1
|
Wang Y, Jiang H. Hemolymph protease-17b activates proHP6 to stimulate melanization and Toll signaling in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104193. [PMID: 39406299 PMCID: PMC11558693 DOI: 10.1016/j.ibmb.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Manduca sexta hemolymph protease-6 (HP6) plays a central role in coordinating antimicrobial responses, such as prophenoloxidase (PPO) activation and Toll signaling. Our previous studies indicated that HP5 and GP6 activate proHP6 in larval hemolymph and extraembryonic tissues, respectively. Here, we report the characterization of HP17b as another HP6 activating enzyme and its regulation by multiple serpins in hemolymph. The precursor of HP17b expressed in baculovirus infected Sf9 cells became spontaneously cleaved at two sites, and these products were purified together in one preparation named HP17b', a mixture of proHP17b, a 35 kDa intermediate, and HP17b. HP17b' converted proHP6 to HP6. As reported before, HP6 converted precursors of PPO activating protease-1 (PAP1) and HP8 to their active forms. HP8 activates proSpӓtzle-1 to turn on Toll signaling. We found HP17b' directly activated proSPHI and II to form a cofactor for PPO activation by PAP1. Supplementation of larval hemolymph with HP17b', HP17b, or proHP17b significantly increased PPO activation. Adding Micrococcus luteus to the reactions did not enhance PPO activation in the reactions containing HP17b', HP17b, or proHP17b. Using HP17b antibodies, we isolated from induced plasma HP17b fragments and associated proteins (e.g., serpin-4). Serpin-1A, 1J, 1J', 4, 5, or 6 reduced the activation of proHP6 by HP17b' through formation of covalent complexes with active HP17b. We detected an activity for proHP17b cleavage in hemolymph from bar-stage pharate pupae but failed to purify the protease due to its high instability. Other known HPs did not activate proHP17b in vitro. Together, these results suggest that HP17b is a clip-domain protease activated by an unknown endopeptidase in response to a danger signal and regulated by multiple serpins.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
2
|
Miao Z, Xiong C, Wang Y, Shan T, Jiang H. Identification of immunity-related genes distinctly regulated by Manduca sexta Spӓtzle-1/2 and Escherichia coli peptidoglycan. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104108. [PMID: 38552808 PMCID: PMC11443596 DOI: 10.1016/j.ibmb.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The immune system of Manduca sexta has been well studied to understand molecular mechanisms of insect antimicrobial responses. While evidence supports the existence of major immune signaling pathways in this species, it is unclear how induced production of defense proteins is specifically regulated by the Toll and Imd pathways. Our previous studies suggested that diaminopimelic acid-type peptidoglycans (DAP-PG) from Gram-negative and some Gram-positive bacteria, more than Lys-type peptidoglycans (Lys-PG) from other Gram-positive bacteria, triggers both pathways through membrane-bound receptors orthologous to Drosophila Toll and PGRP-LC. In this study, we produced M. sexta proSpätzle-1 and proSpätzle-2 in Sf9 cells, identified their processing enzymes, and used prophenoloxidase activating protease-3 to activate the cytokine precursors. After Spätzle-1 and -2 were isolated from the reaction mixtures, we separately injected the purified cytokines into larval hemocoel to induce gene transcription in fat body through the Toll pathway solely. On the other hand, we treated a M. sexta cell line with E. coli DAP-PG to only induce the Imd pathway and target gene expression. RNA-Seq analysis of the fat body and cultured cells collected at 0, 6, and 24 h after treatment indicated that expression of diapausin-4, -10, -12, -13, cecropin-2, -4, -5, attacin-5, -11, and lebocin D is up-regulated predominantly via Toll signaling, whereas transcription of cecropin-6, gloverin, lysozyme-1, and gallerimycin-2 is mostly induced by DAP-PG via Imd signaling. Other antimicrobial peptides are expressed in response to both pathways. Transcripts of most Toll-specific genes (e.g., lebocin D) peaked at 6 h, contrasting the gradual increase and plateauing of drosomycin mRNA level at 24-48 h in Drosophila. We also used T (oll)-I (md) ratios to estimate relative contributions of the two pathways to transcriptional regulation of other components of the immune system. The differences in pathway specificity and time course of transcriptional regulation call for further investigations in M. sexta and other insects.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Becchimanzi A, Nicoletti R, Di Lelio I, Russo E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). Int J Mol Sci 2024; 25:4922. [PMID: 38732132 PMCID: PMC11084805 DOI: 10.3390/ijms25094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, 81100 Caserta, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
| |
Collapse
|
4
|
Bi J, Liu P, Gao R, Jiang Y, Zhang C, Zhao T, Gao L, Wang Y. Silencing gram-negative bacteria binding protein 1 decreases the immunity of Tribolium castaneum against bacteria. Int J Biol Macromol 2024; 264:130631. [PMID: 38453114 DOI: 10.1016/j.ijbiomac.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Gram-negative bacteria binding proteins (GNBPs) have the ability to recognize molecular patterns associated with microbial pathogens (PAMPs), leading to the activation of immune responses downstream. In the genome of Tribolium castaneum, three GNBP genes have been identified; however, their immunological roles remain unexplored. In our study, a GNBP1, designated as TcGNBP1, were identified from the cDNA library of T. castaneum. The coding sequence of TcGNBP1 consisted of 1137 bps and resulted in the synthesis of a protein comprising 378 amino acids. This protein encompasses a signal peptide, a low-complexity region, and a glycoside hydrolase 16 domain. TcGNBP1 was strongly expressed in early adult stages, and mainly distributed in hemolymph and gut. Upon being challenged with Escherichia coli or Staphylococcus aureus, the transcript levels of TcGNBP1 were significantly changed at different time points. Through molecular docking and ELISA analysis, it was observed that TcGNBP1 has the ability to interact with lipopolysaccharides, peptidoglycan, and β-1, 3-glucan. Based on these findings, it was further discovered that recombinant TcGNBP1 can directly bind to five different bacteria in a Ca2+-dependent manner. After knockdown of TcGNBP1 with RNA interference, expression of antimicrobial peptide genes and prophenoloxidase (proPO) activity were suppressed, the susceptibility of T. castaneum to E. coli or S. aureus infection was enhanced, leading to low survival rate. These results suggest a regulatory mechanism of TcGNBP1 in innate immunity of T. castaneum and provide a potential molecular target for dsRNA-based insect pest management.
Collapse
Affiliation(s)
- Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rui Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tong Zhao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yutao Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Cooperative of Vegetable and Grain Cultivation, Liaocheng Yifeng Bloc, Liaocheng, Shandong, China.
| |
Collapse
|
5
|
Lu T, Ji Y, Chang M, Zhang X, Wang Y, Zou Z. The accumulation of modular serine protease mediated by a novel circRNA sponging miRNA increases Aedes aegypti immunity to fungus. BMC Biol 2024; 22:7. [PMID: 38233907 PMCID: PMC10795361 DOI: 10.1186/s12915-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Mosquitoes transmit many infectious diseases that affect human health. The fungus Beauveria bassiana is a biological pesticide that is pathogenic to mosquitoes but harmless to the environment. RESULTS We found a microRNA (miRNA) that can modulate the antifungal immunity of Aedes aegypti by inhibiting its cognate serine protease. Fungal infection can induce the expression of modular serine protease (ModSP), and ModSP knockdown mosquitoes were more sensitive to B. bassiana infection. The novel miRNA-novel-53 is linked to antifungal immune response and was greatly diminished in infected mosquitoes. The miRNA-novel-53 could bind to the coding sequences of ModSP and impede its expression. Double fluorescence in situ hybridization (FISH) showed that this inhibition occurred in the cytoplasm. The amount of miRNA-novel-53 increased after miRNA agomir injection. This resulted in a significant decrease in ModSP transcript and a significant increase in mortality after fungal infection. An opposite effect was produced after antagomir injection. The miRNA-novel-53 was also knocked out using CRISPR-Cas9, which increased mosquito resistance to the fungus B. bassiana. Moreover, mosquito novel-circ-930 can affect ModSP mRNA by interacting with miRNA-novel-53 during transfection with siRNA or overexpression plasmid. CONCLUSIONS Novel-circ-930 affects the expression level of ModSP by a novel-circ-930/miRNA-novel-53/ModSP mechanism to modulate antifungal immunity, revealing new information on innate immunity in insects.
Collapse
Affiliation(s)
- Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yannan Ji
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Jin Q, Wang Y, Hu Y, He Y, Xiong C, Jiang H. Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104048. [PMID: 38056530 PMCID: PMC10872527 DOI: 10.1016/j.ibmb.2023.104048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Phenoloxidase (PO) catalyzed melanization and other insect immune responses are mediated by serine proteases (SPs) and their noncatalytic homologs (SPHs). Many of these SP-like proteins have a regulatory clip domain and are called CLIPs. In most insects studied so far, PO precursors are activated by a PAP (i.e., PPO activating protease) and its cofactor of clip-domain SPHs. Although melanotic encapsulation is a well-known refractory mechanism of mosquitoes against malaria parasites, it is unclear if a cofactor is required for PPO activation. In Anopheles gambiae, CLIPA4 is 1:1 orthologous to Manduca sexta SPH2; CLIPs A5-7, A12-14, A26, A31, A32, E6, and E7 are 11:4 orthologous to M. sexta SPH1a, 1b, 4, and 101, SPH2 partners in the cofactors. Here we produced proCLIPs A4, A6, A7Δ, A12, and activated them with CLIPB9 or M. sexta PAP3. A. gambiae PPO2 and PPO7 were expressed in Escherichia coli for use as PAP substrates. CLIPB9 was mutated to CLIPB9Xa by including a Factor Xa cleavage site. CLIPA7Δ was a deletion mutant with a low complexity region removed. After PAP3 or CLIPB9Xa processing, CLIPA4 formed a high Mr complex with CLIPA6, A7Δ or A12, which assisted PPO2 and PPO7 activation. High levels of specific PO activity (55-85 U/μg for PO2 and 1131-1630 U/μg for PO7) were detected in vitro, indicating that cofactor-assisted PPO activation also occurs in this species. The cleavage sites and mechanisms for complex formation and cofactor function are like those reported in M. sexta and Drosophila melanogaster. In conclusion, these data suggest that the three (and perhaps more) SPHI-II pairs may form cofactors for CLIPB9-mediated activation of PPOs for melanotic encapsulation in A. gambiae.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
7
|
Shan T, Wang Y, Bhattarai K, Jiang H. An evolutionarily conserved serine protease network mediates melanization and Toll activation in Drosophila. SCIENCE ADVANCES 2023; 9:eadk2756. [PMID: 38117884 PMCID: PMC10732536 DOI: 10.1126/sciadv.adk2756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
Melanization and Toll pathway activation are essential innate immune mechanisms in insects, which result in the generation of reactive compounds and antimicrobial peptides, respectively, to kill pathogens. These two processes are mediated by phenoloxidase (PO) and Spätzle (Spz) through an extracellular network of serine proteases. While some proteases have been identified in Drosophila melanogaster in genetic studies, the exact order of proteolytic activation events remains controversial. Here, we reconstituted the serine protease framework in Drosophila by biochemical methods. This system comprises 10 proteases, i.e., ModSP, cSP48, Grass, Psh, Hayan-PA, Hayan-PB, Sp7, MP1, SPE and Ser7, which form cascade pathways that recognize microbial molecular patterns and virulence factors, and generate PO1, PO2, and Spz from their precursors. Furthermore, the serpin Necrotic negatively regulates the immune response progression by inhibiting ModSP and Grass. The biochemical approach, when combined with genetic analysis, is crucial for addressing problems that long stand in this important research field.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Krishna Bhattarai
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
8
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
9
|
Yang L, Xu X, Wei W, Chen X, Peng C, Wang X, Xu J. Identification and gene expression analysis of serine proteases and their homologs in the Asian corn borer Ostrinia furnacalis. Sci Rep 2023; 13:4766. [PMID: 36959303 PMCID: PMC10036332 DOI: 10.1038/s41598-023-31830-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Serine proteases (SPs) and their homologs (SPHs) are among the best-characterized gene families. They are involved in several physiological processes, including digestion, embryonic development and immunity. In the current study, a total of 177 SPs-related genes were characterized in the genome of Ostrinia furnacalis. The activation site of SPs/SPHs and enzyme specificity of SPs were identified, and the findings showed that most of the SPs analyzed possessed trypsin substrate specificity. Several SPs/SPHs with similar simple gene structures had tandem repeat-like distributions on the scaffold, indicated that gene expansion has occurred in this large family. Furthermore, we constructed 30 RNA sequencing libraries including four with developmental stage and four middle larval stage tissues to study the transcript levels of these genes. Differentially upregulated and downregulated genes were obtained via data analysis. More than one-quarter of the genes were specifically identified as highly expressed in the midgut in compared to the other three tissues evaluated. In the current study, the domain structure, gene location and phylogenetic relationship of genes in O. furnacalis were explored. Orthologous comparisons of SPs/SPHs between model insects and O. furnacalis indicated their possible functions. This information provides a basis for understanding the functional roles of this large family.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
10
|
Shan T, Wang Y, Dittmer NT, Kanost MR, Jiang H. Serine Protease Networks Mediate Immune Responses in Extra-Embryonic Tissues of Eggs in the Tobacco Hornworm, Manduca sexta. J Innate Immun 2022; 15:365-379. [PMID: 36513034 PMCID: PMC10643904 DOI: 10.1159/000527974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
The melanization and Toll pathways, regulated by a network of serine proteases and noncatalytic serine protease homologs (SPHs), have been investigated mostly in adult and larval insects. However, how these innate immune reactions are regulated in insect eggs remains unclear. Here we present evidence from transcriptome and proteome analyses that extra-embryonic tissues (yolk and serosa) of early-stage Manduca sexta eggs are immune competent, with expression of immune effector genes including prophenoloxidase and antimicrobial peptides. We identified gene products of the melanization and Toll pathways in M. sexta eggs. Through in vitro reconstitution experiments, we demonstrated that constitutive and infection-induced serine protease cascade modules that stimulate immune responses exist in the extra-embryonic tissues of M. sexta eggs. The constitutive module (HP14b-SP144-GP6) may promote rapid early immune signaling by forming a cascade activating the cytokine Spätzle and regulating melanization by activating prophenoloxidase (proPO). The inducible module (HP14a-HP21-HP5) may trigger enhanced activation of Spätzle and proPO at a later phase of infection. Crosstalk between the two modules may occur in transition from the constitutive to the induced response in eggs inoculated with bacteria. Examination of data from two other well-studied insect species, Tribolium castaneum and Drosophila melanogaster, supports a role for a serosa-dependent constitutive protease cascade in protecting early embryos against invading pathogens.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Neal T. Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Michael R. Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
11
|
Zakhia R, Osta MA. CLIPA7 Exhibits Pleiotropic Roles in the Anopheles gambiae Immune Response. J Innate Immun 2022; 15:317-332. [PMID: 36423593 PMCID: PMC10643895 DOI: 10.1159/000526486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 10/30/2023] Open
Abstract
Clip domain serine proteases and clip domain serine protease homologs (cSPHs) are key components of serine protease cascades that drive the melanization response. Despite lacking catalytic activity, cSPHs play essential roles in regulating melanization, but the spectrum of functions they catalyze within and outside these cascades is not fully understood. Aside from their classical role as cofactors for PPO activation, we have previously revealed an unprecedented complexity in the function and molecular organization of these cSPHs in the immune response of the malaria vector Anopheles gambiae. Here, we add yet another dimension to the complex roles underpinning the contributions of cSPHs to mosquito immunity by showing that CLIPA7, a member of the expanded cSPH family, defines a novel branch within the cSPH network that is essential for the melanization of Escherichia coli but not Plasmodium ookinetes or Gram-positive bacteria. Despite its dispensability for the melanization of Gram-positive bacteria, we show that CLIPA7 is required for the clearance of systemic infections with Staphylococcus aureus. CLIPA7 is produced by hemocytes and associates with the surfaces of live E. coli and S. aureus cells in vivo as well as with those of melanized cells. Based on its RNAi phenotypes and its unique domain architecture among A. gambiae cSPHs including the presence of an RGD motif, we propose that CLIPA7 exhibits pleiotropic roles in mosquito immunity that extend beyond the regulation of melanization to microbial clearance.
Collapse
Affiliation(s)
| | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Wang Y, Kanost MR, Jiang H. A mechanistic analysis of bacterial recognition and serine protease cascade initiation in larval hemolymph of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103818. [PMID: 36007679 PMCID: PMC9890636 DOI: 10.1016/j.ibmb.2022.103818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid defense responses. Previous biochemical studies showed that in hemolymph of a caterpillar, Manduca sexta, recognition of fungi by β-1,3-glucan recognition proteins (βGRP1 and βGRP2) or recognition of bacteria by peptidoglycan recognition protein-1 (PGRP1) and microbe binding protein (MBP) results in autoactivation of hemolymph protease-14 precursor (proHP14). HP14 then activates downstream members of a protease cascade leading to the melanization immune response. ProHP14 has a complex domain architecture, with five low-density lipoprotein receptor class A repeats at its amino terminus, followed by a Sushi domain, a Sushi domain variant called Wonton, and a carboxyl-terminal serine protease catalytic domain. Its zymogen form is activated by specific proteolytic cleavage at the amino-terminal end of the protease domain. While a molecular mechanism for recognition and triggering the response to β-1,3-glucan has been delineated, it is unclear how bacterial recognition stimulates proHP14 activation. To fill this knowledge gap, we expressed the two domains of M. sexta MBP and found that the amino-terminal domain binds to diaminopimelic acid-peptidoglycan (DAP-PG). ProHP14 bound to both the carboxyl-terminal domain (MBP-C) and amino-terminal domain (MBP-N) of MBP. In the mixture of DAP-PG, MBP, and larval plasma, inclusion of an HP14 fragment composed of LDLa repeats 2-5 (LDLa2-5) or MBP-C significantly reduced prophenoloxidase activation, likely by competing with the interactions of the full-length proteins, and suggesting that molecular interactions involving these regions of proHP14 and MBP take part in proHP14 activation in response to peptidoglycan. Using a series of N-terminally truncated versions of proHP14, we found that autoactivation required LDLa2-5. The optimal ratio of PGRP1, MBP, and proHP14 is close to 3:2:1. In summary, proHP14 autoactivation by DAP-type peptidoglycan requires binding of DAP-PG by PGRP1 and the MBP N-terminal domain and association of the LDLa2-5 region of proHP14 with the MBP C-terminal domain. These interactions may concentrate the proHP14 zymogen at the bacterial cell wall surface and promote autoactivation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
13
|
Wang Q, Yin M, Yuan C, Liu X, Jiang H, Wang M, Zou Z, Hu Z. The Micrococcus luteus infection activates a novel melanization pathway of cSP10, cSP4, and cSP8 in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103775. [PMID: 35504546 DOI: 10.1016/j.ibmb.2022.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Melanization is a key immune response mediated by serine protease (SP) cascade in insects. Multiple SP pathways exist in different species and it is unclear how conserved these cascades are. The cotton bollworm Helicoverpa armigera is a major worldwide agricultural pest. We reported a conserved melanization pathway in this species, which consists of SP41, cSP1, and cSP6. In this study, we attempted to identify an insect pathogen that elicits the cascade and test whether or not there are other SP cascades in H. armigera. After Micrococcus luteus, Enterobacter cloacae, Beauveria bassiana, or Helicoverpa armigera nucleopolyhedrovirus were injected into larvae, pathogen-induced hemolymph samples were collected for in vitro biochemical assays, which failed to detect proSP41 or procSP1 activation. In contrast, we found that procSP4, a protein proposed to participate in H. armigera melanization, was activated in M. luteus infected hemolymph. We further revealed that cSP8 was a prophenoloxidase (PPO) activating protease downstream of cSP4, and cSP4 was activated by cSP10. The pathway of cSP10-cSP4-cSP8 activated PPO in vitro. Efficiently cleaved procSPH11 and procSPH50 by cSP8 substantially enhanced phenoloxidase activity, suggesting they work together as a cofactor for cSP8 mediated PPO activation. Hemolymph from larvae challenged with M. luteus or its peptidoglycan effectively activated procSP10. Collectively, these results revealed a new PPO activation cascade specifically triggered by the bacterium. In addition, we found that the PPO activation cascades in H. armigera and Manduca sexta are conserved.
Collapse
Affiliation(s)
- Qianran Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyi Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xijia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
14
|
Yang W, Zhao P, Li X, Guo L, Gao W. The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review. Carbohydr Polym 2022; 277:118821. [PMID: 34893238 DOI: 10.1016/j.carbpol.2021.118821] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-term chronic disease, about 20% of IBD patients deteriorate to colorectal cancer. Currently, there is no radical cure for IBD. Natural plant polysaccharides (NPP) have low toxic and side effects, which have immune and prebiotic activities and possesses positive effect on alleviating IBD. In this review, we will focus on the alleviating effect of NPP on IBD in vitro and in vivo from three aspects: regulating intestinal flora imbalance, repairing intestinal barrier injury and improving immunity. The relationship between the chemical structure of natural plant polysaccharides and the therapeutic effect of IBD are highlighted. Finally, the synergistic role of NPP as a carrier of drugs or active molecules to reduce side effects and enhance targeting function are discussed, especially pectic polysaccharides. Broadly, this review provides a valuable reference for NPP to be developed as functional food or health products to alleviate IBD.
Collapse
Affiliation(s)
- Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
15
|
Ji J, Zhou L, Xu Z, Ma L, Lu Z. Two atypical gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2021; 30:427-435. [PMID: 33928689 DOI: 10.1111/imb.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The activation of immune pathways is triggered by the recognition of pathogens by pattern recognition receptors (PRRs). Gram-negative bacteria-binding proteins (GNBPs)/β-1,3-glucan recognition proteins (βGRPs) are a conserved family of PRRs in insects. Two GNBPs are predicted in the genome database of pea aphids; however, little is known about their functions in the aphid immune system. Here, we show that pea aphid GNBPs possess domain architectures and sequence features distinct from those of typical GNBPs/βGRPs and that their expression is induced by bacterial infection. Knockdown of their expression by dsRNA resulted in lower phenoloxidase activity, higher bacterial loads and higher mortality in aphids after infection. Our data suggest that these two atypical GNBPs are involved in the antibacterial response in the pea aphid, likely acting as PRRs in the prophenoloxidase pathway.
Collapse
Affiliation(s)
- J Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Shen D, Ji J, Zhang S, Liu J, An C. A Short-Type Peptidoglycan Recognition Protein 1 (PGRP1) Is Involved in the Immune Response in Asian Corn Borer, Ostrinia furnacalis (Guenée). Int J Mol Sci 2021; 22:ijms22158198. [PMID: 34360963 PMCID: PMC8347126 DOI: 10.3390/ijms22158198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
The insect immune response is initiated by the recognition of invading microorganisms. Peptidoglycan recognition proteins (PGRPs) function primarily as pattern recognition receptors by specifically binding to peptidoglycans expressed on microbial surfaces. We cloned a full-length cDNA for a PGRP from the Asian corn borer Ostrinia furnacalis (Guenée) and designated it as PGRP1. PGRP1 mRNA was mainly detected in the fat bodies and hemocytes. Its transcript levels increased significantly upon bacterial and fungal challenges. Purified recombinant PGRP1 exhibited binding activity to the gram-positive Micrococcus luteus, gram-negative Escherichia coli, entomopathogenic fungi Beauveria bassiana, and yeast Pichia pastoris. The binding further induced their agglutination. Additionally, PGRP1 preferred to bind to Lys-type peptidoglycans rather than DAP-type peptidoglycans. The addition of recombinant PGRP1 to O. furnacalis plasma resulted in a significant increase in phenoloxidase activity. The injection of recombinant PGRP1 into larvae led to a significantly increased expression of several antimicrobial peptide genes. Taken together, our results suggest that O. furnacalis PGRP1 potentially recognizes the invading microbes and is involved in the immune response in O. furnacalis.
Collapse
Affiliation(s)
- Dongxu Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.S.); (J.J.); (S.Z.); (J.L.)
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Jiayue Ji
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.S.); (J.J.); (S.Z.); (J.L.)
| | - Shasha Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.S.); (J.J.); (S.Z.); (J.L.)
| | - Jiahui Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.S.); (J.J.); (S.Z.); (J.L.)
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.S.); (J.J.); (S.Z.); (J.L.)
- Correspondence: ; Tel./Fax: +86-10-6273-4083
| |
Collapse
|
17
|
Meng Q, Wu PP, Li MM, Shu RH, Zhou GL, Zhang JH, Zhang H, Jiang H, Qin QL, Zou Z. Distinct Responses of Thitarodes xiaojinensis β-1,3-Glucan Recognition Protein-1 and Immulectin-8 to Ophiocordyceps sinensis and Cordyceps militaris Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:200-209. [PMID: 34162722 DOI: 10.4049/jimmunol.2000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Melanization and encapsulation are prominent defense responses against microbes detected by pattern recognition receptors of their host insects. In the ghost moth Thitarodes xiaojinensis, an activated immune system can melanize and encapsulate the fungus Cordyceps militaris However, these responses were hardly detected in the host hemolymph postinfection of another fungus Ophiocordyceps sinensis The immune interaction between O. sinensis and the host remains largely unknown, which hinders the artificial cultivation of Chinese cordyceps. We found that T. xiaojinensis β-1,3-glucan recognition protein-1 (βGRP1) was needed for prophenoloxidase activation induced by C. militaris Failure of βGRP1 to recognize O. sinensis is a primary reason for the lack of melanization in the infected host. Lyticase or snailase treatment combined with binding and immunofluorescence detection showed the existence of a protective layer preventing the fungus from βGRP1 recognition. Coimmunoprecipitation and mass spectrometry analysis indicated that βGRP1 interacted with immulectin-8 (IML8) via binding to C. militaris IML8 promotes encapsulation. This study suggests the roles of T. xiaojinensis βGRP1 and IML8 in modulating immune responses against C. militaris Most importantly, the data indicate that O. sinensis may evade melanization by preventing βGRP1 recognition.
Collapse
Affiliation(s)
- Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK; and
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Mollah MMI, Ahmed S, Kim Y. Immune mediation of HMG-like DSP1 via Toll-Spätzle pathway and its specific inhibition by salicylic acid analogs. PLoS Pathog 2021; 17:e1009467. [PMID: 33765093 PMCID: PMC8023496 DOI: 10.1371/journal.ppat.1009467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Xenorhabdus hominickii, an entomopathogenic bacterium, inhibits eicosanoid biosynthesis of target insects to suppress their immune responses by inhibiting phospholipase A2 (PLA2) through binding to a damage-associated molecular pattern (DAMP) molecule called dorsal switch protein 1 (DSP1) from Spodoptera exigua, a lepidopteran insect. However, the signalling pathway between DSP1 and PLA2 remains unknown. The objective of this study was to determine whether DSP1 could activate Toll immune signalling pathway to activate PLA2 activation and whether X. hominickii metabolites could inhibit DSP1 to shutdown eicosanoid biosynthesis. Toll-Spätzle (Spz) signalling pathway includes two Spz (SeSpz1 and SeSpz2) and 10 Toll receptors (SeToll1-10) in S. exigua. Loss-of-function approach using RNA interference showed that SeSpz1 and SeToll9 played crucial roles in connecting DSP1 mediation to activate PLA2. Furthermore, a deletion mutant against SeToll9 using CRISPR/Cas9 abolished DSP1 mediation and induced significant immunosuppression. Organic extracts of X. hominickii culture broth could bind to DSP1 at a low micromolar range. Subsequent sequential fractionations along with binding assays led to the identification of seven potent compounds including 3-ethoxy-4-methoxyphenol (EMP). EMP could bind to DSP1 and prevent its translocation to plasma in response to bacterial challenge and suppress the up-regulation of PLA2 activity. These results suggest that X. hominickii inhibits DSP1 and prevents its DAMP role in activating Toll immune signalling pathway including PLA2 activation, leading to significant immunosuppression of target insects. Immune responses of insects are highly effective in defending various entomopathogens. Xenorhabdus hominickii is an entomopathogenic bacterium that uses a pathogenic strategy of suppressing host insect immunity by inhibiting phospholipase A2 (PLA2) which catalyzes the committed step for eicosanoid biosynthesis. Eicosanoids mediate both cellular and humoral immune responses in insects. This study discovers an upstream signalling pathway to activate PLA2 in response to bacterial challenge. Se-DSP1 is an insect homolog of vertebrate HMGB1 that acts as a damage-associated molecular pattern. Upon bacterial infection, Se-DSP1 is released to the circulatory system to activate Spätzle, an insect cytokine that can bind to Toll receptor. Toll immune signalling pathway can activate antimicrobial peptide gene expression and PLA2. A deletion mutant against a Toll gene abolished immune responses mediated by Se-DSP1. Indeed, X. hominickii can produce and secrete secondary metabolites including salicylic acid analogs that can strongly bind to Se-DSP1. These bacterial metabolites prevented the release of Se-DSP1, which impaired the activation of PLA2 and resulted in a significant immunosuppression of target insects against bacterial infection.
Collapse
Affiliation(s)
- Md. Mahi Imam Mollah
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
- * E-mail:
| |
Collapse
|
19
|
Shen D, Tong M, Guo J, Mei X, Xia D, Qiu Z, Zhao Q. A Pattern Recognition Receptor C-type Lectin-S6 (CTL-S6) is Involved in the Immune Response in the Silkworm (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:9. [PMID: 33511414 PMCID: PMC7846087 DOI: 10.1093/jisesa/ieaa146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Insect innate immunity is initiated by the special recognition and binding of the foreign pathogens, which is accomplished by the pattern recognition receptors (PRRs). As an important type of PRRs, C-type lectins (CTLs) play various roles in insect innate immunity, including pathogen recognition, stimulation of prophenoloxidase, regulation of cellular immunity and so on. In this study, we have cloned the full-length cDNA of a CTL gene named CTL-S6 from the silkworm, Bombyx mori. The open reading frame (ORF) of B. mori CTL-S6 encodes 378 amino acids, which contain a secretion signal peptide. The mRNA of CTL-S6 exhibited the highest transcriptional level in the midgut. Its transcriptional level increased dramatically in fat body and hemocytes upon Escherichia coli or Micrococcus luteus challenge. Purified recombinant CTL-S6 could bind to bacterial cell wall components, including peptidoglycan (PGN, from Bacillus subtilis) and lipopolysaccharide (LPS, from E. coli 0111:B4), and recombinant CTL-S6 was involved in the encapsulation and melanization of hemocytes. Furthermore, the addition of recombinant CTL-S6 to the hemolymph of silkworm resulted in a significant increase in phenoloxidase activity. Overall, our results indicated that B. mori CTL-S6 may serve as a PRR for the recognition of foreign pathogens, prophenoloxidase pathway stimulation and involvement in the innate immunity.
Collapse
Affiliation(s)
- Dongxu Shen
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Meijin Tong
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Jiyun Guo
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xianghan Mei
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Sousa GL, Bishnoi R, Baxter RHG, Povelones M. The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae. PLoS Pathog 2020; 16:e1008985. [PMID: 33045027 PMCID: PMC7580898 DOI: 10.1371/journal.ppat.1008985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/22/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023] Open
Abstract
The arthropod melanization immune response is activated by extracellular protease cascades predominantly comprised of CLIP-domain serine proteases (CLIP-SPs) and serine protease homologs (CLIP-SPHs). In the malaria vector, Anopheles gambiae, the CLIP-SPHs SPCLIP1, CLIPA8, and CLIPA28 form the core of a hierarchical cascade downstream of mosquito complement that is required for microbial melanization. However, our understanding of the regulatory relationship of the CLIP-SPH cascade with the catalytic CLIP-SPs driving melanization is incomplete. Here, we report on the development of a novel screen to identify melanization pathway components based on the quantitation of melanotic mosquito excreta, eliminating the need for microdissections or hemolymph enzymatic assays. Using this screen, we identified CLIPC9 and subsequent functional analyses established that this protease is essential for the melanization of both Escherichia coli and the rodent malaria parasite Plasmodium berghei. Mechanistically, septic infection with E. coli promotes CLIPC9 cleavage and both full-length and cleaved CLIPC9 localize to this bacterium in a CLIPA8-dependent manner. The steady state level of CLIPC9 in the hemolymph is regulated by thioester-containing protein 1 (TEP1), suggesting it functions downstream of mosquito complement. In support, CLIPC9 cleavage is inhibited following SPCLIP1, CLIPA8, and CLIPA28 knockdown positioning it downstream of the CLIP-SPH cascade. Moreover, like CLIPA8 and CLIPA28, CLIPC9 processing is negatively regulated by serine protease inhibitor 2 (SRPN2). This report demonstrates how our novel excretion-based approach can be utilized to dissect the complex protease networks regulating mosquito melanization. Collectively, our findings establish that CLIPC9 is required for microbial melanization in An. gambiae and shed light on how the CLIP-SPH cascade regulates this potent immune response.
Collapse
Affiliation(s)
- Gregory L. Sousa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ritika Bishnoi
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Richard H. G. Baxter
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Wang Y, Yang F, Cao X, Zou Z, Lu Z, Kanost MR, Jiang H. Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A 2020; 117:23581-23587. [PMID: 32900946 PMCID: PMC7519321 DOI: 10.1073/pnas.2004761117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolytic activation of phenoloxidase (PO) and the cytokine Spätzle during immune responses of insects is mediated by a network of hemolymph serine proteases (HPs) and noncatalytic serine protease homologs (SPHs) and inhibited by serpins. However, integration and conservation of the system and its control mechanisms are not fully understood. Here we present biochemical evidence that PO-catalyzed melanin formation, Spätzle-triggered Toll activation, and induced synthesis of antimicrobial peptides are stimulated via hemolymph (serine) protease 5 (HP5) in Manduca sexta Previous studies have demonstrated a protease cascade pathway in which HP14 activates proHP21; HP21 activates proPAP2 and proPAP3, which then activate proPO in the presence of a complex of SPH1 and SPH2. We found that both HP21 and PAP3 activate proHP5 by cleavage at ESDR176*IIGG. HP5 then cleaves proHP6 at a unique site of LDLH112*ILGG. HP6, an ortholog of Drosophila Persephone, activates both proHP8 and proPAP1. HP8 activates proSpätzle-1, whereas PAP1 cleaves and activates proPO. HP5 is inhibited by Manduca sexta serpin-4, serpin-1A, and serpin-1J to regulate its activity. In summary, we have elucidated the physiological roles of HP5, a CLIPB with unique cleavage specificity (cutting after His) that coordinates immune responses in the caterpillar.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Zhen Zou
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Zhiqiang Lu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
22
|
Parisi MG, Parrinello D, Stabili L, Cammarata M. Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans. BIOLOGY 2020; 9:E283. [PMID: 32932829 PMCID: PMC7563517 DOI: 10.3390/biology9090283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal's health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process. The cells play a fundamental role in immunity, as they display phagocytic activities and secrete mucus, which acts as a physicochemical barrier preventing or slowing down the proliferation of potential invaders. Finally, we describe the current state of knowledge of some immune effectors in Anthozoan species, including the potential role of toxins and the inflammatory response in the Mediterranean Anthozoan Anemonia viridis following injection of various foreign particles differing in type and dimensions, including pathogenetic bacteria.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Daniela Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
23
|
Mollah MMI, Dekebo A, Kim Y. Immunosuppressive Activities of Novel PLA 2 Inhibitors from Xenorhabdus hominickii, an Entomopathogenic Bacterium. INSECTS 2020; 11:E505. [PMID: 32759864 PMCID: PMC7469199 DOI: 10.3390/insects11080505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/27/2023]
Abstract
Eicosanoids mediate both cellular and humoral immune responses in insects. Phospholipase A2 (PLA2) catalyzes the first committed step in eicosanoid biosynthesis. It is a common pathogenic target of two entomopathogenic bacteria, Xenorhabdus and Photorhabdus. The objective of this study was to identify novel PLA2 inhibitors from X. hominickii and determine their immunosuppressive activities. To identify novel PLA2 inhibitors, stepwise fractionation of X. hominickii culture broth and subsequent enzyme assays were performed. Eight purified fractions of bacterial metabolites were obtained. Gas chromatography and mass spectrometry (GC-MS) analysis predicted that the main components in these eight fractions were 2-cyanobenzoic acid, dibutylamine, 2-ethyl 1-hexanol, phthalimide (PM), dioctyl terephthalate, docosane, bis (2-ethylhexyl) phthalate, and 3-ethoxy-4-methoxyphenol (EMP). Their synthetic compounds inhibited the activity of PLA2 in hemocytes of a lepidopteran insect, Spodoptera exigua, in a dose-dependent manner. They also showed significant inhibitory activities against immune responses such as prophenoloxidase activation and hemocytic nodulation of S. exigua larvae, with PM and EMP exhibiting the most potent inhibitory activities. These immunosuppressive activities were specific through PLA2 inhibition because an addition of arachidonic acid, a catalytic product of PLA2, significantly rescued such suppressed immune responses. The two most potent compounds (PM and EMP) showed significant insecticidal activities after oral administration. When the compounds were mixed with Bacillus thuringiensis (Bt), they markedly increased Bt pathogenicity. This study identified eight PLA2 inhibitors from bacterial metabolites of X. hominickii and demonstrated their potential as novel insecticides.
Collapse
Affiliation(s)
- Md. Mahi Imam Mollah
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Korea;
| | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888 Adama, Ethiopia;
| | - Yonggyun Kim
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Korea;
| |
Collapse
|
24
|
Wang Q, Yin M, Yuan C, Liu X, Hu Z, Zou Z, Wang M. Identification of a Conserved Prophenoloxidase Activation Pathway in Cotton Bollworm Helicoverpa armigera. Front Immunol 2020; 11:785. [PMID: 32431706 PMCID: PMC7215089 DOI: 10.3389/fimmu.2020.00785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Melanization is a prominent insect humoral response for encapsulation of and killing invading pathogens. It is mediated by a protease cascade composed of a modular serine protease (SP), and clip domain SPs (cSPs), which converts prophenoloxidase (PPO) into active phenoloxidase (PO). To date, melanization pathway in cotton bollworm Helicoverpa armigera, an important agricultural pest, remains largely unclear. To biochemically reconstitute the pathway in vitro, the putative proteases along with modified proteases containing the factor Xa cleavage site were expressed by Drosophila S2 cell expression system. Purified recombinant proteins were used to examine their role in activating PPO. It is revealed that cascade is initiated by a modular SP-SP41, followed by cSP1 and cSP6. The three-step SP41/cSP1/cSP6 cascade could further activate PPO, and the PO activity was significantly enhanced in the presence of two cSP homologs (cSPHs), cSPH11 and cSPH50, suggesting the latter are cofactors for PPO activation. Moreover, baculovirus infection was efficiently blocked by the reconstituted PPO activation cascade, and the effect was boosted by cSPH11 and cSPH50. Taken together, we unraveled a conserved PPO activation cascade in H. armigera, which is similar to that exists in lepidopteran biochemical model Manduca sexta and highlighted its role in antagonizing viral infection.
Collapse
Affiliation(s)
- Qianran Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Mengyi Yin
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanfei Yuan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xijia Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Zou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Tropical Translational Medicine, Laboratory of Medicine, School of Tropical Medicine, Ministry of Education, Hainan Medical University, Haikou, China
| | - Manli Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
25
|
Stączek S, Zdybicka-Barabas A, Pleszczyńska M, Wiater A, Cytryńska M. Aspergillus niger α-1,3-glucan acts as a virulence factor by inhibiting the insect phenoloxidase system. J Invertebr Pathol 2020; 171:107341. [DOI: 10.1016/j.jip.2020.107341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022]
|
26
|
Yang J, Tu J, Liu H, Wen L, Jiang Y, Yang B. Identification of an immunostimulatory polysaccharide in banana. Food Chem 2019; 277:46-53. [DOI: 10.1016/j.foodchem.2018.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023]
|
27
|
He Y, Wang Y, Hu Y, Jiang H. Manduca sexta hemolymph protease-2 (HP2) activated by HP14 generates prophenoloxidase-activating protease-2 (PAP2) in wandering larvae and pupae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:57-65. [PMID: 30098411 PMCID: PMC6163074 DOI: 10.1016/j.ibmb.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 05/27/2023]
Abstract
Melanization is a universal defense mechanism of insects against microbial infection. During this response, phenoloxidase (PO) is activated from its precursor by prophenoloxidase activating protease (PAP), the terminal enzyme of a serine protease (SP) cascade. In the tobacco hornworm Manduca sexta, hemolymph protease-14 (HP14) is autoactivated from proHP14 to initiate the protease cascade after host proteins recognize invading pathogens. HP14, HP21, proHP1*, HP6, HP8, PAP1-3, and non-catalytic serine protease homologs (SPH1 and SPH2) constitute a portion of the extracellular SP-SPH system to mediate melanization and other immune responses. Here we report the expression, purification, and functional characterization of M. sexta HP2. The HP2 precursor is synthesized in hemocytes, fat body, integument, nerve and trachea. Its mRNA level is low in fat body of 5th instar larvae before wandering stage; abundance of the protein in hemolymph displays a similar pattern. HP2 exists as an active enzyme in plasma of the wandering larvae and pupae in the absence of an infection. HP14 cleaves proHP2 to yield active HP2. After incubating active HP2 with larval hemolymph, we detected higher levels of PO activity, i.e. an enhancement of proPO activation. HP2 cleaved proPAP2 (but not proPAP3 or proPAP1) to yield active PAP2, responsible for a major increase in IEARpNA hydrolysis. PAP2 activates proPOs in the presence of a cofactor of SPH1 and SPH2. In summary, we have identified a new member of the proPO activation system and reconstituted a pathway of HP14-HP2-PAP2-PO. Since high levels of HP2 mRNA were present in integument and active HP2 in plasma of wandering larvae, HP2 likely plays a role in cuticle melanization during pupation and protects host from microbial infection in a soil environment.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
28
|
Yang F, Wang Y, Sumathipala N, Cao X, Kanost MR, Jiang H. Manduca sexta serpin-12 controls the prophenoloxidase activation system in larval hemolymph. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:27-36. [PMID: 29800677 PMCID: PMC5997545 DOI: 10.1016/j.ibmb.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/28/2018] [Accepted: 05/14/2018] [Indexed: 06/01/2023]
Abstract
Insect prophenoloxidase activation is coordinated by a serine protease network, which is regulated by serine protease inhibitors of the serpin superfamily. The enzyme system also leads to proteolytic processing of a Spätzle precursor. Binding of Spätzle to a Toll receptor turns on a signaling pathway to induce the synthesis of defense proteins. Previous studies of the tobacco hornworm Manduca sexta have revealed key members of the protease cascade, which generates phenoloxidase for melanogenesis and Spätzle to induce immunity-related genes. Here we provide evidence that M. sexta serpin-12 regulates hemolymph protease-14 (HP14), an initiating protease of the cascade. This inhibitor, unlike the other serpins characterized in M. sexta, has an amino-terminal extension rich in hydrophilic residues and an unusual P1 residue (Leu429) right before the scissile bond cleaved by a target protease. Serpins with similarities to serpin-12, including Drosophila Necrotic, were identified in a wide range of insects including flies, moths, wasps, beetles, and two hemimetabolous species. The serpin-12 mRNA is present at low, constitutive levels in larval fat body and hemocytes and becomes more abundant after an immune challenge. We produced the serpin-12 core domain (serpin-12ΔN) in insect cells and in Escherichia coli and demonstrated its inhibition of human cathepsin G, bovine α-chymotrypsin, and porcine pancreatic elastase. MALDI-TOF analysis of the reaction mixtures confirmed the predicted P1 residue of Leu429. Supplementation of larval plasma samples with the serpin-12ΔN decreased prophenoloxidase activation elicited by microbial cells and reduced the proteolytic activation of the protease precursors of HP6, HP8, PAPs, and other serine protease-related proteins. After incubation of plasma stimulated with peptidoglycan, a 72 kDa protein appeared, which was recognized by polyclonal antibodies against both serpin-12 and HP14, suggesting that a covalent serpin-protease complex formed when serpin-12 inhibited HP14. Together, these data suggest that M. sexta serpin-12 inhibits HP14 to regulate melanization and antimicrobial peptide induction.
Collapse
Affiliation(s)
- Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Niranji Sumathipala
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
29
|
Cheng Y, Lin Z, Wang JM, Xing LS, Xiong GH, Zou Z. CTL14, a recognition receptor induced in late stage larvae, modulates anti-fungal immunity in cotton bollworm Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:142-152. [PMID: 29453998 DOI: 10.1016/j.dci.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
C-type lectin (CTL) is usually considered as pattern recognition receptors in insect innate immunity. Here we found that CTL14 of Helicoverpa armigera was only activated in the fifth instar larvae not in the second instar by entomopathogen Beauveria bassiana infection. Recombinant CTL14 protein was found to form aggregates with zymosan and B. bassiana in vitro. Immunoprecipitation studies demonstrated that CTL14 interacted with serine proteinases (SP), serine proteinase inhibitor (serpin), prophenoloxidases (PPO) and vitellogenin (Vg) in the larval hemolymph. Furthermore, depletion of CTL14 using dsRNA led to dramatic decrease in the expression level of PPO1. Additionally, CTL14 depleted H. armigera decreased the resistance to fungal challenge. Taken together, our study showed the direct involvement of CTL14 in the anti-fungal immunity of H. armigera, which further explained the stronger immune responses in the fifth instar compared to the second instar larvae.
Collapse
Affiliation(s)
- Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ju-Mei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
31
|
Kim Y, Ahmed S, Stanley D, An C. Eicosanoid-mediated immunity in insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:130-143. [PMID: 29225005 DOI: 10.1016/j.dci.2017.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Eicosanoid is a collective term for oxygenated metabolites of C20 polyunsaturated fatty acids. As seen in mammals, eicosanoids play crucial roles in mediating various physiological processes, including immune responses, in insects. Upon microbial pathogen infection, non-self recognition signals are propagated to nearly immune effectors such as hemocytes and fat body using various immune mediators, in which eicosanoid signals act as the ultimate downstream mediator. The chemical diversity of eicosanoids may operate to mediate various immune responses. Some entomopathogenic bacteria suppress eicosanoid biosynthesis, which inhibits host insect immunity and promotes their pathogenicity. This review introduces immune responses mediated by various eicosanoids. Then it explains the cross-talks of eicosanoids with other immune mediators including cytokines, biogenic monoamines, and nitric oxide to clarify the complexity of insect immune mediation. Finally, we highlight the biological significance of eicosanoids by demonstrating bacterial pathogenicity inhibiting a key enzyme - phospholipase A2 - in eicosanoid biosynthesis using their secondary metabolites to defend host insect immune attack.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea.
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea
| | - David Stanley
- USDA- ARS, Biological Control of Insects Research Laboratory, 1503 S. Providence Road, Columbia MO 65203, USA
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Chen K, Lu Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:3-11. [PMID: 29289612 DOI: 10.1016/j.dci.2017.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
The silkworm Bombyx mori, an economically important insect that is usually reared indoors, is susceptible to various pathogens, including bacteria, fungi, viruses, and microsporidia. As with other insects, the silkworm lacks an adaptive immune system and relies solely on innate immunity to defend itself against infection. Compared to other intensively studied insects, such as the fruit fly and tobacco hornworm, the principal immune pathways in the silkworm remain unclear. In this article, we review the literature concerning silkworm immune responses to bacteria and fungi and present our perspectives on future research into silkworm immunity.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Qin Z, Yang D, You X, Liu Y, Hu S, Yan Q, Yang S, Jiang Z. The recognition mechanism of triple-helical β-1,3-glucan by a β-1,3-glucanase. Chem Commun (Camb) 2018; 53:9368-9371. [PMID: 28787048 DOI: 10.1039/c7cc03330c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
β-1,3-Glucan is one of the most abundant polysaccharides in fungi. Recognition of β-1,3-glucan occurs in both hydrolysis by glycoside hydrolases and immunological recognition. Our study provides a novel structural account of how glycoside hydrolase recognizes and hydrolyzes substrates in a triple-helical form and presents a general structural basis of β-1,3-glucan recognition.
Collapse
Affiliation(s)
- Zhen Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:81-93. [PMID: 28501515 DOI: 10.1016/j.dci.2017.05.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses. Detection of microbial pathogens triggers the signal transduction pathways including the NF-κB signaling, Toll and Imd pathways, resulting in the activation of genes involved in host defense responses. In this review, we update the discovery of components of the Toll and Imd pathways in shrimp and their participation in the regulation of shrimp antimicrobial peptide (AMP) synthesis. We also focus on a recent progress on the two most powerful and the best-studied shrimp humoral responses: AMPs and melanization. Shrimp AMPs are mainly cationic peptides with sequence diversity which endues them the broad range of activities against microorganisms. Melanization, regulated by the prophenoloxidase activating cascade, also plays a crucial role in killing and sequestration of invading pathogens. The progress and emerging research on mechanisms and functional characterization of components of these two indispensable humoral responses in shrimp immunity are summarized and discussed. Interestingly, the pattern recognition protein (PRP) crosstalk is evidenced between the proPO activating cascade and the AMP synthesis pathways in shrimp, which enables the innate immune system to build up efficient immune responses.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Sureerat Tang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
35
|
Shen D, Wang L, Ji J, Liu Q, An C. Identification and Characterization of C-type Lectins in Ostrinia furnacalis (Lepidoptera: Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4924850. [PMID: 29718486 PMCID: PMC5842395 DOI: 10.1093/jisesa/iey011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 05/24/2023]
Abstract
C-type lectins (CTLs) are a large family of calcium-dependent carbohydrate-binding proteins. They function primarily in cell adhesion and immunity by recognizing various glycoconjugates. We identified 14 transcripts encoding proteins with one or two CTL domains from the transcriptome from Asian corn borer, Ostrinia furnacalis (Guenée; Lepidoptera: Pyralidae). Among them, five (OfCTL-S1 through S5) only contain one CTL domain, the remaining nine (OfIML-1 through 9) have two tandem CTL domains. Five CTL-Ss and six OfIMLs have a signal peptide are likely extracellular while another two OfIMLs might be cytoplasmic. Phylogenetic analysis indicated that OfCTL-Ss had 1:1 orthologs in Lepidoptera, Diptera, Coleoptera and Hymenoptera species, but OfIMLs only clustered with immulectins (IMLs) from Lepidopteran. Structural modeling revealed that the 22 CTL domains adopt a similar double-loop fold consisting of β-sheets and α-helices. The key residues for calcium-dependent or independent binding of specific carbohydrates by CTL domains were predicted with homology modeling. Expression profiles assay showed distinct expression pattern of 14 CTLs: the expression and induction were related to the developmental stages and infected microorganisms. Overall, our work including the gene identification, sequence alignment, phylogenetic analysis, structural modeling, and expression profile assay would provide a valuable basis for the further functional studies of O. furnacalis CTLs.
Collapse
Affiliation(s)
- Dongxu Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P.R. China
| | - Lei Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P.R. China
| | - Jiayue Ji
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P.R. China
| | - Qizhi Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P.R. China
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
36
|
Wu T, Zhao Y, Wang Z, Song Q, Wang Z, Xu Q, Wang Y, Wang L, Zhang Y, Feng C. β-1,3-Glucan recognition protein 3 activates the prophenoloxidase system in response to bacterial infection in Ostrinia furnacalis Guenée. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:31-43. [PMID: 29032241 DOI: 10.1016/j.dci.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Pattern recognition receptors (PRRs) are biosensor proteins that bind to non-self pathogen associated molecular patterns (PAMPs). β-1,3-glucan recognition proteins (βGRPs) play an essential role in immune recognition and signaling pathway of insect innate immunity. Here, we report the cloning and characterization of cDNA of OfβGRP3 from Ostrinia furnacalis larvae. The OfβGRP3 contains 1455 bp open reading frame, encoding a predicted 484 amino acid residue protein. In hemocytes, the expression levels of OfβGRP3 in Escherichia coli-challenged group were higher than those of Bacillus subtilis-challenged group at 2, 4, 8, 10 and 12 h post injection (HPI). In fat body, OfβGRP3 expression in both B. subtilis and E. coli-challenged group was significantly higher than that in untreated group from 4 to 10 HPI, and then the expression continuously dropped from 12 to 36 HPI. The OfβGRP3 expression in laminarin-injected group was higher than that in lipopolysaccharides (LPS)-injected group in various test tissues from 4 to 24 HPI. The LT50 of E. coli-infected OfβGRP3-RNAi larvae (1.0 days) was significantly lower compared with that of E. coli infected wild-type larvae (3.0 days) (p < 0.01). Only 10.2% Sephadex G50 beads (degree 3) were completely melanized in the larvae inoculated with OfβGRP3 dsRNA, as compared to 48.8% in control larvae (p < 0.01). A notable reduction in the PO activity and IEARase activity in hemolymph was also detected in the OfβGRP3 knockdown larvae. Our study demonstrates that OfβGRP3 is one of PRR members involved the PPO-activating system in O. furnacalis larvae.
Collapse
Affiliation(s)
- Taoyan Wu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ya Zhao
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Zengxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuwen Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yingjuan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yiqiang Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
37
|
Nakhleh J, Christophides GK, Osta MA. The serine protease homolog CLIPA14 modulates the intensity of the immune response in the mosquito Anopheles gambiae. J Biol Chem 2017; 292:18217-18226. [PMID: 28928218 PMCID: PMC5672044 DOI: 10.1074/jbc.m117.797787] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Clip domain serine protease homologs (SPHs) are positive and negative regulators of Anopheles gambiae immune responses mediated by the complement-like protein TEP1 against Plasmodium malaria parasites and other microbial infections. We have previously reported that the SPH CLIPA2 is a negative regulator of the TEP1-mediated response by showing that CLIPA2 knockdown (kd) enhances mosquito resistance to infections with fungi, bacteria, and Plasmodium parasites. Here, we identify another SPH, CLIPA14, as a novel regulator of mosquito immunity. We found that CLIPA14 is a hemolymph protein that is rapidly cleaved following a systemic infection. CLIPA14 kd mosquitoes elicited a potent melanization response against Plasmodium berghei ookinetes and exhibited significantly increased resistance to Plasmodium infections as well as to systemic and oral bacterial infections. The activity of the enzyme phenoloxidase, which initiates melanin biosynthesis, dramatically increased in the hemolymph of CLIPA14 kd mosquitoes in response to systemic bacterial infections. Ookinete melanization and hemolymph phenoloxidase activity were further increased after cosilencing CLIPA14 and CLIPA2, suggesting that these two SPHs act in concert to control the melanization response. Interestingly, CLIPA14 RNAi phenotypes and its infection-induced cleavage were abolished in a TEP1 loss-of-function background. Our results suggest that a complex network of SPHs functions downstream of TEP1 to regulate the melanization reaction.
Collapse
Affiliation(s)
- Johnny Nakhleh
- From the Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon and
| | | | - Mike A Osta
- From the Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon and
| |
Collapse
|
38
|
Dostálová A, Rommelaere S, Poidevin M, Lemaitre B. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Biol 2017; 15:79. [PMID: 28874153 PMCID: PMC5584532 DOI: 10.1186/s12915-017-0408-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/25/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Members of the thioester-containing protein (TEP) family contribute to host defence in both insects and mammals. However, their role in the immune response of Drosophila is elusive. In this study, we address the role of TEPs in Drosophila immunity by generating a mutant fly line, referred to as TEPq Δ , lacking the four immune-inducible TEPs, TEP1, 2, 3 and 4. RESULTS Survival analyses with TEPq Δ flies reveal the importance of these proteins in defence against entomopathogenic fungi, Gram-positive bacteria and parasitoid wasps. Our results confirm that TEPs are required for efficient phagocytosis of bacteria, notably for the two Gram-positive species tested, Staphylococcus aureus and Enterococcus faecalis. Furthermore, we show that TEPq Δ flies have reduced Toll pathway activation upon microbial infection, resulting in lower expression of antimicrobial peptide genes. Epistatic analyses suggest that TEPs function upstream or independently of the serine protease ModSP at an initial stage of Toll pathway activation. CONCLUSIONS Collectively, our study brings new insights into the role of TEPs in insect immunity. It reveals that TEPs participate in both humoral and cellular arms of immune response in Drosophila. In particular, it shows the importance of TEPs in defence against Gram-positive bacteria and entomopathogenic fungi, notably by promoting Toll pathway activation.
Collapse
Affiliation(s)
- Anna Dostálová
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Toll ligand Spätzle3 controls melanization in the stripe pattern formation in caterpillars. Proc Natl Acad Sci U S A 2017; 114:8336-8341. [PMID: 28716921 DOI: 10.1073/pnas.1707896114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A stripe pattern is an aposematic or camouflage coloration often observed among various caterpillars. However, how this ecologically important pattern is formed is largely unknown. The silkworm dominant mutant Zebra (Ze) has a black stripe in the anterior margin of each dorsal segment. Here, fine linkage mapping of 3,135 larvae revealed a 63-kbp region responsible for the Ze locus, which contained three candidate genes, including the Toll ligand gene spätzle3 (spz-3). Both electroporation-mediated ectopic expression and RNAi analyses showed that, among candidate genes, only processed spz-3 induced melanin pigmentation and that Toll-8 was the candidate receptor gene of spz-3 This Toll ligand/receptor set is also involved in melanization of other mutant Striped (pS ), which has broader stripes. Additional knockdown of 5 other spz family and 10 Toll-related genes caused no drastic change in the pigmentation of either mutant, suggesting that only spz-3/Toll-8 is mainly involved in the melanization process rather than pattern formation. The downstream pigmentation gene yellow was specifically up-regulated in the striped region of the Ze mutant, but spz-3 showed no such region-specific expression. Toll signaling pathways are known to be involved in innate immunity, dorsoventral axis formation, and neurotrophic functions. This study provides direct evidence that a Toll signaling pathway is co-opted to control the melanization process and adaptive striped pattern formation in caterpillars.
Collapse
|
40
|
Steele KH, Stone BJ, Franklin KM, Fath-Goodin A, Zhang X, Jiang H, Webb BA, Geisler C. Improving the baculovirus expression vector system with vankyrin-enhanced technology. Biotechnol Prog 2017. [PMID: 28649776 PMCID: PMC5786172 DOI: 10.1002/btpr.2516] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017
Collapse
Affiliation(s)
| | | | | | | | - Xiufeng Zhang
- Dept. of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma
| | - Haobo Jiang
- Dept. of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma
| | - Bruce A Webb
- ParaTechs Corporation, Lexington Kentucky, Department of Entomology, University of Kentucky, Lexington, KT
| | | |
Collapse
|
41
|
Wang Y, Jiang H. Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:35-43. [PMID: 27989837 PMCID: PMC5461653 DOI: 10.1016/j.ibmb.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 05/09/2023]
Abstract
Manduca sexta microbe binding protein (MBP) is a member of the β-1,3-glucanase-related protein superfamily that includes Gram-negative bacteria-binding proteins (GNBPs), β-1,3-glucan recognition proteins (βGRPs), and β-1,3-glucanases. Our previous and current studies showed that the purified MBP from baculovirus-infected insect cells had stimulated prophenoloxidase (proPO) activation in the hemolymph of naïve and immune challenged larvae and that supplementation of the exogenous MBP and peptidoglycans (PGs) had caused synergistic increases in PO activity. To explore the underlying mechanism, we separated by SDS-PAGE naïve and induced larval plasma treated with buffer or MBP and detected on immunoblots changes in intensity and/or mobility of hemolymph (serine) proteases [HP14, HP21, HP6, HP8, proPO-activating proteases (PAPs) 1-3] and their homologs (SPH1, SPH2). In a nickel pull-down assay, we observed association of MBP with proHP14 (slightly), βGRP2, PG recognition protein-1 (PGRP1, indirectly), SPH1, SPH2, and proPO2. Further experiments indicated that diaminopimelic acid (DAP) or Lys PG, MBP, PGRP1, and proHP14 together trigger the proPO activation system in a Ca2+-dependent manner. Injection of the recombinant MBP into the 5th instar naïve larvae significantly induced the expression of several antimicrobial peptide genes, revealing a possible link between HP14 and immune signal transduction. Together, these results suggest that the recognition of Gram-negative or -positive bacteria via their PGs induces the melanization and Toll pathways in M. sexta.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
42
|
Sadekuzzaman M, Park Y, Lee S, Kim K, Jung JK, Kim Y. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. J Invertebr Pathol 2017; 145:13-22. [PMID: 28302381 DOI: 10.1016/j.jip.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022]
Abstract
An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, was isolated from an entomopathogenic nematode, Steinernema monticolum. X. hominickii exhibited significant insecticidal activities at ≥6.6×102 colony-forming units per larva against a lepidopteran insect, Spodoptera exigua with hemocoelic injection. The insecticidal activity of X. hominickii was reduced by an addition of arachidonic acid (AA, a catalytic product of PLA2), but enhanced by an addition by dexamethasone (DEX, a specific inhibitor of PLA2). S. exigua could defend the bacterial infection by forming hemocyte nodules. However, live X. hominickii significantly reduced the hemocytic nodulation compared to similar treatment with heat-killed X. hominickii. An addition of AA to live X. hominickii significantly rescued the immunosuppression. X. hominickii also inhibited phenoloxidase activity in hemolymph of S. exigua larvae. Furthermore, the bacteria suppressed gene expressions of antimicrobial peptides, such as attacin-1, attacin-2, defensin, gallerimycin and transferrin-1 of S. exigua. An organic extract of X. hominickii-cultured broth with ethyl acetate possessed oxindole and significantly suppressed hemocyte nodulation. Again, an addition of AA diminished the inhibitory activity of the organic extract against hemocyte nodulation. Oxindole alone inhibited hemocyte nodulation and PLA2 enzyme activity. These results suggest that the entomopathogenicity of X. hominickii comes from its inhibitory activity against eicosanoid biosynthesis of target insects.
Collapse
Affiliation(s)
- Md Sadekuzzaman
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Seunghee Lee
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Kunwoo Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Jin Kyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
43
|
Yan Z, Fang Q, Liu Y, Xiao S, Yang L, Wang F, An C, Werren JH, Ye G. A Venom Serpin Splicing Isoform of the Endoparasitoid Wasp Pteromalus puparum Suppresses Host Prophenoloxidase Cascade by Forming Complexes with Host Hemolymph Proteinases. J Biol Chem 2017; 292:1038-1051. [PMID: 27913622 PMCID: PMC5247638 DOI: 10.1074/jbc.m116.739565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
To ensure successful parasitism, parasitoid wasps inject venom along with their eggs into their hosts. The venom serves to suppress host immune responses, including melanization. Venom from Pteromalus puparum, a pupal endoparasitoid, inhibits melanization of host hemolymph in vitro in a dose-dependent manner. Using assay-guided fractionation, a serpin splicing isoform with phenoloxidase inhibitory activity was identified as P puparum serpin-1, venom isoform (PpS1V). This serpin gene has 16 predicted splicing isoforms that differ only in the C-terminal region. RT-PCR results show that the specific serpin isoform is differentially expressed in the venom gland. Recombinant PpS1V (rPpS1V) suppresses host prophenoloxidase (PPO) activation rather than inhibiting the phenoloxidase directly. Pulldown assays show that PpS1V forms complexes with two host hemolymph proteins, here named Pieris rapae hemolymph proteinase 8 (PrHP8) and P. rapae prophenoloxidase-activating proteinase 1 (PrPAP1), based on gene sequence blasting and phylogenetic analysis. The role of rPrPAP1 in the PPO activation cascade and its interaction with rPpS1V were confirmed. The stoichiometry of inhibition of PrPAP1 by PpS1V is 2.3. PpS1V also inhibits PPO activation in a non-natural host, Ostrinia furnacalis, through forming a complex with O. furnacalis serine protease 13 (OfSP13), an ortholog to PrPAP1. Our results identify a venom-enriched serpin isoform in P. puparum that inhibits host PPO activation, probably by forming a complex with host hemolymph proteinase PrPAP1.
Collapse
Affiliation(s)
- Zhichao Yan
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Liu
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shan Xiao
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Yang
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunju An
- the Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China, and
| | - John H Werren
- the Department of Biology, University of Rochester, Rochester, New York 14627
| | - Gongyin Ye
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China,
| |
Collapse
|
44
|
Cloning, Expression, and Characterization of Prophenoloxidases from Asian Corn Borer, Ostrinia furnacalis (Gunée). J Immunol Res 2016; 2016:1781803. [PMID: 28078308 PMCID: PMC5203920 DOI: 10.1155/2016/1781803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
Insect phenoloxidase (PO) belongs to the type 3 copper protein family and possesses oxidoreductase activities. PO is typically synthesized as a zymogen called prophenoloxidase (PPO) and requires the proteolytic activation to function. We here cloned full-length cDNA for 3 previously unidentified PPOs, which we named OfPPO1a, OfPPO1b, and OfPPO3, from Asian corn borer, Ostrinia furnacalis (Gunée), in addition to the previously known OfPPO2. These conceptual PPOs and OfPPO2 all contain two common copper-binding regions, two potential proteolytic activation sites, a plausible thiol-ester site, and a conserved C-terminal region but lack a secretion signal peptide sequence at the N-terminus. O. furnacalis PPOs were highly similar to other insect PPOs (42% to 79% identity) and clustered well with other lepidopteran PPOs. RT-PCR assay showed the transcripts of the 4 OfPPOs were all detected at the highest level in hemocytes and at the increased amounts after exposure to infection by bacteria and fungi. Additionally, we established an Escherichia coli (E. coli) expression system to produce recombinant O. furnacalis PPO proteins for future use in investigating their functions. These insights could provide valuable information for better understanding the activation and functioning mechanisms of O. furnacalis PPOs.
Collapse
|
45
|
Zhang X, Zhu YT, Li XJ, Wang SC, Li D, Li WW, Wang Q. Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) stimulates prophenoloxidase activating system in Chinese mitten crab (Eriocheir sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:70-79. [PMID: 26995767 DOI: 10.1016/j.dci.2016.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Melanization mediated by prophenoloxidase (proPO) activating system play an essential role in killing invading microorganisms in invertebrates. Lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) as a pattern recognition protein have been demonstrated to active the proPO cascade in insect and shrimp. In this study, we investigated the role of LGBP in prophenoloxidase cascade-induced melanization in Chinese mitten crab (Eriocheir sinensis). By RT-PCR analysis, EsLGBP was detected in all tested tissues, and showed highest expression in hemocytes, gill, intestine and brain. The expression of EsLGBP was up-regulated in the hemocytes following injections of LPS and β-1, 3-glucan. The recombinant EsLGBP protein (rEsLGBP) was produced via prokaryotic expression system and affinity chromatography. By western blotting, rEsLGBP was discovered to exhibit the ability to bind to all tested microorganisms, including Gram-negative bacteria, Gram-positive bacteria and yeast (Pichia pastoris). Meanwhile we found rEsLGBP has a high binding activity towards microbial immune elicitors such as LPS and β-1, 3-glucan whereas no binding activity is detected with peptidoglycan. Moreover, the effects of RNAi-mediated blockade of EsLGBP were investigated on bacterial counts in the hemolymph and cumulative mortality rate of crabs infected with Vibrio parahaemolyticus in vivo. Further experiments demonstrate that rEsLGBP can trigger the whole hemolymph dependent melanization and stimulate to proPO cascade in vitro. Taken together, these results provide experimental evidence for role of LGBP in innate immunity, especially in the activation of prophenoloxidase activating system.
Collapse
Affiliation(s)
- Xing Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Shi-Chuang Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Dan Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
46
|
Zhang X, An C, Sprigg K, Michel K. CLIPB8 is part of the prophenoloxidase activation system in Anopheles gambiae mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:106-15. [PMID: 26926112 PMCID: PMC4828722 DOI: 10.1016/j.ibmb.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 05/27/2023]
Abstract
In insects and other arthropods the formation of eumelanin (melanization) is a broad spectrum and potent immune response that is used to encapsulate and kill invading pathogens. This immune response is regulated by the activation of prophenoxidase (proPO), which is controlled by proteinase cascades and its serpin inhibitors, together forming the proPO activation system. While the molecular composition of these protease cascades are well understood in insect model systems, major knowledge gaps remain in mosquitoes. Recently, a regulatory unit of melanization in Anopheles gambiae was documented, comprised of the inhibitory serpin-clip-serine proteinase, CLIPB9 and its inhibitor serpin-2 (SRPN2). Partial reversion of SRPN2 phenotypes in melanotic tumor formation and adult survival by SRPN2/CLIPB9 double knockdown suggested other target proteinases of SRPN2 in regulating melanization. Here we report that CLIPB8 supplements the SRPN2/CLIPB9 regulatory unit in controlling melanization in An. gambiae. As with CLIPB9, knockdown of CLIPB8 partially reversed the pleiotropic phenotype induced by SRPN2 silencing with regards to adult survival and melanotic tumor formation. Recombinant SRPN2 protein formed an SDS-stable protein complex with activated recombinant CLIPB8, however did not efficiently inhibit CLIPB8 activity in vitro. CLIPB8 did not directly activate proPO in vitro nor was it able to cleave and activate proCLIPB9. Nevertheless, epistasis analysis using RNAi placed CLIPB8 and CLIPB9 in the same pathway leading to melanization, suggesting that CLIPB8 either acts further upstream of CLIPB9 or is required for activation of a yet to be identified serine proteinase homolog. Taken together, this study identifies CLIPB8 as an additional player in proPO activation cascade and highlights the complexity of the proteinase network that regulates melanization in An. gambiae.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chunju An
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - KaraJo Sprigg
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|