliation(s)
- Wijeong Jang
- School of Biological Sciences and technology, Chonnam National University, Gwangju, Republic of Korea
| | - Sojung Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung-In Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Seok Chae
- School of Biological Sciences and technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jisun Han
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heeji Jo
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sun W Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Changsoo Kim
- School of Biological Sciences and technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Orr BO, Gorczyca D, Younger MA, Jan LY, Jan YN, Davis GW. Composition and Control of a Deg/ENaC Channel during Presynaptic Homeostatic Plasticity. Cell Rep 2018; 20:1855-1866. [PMID: 28834749 DOI: 10.1016/j.celrep.2017.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
The homeostatic control of presynaptic neurotransmitter release stabilizes information transfer at synaptic connections in the nervous system of organisms ranging from insect to human. Presynaptic homeostatic signaling centers upon the regulated membrane insertion of an amiloride-sensitive degenerin/epithelial sodium (Deg/ENaC) channel. Elucidating the subunit composition of this channel is an essential step toward defining the underlying mechanisms of presynaptic homeostatic plasticity (PHP). Here, we demonstrate that the ppk1 gene encodes an essential subunit of this Deg/ENaC channel, functioning in motoneurons for the rapid induction and maintenance of PHP. We provide genetic and biochemical evidence that PPK1 functions together with PPK11 and PPK16 as a presynaptic, hetero-trimeric Deg/ENaC channel. Finally, we highlight tight control of Deg/ENaC channel expression and activity, showing increased PPK1 protein expression during PHP and evidence for signaling mechanisms that fine tune the level of Deg/ENaC activity during PHP.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Gorczyca
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Meg A Younger
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Shi S, Mutchler SM, Blobner BM, Kashlan OB, Kleyman TR. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel's response to shear stress. J Biol Chem 2018; 293:10757-10766. [PMID: 29743244 DOI: 10.1074/jbc.ra118.002499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
The Caenorhabditis elegans MEC-4/MEC-10 channel mediates the worm's response to gentle body touch and is activated by laminar shear stress (LSS) when expressed in Xenopus oocytes. Substitutions at multiple sites within the second transmembrane domain (TM2) of MEC-4 or MEC-10 abolish the gentle touch response in worms, but the roles of these residues in mechanosensing are unclear. The present study therefore examined the role of specific MEC-4 and MEC-10 TM2 residues in the channel's response to LSS. We found that introducing mutations within the TM2 of MEC-4 or MEC-10 not only altered channel activity, but also affected the channel's response to LSS. This response was enhanced by Cys substitutions at selected MEC-4 sites (Phe715, Gly716, Gln718, and Leu719) between the degenerin and the putative amiloride-binding sites in this subunit. In contrast, the LSS response was largely blunted in MEC-10 variants bearing single Cys substitutions in the regions preceding and following the amiloride-binding site (Gly677-Leu681), as well as with four MEC-10 touch-deficient mutations that introduced charged residues into the TM2 domain. An enhanced response to LSS was observed with a MEC-10 mutation in the putative selectivity filter. Overall, MEC-4 or MEC-10 mutants that altered the channel's LSS response are primarily clustered between the degenerin site and the selectivity filter, a region that probably forms the narrowest portion of the channel pore. Our results suggest that pore-lining residues of MEC-4 and MEC-10 have important yet different roles in tuning the channel's response to mechanical forces.
Collapse
Affiliation(s)
- Shujie Shi
- From the Renal-Electrolyte Division, Department of Medicine
| | - Stephanie M Mutchler
- From the Renal-Electrolyte Division, Department of Medicine.,Department of Pharmacology and Chemical Biology, and
| | | | - Ossama B Kashlan
- From the Renal-Electrolyte Division, Department of Medicine.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- From the Renal-Electrolyte Division, Department of Medicine, .,Department of Pharmacology and Chemical Biology, and.,Department of Cell Biology
| |
Collapse
|
21
|
Matthewman C, Johnson CK, Miller DM, Bianchi L. Functional features of the "finger" domain of the DEG/ENaC channels MEC-4 and UNC-8. Am J Physiol Cell Physiol 2018; 315:C155-C163. [PMID: 29694233 DOI: 10.1152/ajpcell.00297.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNC-8 and MEC-4 are two members of the degenerin/epithelial Na+ channel (DEG/ENaC) family of voltage-independent Na+ channels that share a high degree of sequence homology and functional similarity. For example, both can be hyperactivated by genetic mutations [UNC-8(d) and MEC-4(d)] that induce neuronal death by necrosis. Both depend in vivo on chaperone protein MEC-6 for function, as demonstrated by the finding that neuronal death induced by hyperactive UNC-8 and MEC-4 channels is prevented by null mutations in mec-6. UNC-8 and MEC-4 differ functionally in three major ways: 1) MEC-4 is calcium permeable, whereas UNC-8 is not; 2) UNC-8, but not MEC-4, is blocked by extracellular calcium and magnesium in the micromolar range; and 3) MEC-6 increases the number of MEC-4 channels at the cell surface in oocytes but does not have this effect on UNC-8. We previously reported that Ca2+permeability of MEC-4 is conferred by the second transmembrane domain. We show here that the extracellular "finger" domain of UNC-8 is sufficient to mediate inhibition by divalent cations and that regulation by MEC-6 also depends on this region. Thus, our work confirms that the finger domain houses residues involved in gating of this channel class and shows for the first time that the finger domain also mediates regulation by chaperone protein MEC-6. Given that the finger domain is the most divergent region across the DEG/ENaC family, we speculate that it influences channel trafficking and function in a unique manner depending on the channel subunit.
Collapse
Affiliation(s)
- Cristina Matthewman
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine , Miami, Florida.,Neuroscience Program, University of Miami, Miller School of Medicine , Miami, Florida
| | - Christina K Johnson
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine , Miami, Florida
| | - David M Miller
- Department of Cell and Developmental Biology and Neuroscience Program, Vanderbilt University , Nashville, Tennessee
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine , Miami, Florida.,Neuroscience Program, University of Miami, Miller School of Medicine , Miami, Florida
| |
Collapse
|
22
|
Shi S, Buck TM, Kinlough CL, Marciszyn AL, Hughey RP, Chalfie M, Brodsky JL, Kleyman TR. Regulation of the epithelial Na + channel by paraoxonase-2. J Biol Chem 2017; 292:15927-15938. [PMID: 28768768 DOI: 10.1074/jbc.m117.785253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/14/2017] [Indexed: 01/11/2023] Open
Abstract
Paraoxonase-2 (PON-2) is a membrane-bound lactonase with unique anti-oxidative and anti-atherosclerotic properties. PON-2 shares key structural elements with MEC-6, an endoplasmic reticulum-resident molecular chaperone in Caenorhabditis elegans MEC-6 modulates the expression of a mechanotransductive ion channel comprising MEC-4 and MEC-10 in touch-receptor neurons. Because pon-2 mRNA resides in multiple rat nephron segments, including the aldosterone-sensitive distal nephron where the epithelial Na+ channel (ENaC) is expressed, we hypothesized that PON-2 would similarly regulate ENaC expression. We observed PON-2 expression in aquaporin 2-positive principal cells of the distal nephron of adult human kidney. PON-2 also co-immunoprecipitated with ENaC when co-expressed in HEK293 cells. When PON-2 was co-expressed with ENaC in Xenopus oocytes, ENaC activity was reduced, reflecting a reduction in ENaC surface expression. MEC-6 also reduced ENaC activity when co-expressed in Xenopus oocytes. The PON-2 inhibitory effect was ENaC-specific, as PON-2 had no effect on functional expression of the renal outer medullary potassium channel. PON-2 did not alter the response of ENaC to extracellular Na+, mechanical shear stress, or α-chymotrypsin-mediated proteolysis, suggesting that PON-2 did not alter the regulation of ENaC by these factors. Together, our data suggest that PON-2 regulates ENaC activity by modulating its intracellular trafficking and surface expression.
Collapse
Affiliation(s)
- Shujie Shi
- From the Renal-Electrolyte Division, Department of Medicine
| | | | | | | | - Rebecca P Hughey
- From the Renal-Electrolyte Division, Department of Medicine.,Department of Cell Biology.,Department of Microbiology and Molecular Genetics, and
| | - Martin Chalfie
- the Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | - Thomas R Kleyman
- From the Renal-Electrolyte Division, Department of Medicine, .,Department of Cell Biology.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
| |
Collapse
|
23
|
Structure-function analysis of human stomatin: A mutation study. PLoS One 2017; 12:e0178646. [PMID: 28575093 PMCID: PMC5456319 DOI: 10.1371/journal.pone.0178646] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Stomatin is an ancient, widely expressed, oligomeric, monotopic membrane protein that is associated with cholesterol-rich membranes/lipid rafts. It is part of the SPFH superfamily including stomatin-like proteins, prohibitins, flotillin/reggie proteins, bacterial HflK/C proteins and erlins. Biochemical features such as palmitoylation, oligomerization, and hydrophobic “hairpin” structure show similarity to caveolins and other integral scaffolding proteins. Recent structure analyses of the conserved PHB/SPFH domain revealed amino acid residues and subdomains that appear essential for the structure and function of stomatin. To test the significance of these residues and domains, we exchanged or deleted them, expressed respective GFP-tagged mutants, and studied their subcellular localization, molecular dynamics and biochemical properties. We show that stomatin is a cholesterol binding protein and that at least two domains are important for the association with cholesterol-rich membranes. The conserved, prominent coiled-coil domain is necessary for oligomerization, while association with cholesterol-rich membranes is also involved in oligomer formation. FRAP analyses indicate that the C-terminus is the dominant entity for lateral mobility and binding site for the cortical actin cytoskeleton.
Collapse
|
24
|
The Drosophila Postsynaptic DEG/ENaC Channel ppk29 Contributes to Excitatory Neurotransmission. J Neurosci 2017; 37:3171-3180. [PMID: 28213447 DOI: 10.1523/jneurosci.3850-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/30/2017] [Accepted: 02/12/2017] [Indexed: 11/21/2022] Open
Abstract
The protein family of degenerin/epithelial sodium channels (DEG/ENaCs) is composed of diverse animal-specific, non-voltage-gated ion channels that play important roles in regulating cationic gradients across epithelial barriers. Some family members are also enriched in neural tissues in both vertebrates and invertebrates. However, the specific neurophysiological functions of most DEG/ENaC-encoding genes remain poorly understood. The fruit fly Drosophila melanogaster is an excellent model for deciphering the functions of DEG/ENaC genes because its genome encodes an exceptionally large number of DEG/ENaC subunits termed pickpocket (ppk) 1-31 Here we demonstrate that ppk29 contributes specifically to the postsynaptic modulation of excitatory synaptic transmission at the larval neuromuscular junction. Electrophysiological data indicate that the function of ppk29 in muscle is necessary for normal postsynaptic responsivity to neurotransmitter release and for normal coordinated larval movement. The ppk29 mutation does not affect gross synaptic morphology and ultrastructure, which indicates that the observed phenotypes are likely due to defects in glutamate receptor function. Together, our data indicate that DEG/ENaC ion channels play a fundamental role in the postsynaptic regulation of excitatory neurotransmission.SIGNIFICANCE STATEMENT Members of the degenerin/epithelial sodium channel (DEG/ENaC) family are broadly expressed in epithelial and neuronal tissues. To date, the neurophysiological functions of most family members remain unknown. Here, by using the power of Drosophila genetics in combination with electrophysiological and behavioral approaches, we demonstrate that the DEG/ENaC-encoding gene pickpocket 29 contributes to baseline neurotransmission, possibly via the modulation of postsynaptic glutamate receptor functionality.
Collapse
|
25
|
Matthewman C, Miller-Fleming TW, Miller DM, Bianchi L. Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels. Am J Physiol Cell Physiol 2016; 311:C920-C930. [PMID: 27760755 DOI: 10.1152/ajpcell.00247.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca2+ overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na+ and Ca2+, raising the possibility that direct Ca2+ influx through these channels contributes to intracellular Ca2+ overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca2+ permeable, yet it is neurotoxic, suggesting that Na+ influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca2+ block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca2+ permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na+ conductance vs. Ca2+ permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca2+-permeable DEG/ENaC channels, both Ca2+ permeability and Na+ conductance contribute to toxicity. However, for Ca2+-impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na+ conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.
Collapse
Affiliation(s)
- Cristina Matthewman
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida.,Neuroscience Program, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; and.,Neuroscience Program, Vanderbilt University, Nashville, Tennessee
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida; .,Neuroscience Program, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
Single-molecule fluorescence microscopy of native macromolecular complexes. Curr Opin Struct Biol 2016; 41:225-232. [PMID: 27662375 DOI: 10.1016/j.sbi.2016.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
Macromolecular complexes consisting of proteins, lipids, and/or nucleic acids are ubiquitous in biological processes. Their composition, stoichiometry, order of assembly, and conformations can be heterogeneous or can change dynamically, making single-molecule studies best suited to measure these properties accurately. Recent single-molecule pull-down and other related approaches have combined the principles of conventional co-immunoprecipitation assay with single-molecule fluorescence microscopy to probe native macromolecular complexes. In this review, we present the advances in single-molecule pull-down methods and biological systems that have been investigated in such semi vivo manner.
Collapse
|
27
|
Shaw M, Elmi M, Pawar V, Srinivasan MA. Investigation of mechanosensation in C. elegans using light field calcium imaging. BIOMEDICAL OPTICS EXPRESS 2016; 7:2877-87. [PMID: 27446713 PMCID: PMC4948637 DOI: 10.1364/boe.7.002877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 05/09/2023]
Abstract
We describe a new experimental approach to investigate touch sensation in the model organism C. elegans using light field deconvolution microscopy. By combining fast volumetric image acquisition with controlled indentation of the organism using a high sensitivity force transducer, we are able to simultaneously measure activity in multiple touch receptor neurons expressing the calcium ion indicator GCaMP6s. By varying the applied mechanical stimulus we show how this method can be used to quantify touch sensitivity in C. elegans. We describe some of the challenges of performing light field calcium imaging in moving samples and demonstrate that they can be overcome by simple data processing.
Collapse
Affiliation(s)
- Michael Shaw
- Analytical Science Division, National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
- UCL Touchlab, Department of Computer Science, University College London, Gower Street, London, WC1 6BT, UK
| | - Muna Elmi
- UCL Touchlab, Department of Computer Science, University College London, Gower Street, London, WC1 6BT, UK
| | - Vijay Pawar
- UCL Touchlab, Department of Computer Science, University College London, Gower Street, London, WC1 6BT, UK
| | - Mandayam A. Srinivasan
- UCL Touchlab, Department of Computer Science, University College London, Gower Street, London, WC1 6BT, UK
- MIT Touchlab, Department of Mechanical Engineering and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| |
Collapse
|
28
|
Shi S, Luke CJ, Miedel MT, Silverman GA, Kleyman TR. Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit. J Biol Chem 2016; 291:14012-14022. [PMID: 27189943 DOI: 10.1074/jbc.m116.718031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/12/2023] Open
Abstract
Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces.
Collapse
Affiliation(s)
- Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Cliff J Luke
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Mark T Miedel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Gary A Silverman
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
29
|
MEC-10 and MEC-19 Reduce the Neurotoxicity of the MEC-4(d) DEG/ENaC Channel in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:1121-30. [PMID: 27172609 PMCID: PMC4825646 DOI: 10.1534/g3.115.023507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans DEG/ENaC proteins MEC-4 and MEC-10 transduce gentle touch in the six touch receptor neurons .
Gain-of-function mutations of mec-4 and mec-4(d) result in a hyperactive channel and
neurodegeneration in vivo. Loss of MEC-6, a putative DEG/ENaC-specific chaperone, and of the similar
protein POML-1 suppresses the neurodegeneration caused by a mec-4(d) mutation. We find that mutation of two genes,
mec-10 and a new gene mec-19 (previously named C49G9.1), prevents this action of POML-1, allowing the touch receptor neurons to die in
poml-1mec-4(d) animals. The proteins encoded by these genes
normally inhibit mec-4(d) neurotoxicity through different mechanisms.
MEC-10, a subunit of the mechanosensory transduction channel with
MEC-4, inhibits MEC-4(d) activity without affecting MEC-4 expression. In contrast, MEC-19, a membrane protein specific to nematodes, inhibits MEC-4(d) activity and reduces MEC-4 surface expression.
Collapse
|
30
|
Huang Y, Bharill S, Karandur D, Peterson SM, Marita M, Shi X, Kaliszewski MJ, Smith AW, Isacoff EY, Kuriyan J. Molecular basis for multimerization in the activation of the epidermal growth factor receptor. eLife 2016; 5. [PMID: 27017828 PMCID: PMC4902571 DOI: 10.7554/elife.14107] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/27/2016] [Indexed: 12/18/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if this is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation. DOI:http://dx.doi.org/10.7554/eLife.14107.001
Collapse
Affiliation(s)
- Yongjian Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Shashank Bharill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Sean M Peterson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Morgan Marita
- Department of Chemistry, University of Akron, Akron, United States
| | - Xiaojun Shi
- Department of Chemistry, University of Akron, Akron, United States
| | | | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, United States
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
31
|
Chen Y, Bharill S, Altun Z, O'Hagan R, Coblitz B, Isacoff EY, Chalfie M. Caenorhabditis elegans paraoxonase-like proteins control the functional expression of DEG/ENaC mechanosensory proteins. Mol Biol Cell 2016; 27:1272-85. [PMID: 26941331 PMCID: PMC4831881 DOI: 10.1091/mbc.e15-08-0561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
MEC-6 and POML-1 are similar proteins needed for touch sensitivity in Caenorhabditis elegans. These proteins reside primarily in the ER and affect the amount and localization of MEC-4, the DEG/ENaC mechanotransduction channel protein. MEC-6 also accelerates MEC-4 transport to the cell surface in vitro. Thus these proteins appear to act as MEC-4 chaperones. Caenorhabditis elegans senses gentle touch via a mechanotransduction channel formed from the DEG/ENaC proteins MEC-4 and MEC-10. An additional protein, the paraoxonase-like protein MEC-6, is essential for transduction, and previous work suggested that MEC-6 was part of the transduction complex. We found that MEC-6 and a similar protein, POML-1, reside primarily in the endoplasmic reticulum and do not colocalize with MEC-4 on the plasma membrane in vivo. As with MEC-6, POML-1 is needed for touch sensitivity, the neurodegeneration caused by the mec-4(d) mutation, and the expression and distribution of MEC-4 in vivo. Both proteins are likely needed for the proper folding or assembly of MEC-4 channels in vivo as measured by FRET. MEC-6 detectably increases the rate of MEC-4 accumulation on the Xenopus oocyte plasma membrane. These results suggest that MEC-6 and POML-1 interact with MEC-4 to facilitate expression and localization of MEC-4 on the cell surface. Thus MEC-6 and POML-1 act more like chaperones for MEC-4 than channel components.
Collapse
Affiliation(s)
- Yushu Chen
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Shashank Bharill
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Zeynep Altun
- Department of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Brian Coblitz
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
32
|
|