1
|
Bate‐Eya LT, Albayrak G, Carr SM, Shrestha A, Kanapin A, Samsonova A, La Thangue NB. Sustained cancer-relevant alternative RNA splicing events driven by PRMT5 in high-risk neuroblastoma. Mol Oncol 2025; 19:741-763. [PMID: 39021294 PMCID: PMC11887678 DOI: 10.1002/1878-0261.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is over-expressed in a wide variety of cancers and is implicated as having a key oncogenic role, achieved in part through its control of the master transcription regulator E2F1. We investigated the relevance of PRMT5 and E2F1 in neuroblastoma (NB) and found that elevated expression of PRMT5 and E2F1 occurs in poor prognosis high-risk disease and correlates with an amplified Myelocytomatosis viral-related oncogene, neuroblastoma-derived (MYCN) gene. Our results show that MYCN drives the expression of splicing factor genes that, together with PRMT5 and E2F1, lead to a deregulated alternative RNA splicing programme that impedes apoptosis. Pharmacological inhibition of PRMT5 or inactivation of E2F1 restores normal splicing and renders NB cells sensitive to apoptosis. Our findings suggest that a sustained cancer-relevant alternative RNA splicing programme desensitises NB cells to apoptosis, and identify PRMT5 as a potential therapeutic target for high-risk disease.
Collapse
Affiliation(s)
| | - Gulsah Albayrak
- Laboratory of Cancer Biology, Department of OncologyUniversity of OxfordUK
| | - Simon Mark Carr
- Laboratory of Cancer Biology, Department of OncologyUniversity of OxfordUK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of OncologyUniversity of OxfordUK
| | - Alexander Kanapin
- Institute of Translational BiomedicineSaint Petersburg State UniversityRussia
| | - Anastasia Samsonova
- Institute of Translational BiomedicineSaint Petersburg State UniversityRussia
| | | |
Collapse
|
2
|
Zhang B, Orning P, Lehman JW, Dinis A, Torres-Ulloa L, Elling R, Kelliher MA, Bertin J, Proulx MK, Goguen JD, Ryan L, Kandasamy RK, Espevik T, Pai AA, Fitzgerald KA, Lien E. Raver1 links Ripk1 RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance. Proc Natl Acad Sci U S A 2025; 122:e2420802122. [PMID: 39946533 PMCID: PMC11848402 DOI: 10.1073/pnas.2420802122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/08/2025] [Indexed: 02/19/2025] Open
Abstract
Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor-interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis, and inflammation. Here, we found a pivotal role of Raver1 as an essential regulator of Ripk1 pre-mRNA splicing, expression, and functionality and the subsequent caspase-8-dependent inflammatory cell death. We show that Raver1 influences mRNA diversity primarily by repressing alternative exon inclusion. Macrophages from Raver1-deficient mice exhibit altered splicing of Ripk1. As a result, Raver1-deficient primary macrophages display diminished cell death and decreased interleukin-18 and interleukin-1ß production, when infected with Yersinia bacteria, or by restraining TGF-ß-activated kinase 1 or IKKβ in the presence of lipopolysaccharide, tumor necrosis factor family members, or interferon-γ. These responses are accompanied by reduced activation of caspase-8, Gasdermin D and E, and caspase-1 in the absence of Raver1. Consequently, Raver1-deficient mice showed heightened susceptibility to Yersinia infection. Raver1 and RIPK1 also controlled the expression and function of the C-type lectin receptor Mincle. Our study underscores the critical regulatory role of Raver1 in modulating innate immune responses and highlights its significance in directing in vivo and in vitro inflammatory processes.
Collapse
Affiliation(s)
- Boyao Zhang
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Pontus Orning
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Jesse W. Lehman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Alexandre Dinis
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Roland Elling
- Institute for Immunodeficiency, Center of Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
- Institute for Immunodeficiency, Center for Pediatrics and Adolescent Medicine University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
| | - Michelle A. Kelliher
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA19426
- Sanofi, Immunology and Inflammation Research Therapeutic Area, Cambridge, MA02141
| | - Megan K. Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jon D. Goguen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Liv Ryan
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Richard K. Kandasamy
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN55905
| | - Terje Espevik
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim7006, Norway
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Egil Lien
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| |
Collapse
|
3
|
Li R, Huang T, Zhou J, Liu X, Li G, Zhang Y, Guo Y, Li F, Li Y, Liesz A, Li P, Wang Z, Wan J. Mef2c Exacerbates Neuron Necroptosis via Modulating Alternative Splicing of Cflar in Ischemic Stroke With Hyperlipidemia. CNS Neurosci Ther 2024; 30:e70144. [PMID: 39648651 PMCID: PMC11625962 DOI: 10.1111/cns.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024] Open
Abstract
AIM Hyperlipidemia is a common comorbidity of stroke patients, elucidating the mechanism that underlies the exacerbated ischemic brain injury after stroke with hyperlipidemia is emerging as a significant clinical problem due to the growing proportion of hyperlipidemic stroke patients. METHODS Mice were fed a high-fat diet for 12 weeks to induce hyperlipidemia. Transient middle cerebral artery occlusion was induced as a mouse model of ischemic stroke. Emx1Cre mice were crossed with Mef2cfl/fl mice to specifically deplete Mef2c in neurons. RESULTS We reported that hyperlipidemia significantly aggravated neuronal necroptosis and exacerbated long-term neurological deficits following ischemic stroke in mice. Mechanistically, Cflar, an upstream necroptotic regulator, was alternatively spliced into pro-necroptotic isoform (CflarR) in ischemic neurons of hyperlipidemic mice. Neuronal Mef2c was a transcription factor modulating Cflar splicing and upregulated by hyperlipidemia following stroke. Neuronal specific Mef2c depletion reduced cerebral level of CflarR and cFLIPR (translated by CflarR), while mitigated neuron necroptosis and neurological deficits following stroke in hyperlipidemic mice. CONCLUSIONS Our study highlights the pathogenic role of CflarR splicing mediated by neuronal Mef2c, which aggravates neuron necroptosis following stroke with comorbid hyperlipidemia and proposes CflarR splicing as a potential therapeutic target for hyperlipidemic stroke patients.
Collapse
Affiliation(s)
- Ruqi Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianchen Huang
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianpo Zhou
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiansheng Liu
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gan Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fengshi Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMUMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenghong Wang
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jieqing Wan
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Zhang B, Orning P, Lehman JW, Dinis A, Torres-Ulloa L, Elling R, Kelliher MA, Bertin J, Proulx MK, Ryan L, Kandasamy R, Espevik T, Pai AA, Fitzgerald KA, Lien E. Raver1 links Ripk1 RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625707. [PMID: 39651143 PMCID: PMC11623576 DOI: 10.1101/2024.11.27.625707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis and inflammation. Here we discovered a pivotal role of Raver1 as an essential regulator of Ripk1 pre-mRNA splicing, expression, and functionality, and the subsequent caspase-8-dependent inflammatory cell death. Macrophages from Raver1 -deficient mice exhibit altered splicing of Ripk1 , accompanied by diminished cell death and reduced activation of caspase-8, Gasdermin D and E, caspase-1, as well as decreased interleukin-18 (IL-18) and IL-1ß production. These effects were triggered by Yersinia bacteria, or by restraining TAK1 or IKKβ in the presence of LPS, TNF family members, or IFNγ. Consequently, animals lacking Raver1 showed heightened susceptibility to Yersinia infection. Raver1 and RIPK1 also controlled the expression and function of the C-type lectin receptor Mincle. Our study underscores the critical regulatory role of Raver1 in modulating innate immune responses and highlights its significance in directing in vivo and in vitro inflammatory processes. Significance Caspase-8 and the kinase RIPK1 are at focal points of several inflammation and cell death pathways. Thus, a careful regulation of their actions is needed. Our work identifies the RNA splicing factor Raver1 as a critical factor directing the splicing of Ripk1 in order to modulate RIPK1/caspase-8-driven pyroptosis, apoptosis and inflammation. Raver1 is central for macrophage responses to Yersinia bacteria, initiated after blockade of kinases TAK1 and IKK, measured as activation of RIPK1, caspase-8, Gasdermin D, caspase-3, IL-1ß and IL-18. Importantly, Raver1 is necessary for host resistance to Yersinia infection in vivo . We propose that Raver1 is key for correct tuning of RIPK1-caspase-8 dependent processes.
Collapse
|
5
|
Magri Z, Jetton D, Muendlein HI, Connolly WM, Russell H, Smirnova I, Sharma S, Bunnell S, Poltorak A. CD14 is a decision-maker between Fas-mediated death and inflammation. Cell Rep 2024; 43:114685. [PMID: 39213151 PMCID: PMC11471008 DOI: 10.1016/j.celrep.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling through classical death receptor Fas was mainly appreciated as a pro-death pathway until recent reports characterized pro-inflammatory outcomes of Fas-mediated activation in pathological contexts. How Fas signaling can switch to pro-inflammatory activation is poorly understood. Herein, we report that in macrophages and neutrophils, the Toll-like receptor (TLR) adapter CD14 determines the inflammatory output of Fas-mediated signaling. Our findings propose CD14 as a crucial chaperone of Fas receptor internalization in macrophages and neutrophils, resulting in Cd14-/- myeloid cells that are protected from FasL-induced apoptosis, activate nuclear factor κB (NF-κB), and release cytokines in response. As in TLR signaling, CD14 is also required for Fas to signal through the adaptor TRIF (TIR-domain-containing adapter-inducing interferon-β) and induce a pro-death complex. Our findings demonstrate that CD14 availability can determine the switch between Fas-mediated pro-death and pro-inflammatory outcomes by internalizing the receptor.
Collapse
Affiliation(s)
- Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Hunter Russell
- Graduate Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
6
|
Zhang S, Li N, Wu S, Xie T, Chen Q, Wu J, Zeng S, Zhu L, Bai S, Zha H, Tian W, Wu N, Zou X, Fang S, Luo C, Shi M, Sun C, Shu Y, Luo H. c-FLIP facilitates ZIKV infection by mediating caspase-8/3-dependent apoptosis. PLoS Pathog 2024; 20:e1012408. [PMID: 39038037 PMCID: PMC11293698 DOI: 10.1371/journal.ppat.1012408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
c-FLIP functions as a dual regulator of apoptosis and inflammation, yet its implications in Zika virus (ZIKV) infection remain partially understood, especially in the context of ZIKV-induced congenital Zika syndrome (CZS) where both apoptosis and inflammation play pivotal roles. Our findings demonstrate that c-FLIP promotes ZIKV infection in placental cells and myeloid-derived macrophages, involving inflammation and caspase-8/3-mediated apoptosis. Moreover, our observations reveal that c-FLIP augments ZIKV infection in multiple tissues, including blood cell, spleen, uterus, testis, and the brain of mice. Notably, the partial deficiency of c-FLIP provides protection to embryos against ZIKV-induced CZS, accompanied by a reduction in caspase-3-mediated apoptosis. Additionally, we have found a distinctive parental effect of c-FLIP influencing ZIKV replication in fetal heads. In summary, our study reveals the critical role of c-FLIP as a positive regulator in caspase-8/3-mediated apoptosis during ZIKV infection, significantly contributing to the development of CZS.
Collapse
Affiliation(s)
- Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Haolu Zha
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Weijian Tian
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
7
|
Yang X, Zeng Q, İnam MG, İnam O, Lin CS, Tezel G. cFLIP in the molecular regulation of astroglia-driven neuroinflammation in experimental glaucoma. J Neuroinflammation 2024; 21:145. [PMID: 38824526 PMCID: PMC11143607 DOI: 10.1186/s12974-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Maide Gözde İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Onur İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Dolgalev G, Poverennaya E. Quantitative Analysis of Isoform Switching in Cancer. Int J Mol Sci 2023; 24:10065. [PMID: 37373214 DOI: 10.3390/ijms241210065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past 8 years, multiple studies examined the phenomenon of isoform switching in human cancers and discovered that isoform switching is widespread, with hundreds to thousands of such events per cancer type. Although all of these studies used slightly different definitions of isoform switching, which in part led to a rather poor overlap of their results, they all leveraged transcript usage, a proportion of the transcript's expression in the total expression level of the parent gene, to detect isoform switching. However, how changes in transcript usage correlate with changes in transcript expression is not sufficiently explored. In this article, we adopt the most common definition of isoform switching and use a state-of-the-art tool for the analysis of differential transcript usage, SatuRn, to detect isoform switching events in 12 cancer types. We analyze the detected events in terms of changes in transcript usage and the relationship between transcript usage and transcript expression on a global scale. The results of our analysis suggest that the relationship between changes in transcript usage and changes in transcript expression is far from straightforward, and that such quantitative information can be effectively used for prioritizing isoform switching events for downstream analyses.
Collapse
|
9
|
Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses 2023; 15:v15030768. [PMID: 36992477 PMCID: PMC10051318 DOI: 10.3390/v15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that zebrafish larvae were not susceptible to these viruses after immersion in contaminated water, but that infections could be established using artificial infection models in vitro (zebrafish cell lines) and in vivo (microinjection of larvae). However, infections were transient, with rapid viral clearance associated with apoptosis-like death of infected cells. Transcriptomic analysis of CyHV-3-infected larvae revealed upregulation of interferon-stimulated genes, in particular those encoding nucleic acid sensors, mediators of programmed cell death and related genes. It was notable that uncharacterized non-coding RNA genes and retrotransposons were also among those most upregulated. CRISPR/Cas9 knockout of the zebrafish gene encoding protein kinase R (PKR) and a related gene encoding a protein kinase containing Z-DNA binding domains (PKZ) had no impact on CyHV-3 clearance in larvae. Our study strongly supports the importance of innate immunity-virus interactions in the adaptation of cypriniviruses to their natural hosts. It also highlights the potential of the CyHV-3-zebrafish model, versus the CyHV-3-carp model, for study of these interactions.
Collapse
|
10
|
Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel) 2022; 14:cancers14246246. [PMID: 36551731 PMCID: PMC9777152 DOI: 10.3390/cancers14246246] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the United States, over 100,000 women are diagnosed with a gynecologic malignancy every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of chemoresistance are poorly understood, it is known that changes at the cellular and molecular level make chemoresistance challenging to treat. Improved therapeutic options are needed to target these changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional and novel gene targets that can be used to develop new and improved targeted therapies, from drug efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and landscape of the discussed gene targets.
Collapse
|
11
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|
12
|
Shen Y, Eng JS, Fajardo F, Liang L, Li C, Collins P, Tedesco D, Nolan-Stevaux O. Cancer cell-intrinsic resistance to BiTE therapy is mediated by loss of CD58 costimulation and modulation of the extrinsic apoptotic pathway. J Immunother Cancer 2022; 10:jitc-2021-004348. [PMID: 35296559 PMCID: PMC8928392 DOI: 10.1136/jitc-2021-004348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background Bispecific T-cell engager (BiTE) molecules induce redirected lysis of cancer cells by T cells and are an emerging modality for solid tumor immunotherapy. While signs of clinical activity have been demonstrated, efficacy of T-cell engagers (TCEs) in solid tumors settings, molecular determinants of response, and underlying mechanisms of resistance to BiTE therapy require more investigation. Methods To uncover cancer cell-intrinsic genetic modifiers of TCE-mediated cytotoxicity, we performed genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loss-of-function and CRISPRa (CRISPR activation) gain-of-function screens using TCEs against two distinct tumor-associated antigens (TAAs). By using in vitro T-cell cytotoxicity assays and in vivo efficacy studies, we validated the roles of two common pathways identified in our screen, T-cell costimulation pathway and apoptosis pathway, as key modifiers of BiTE activity. Results Our genetic screens uncovered TAAs-independent cancer cell-intrinsic genes with functions in autophagy, T-cell costimulation, the apoptosis pathway, chromatin remodeling, and cytokine signaling that altered responsiveness to BiTE-mediated killing. Notably, loss of CD58 (the ligand of the CD2 T-cell costimulatory receptor), a gene frequently altered in cancer, led to decreased TCE-mediated cytotoxicity, T-cell activation and antitumor efficacy in vitro and in vivo. Moreover, the effects of CD58 loss were synergistically compounded by concurrent loss of CD80/CD86 (ligands for the CD28 T-cell costimulatory receptor), whereas joint CD2 and CD28 costimulation additively enhanced TCE-mediated killing, indicating non-redundant costimulatory mechanisms between the two pathways. Additionally, loss of CFLAR (Caspase-8 and FADD Like Apoptosis Regulator), BCL2L1, and BID (BH3 Interacting Domain Death Agonist) induced profound changes in sensitivity to TCEs, indicating that key regulators of apoptosis, which are frequently altered in cancer, impact tumor responsiveness to BiTE therapy. Conclusions This study demonstrates that genetic alterations central to carcinogenesis and commonly detected in cancer samples lead to significant modulation of BiTE antitumor activity in vitro and in vivo, findings with relevance for a better understanding of patient responses to BiTE therapy and novel combinations that enhance TCE efficacy.
Collapse
Affiliation(s)
- Ye Shen
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Jason S Eng
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | | | - Lingming Liang
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Cong Li
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Patrick Collins
- Genome Analysis Unit, Amgen Inc, South San Francisco, California, USA
| | | | | |
Collapse
|
13
|
Liao KC, Garcia-Blanco MA. Role of Alternative Splicing in Regulating Host Response to Viral Infection. Cells 2021; 10:1720. [PMID: 34359890 PMCID: PMC8306335 DOI: 10.3390/cells10071720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/26/2023] Open
Abstract
The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host-virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77550, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
14
|
Mármol-Sánchez E, Luigi-Sierra MG, Castelló A, Guan D, Quintanilla R, Tonda R, Amills M. Variability in porcine microRNA genes and its association with mRNA expression and lipid phenotypes. Genet Sel Evol 2021; 53:43. [PMID: 33947333 PMCID: PMC8097994 DOI: 10.1186/s12711-021-00632-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mature microRNAs (miRNAs) play an important role in repressing the expression of a wide range of mRNAs. The presence of polymorphic sites in miRNA genes and their corresponding 3'UTR binding sites can disrupt canonical conserved miRNA-mRNA pairings, and thus modify gene expression patterns. However, to date such polymorphic sites in miRNA genes and their association with gene expression phenotypes and complex traits are poorly characterized in pigs. RESULTS By analyzing whole-genome sequences from 120 pigs and wild boars from Europe and Asia, we identified 285 single nucleotide polymorphisms (SNPs) that map to miRNA loci, and 109,724 SNPs that are located in predicted 7mer-m8 miRNA binding sites within porcine 3'UTR. In porcine miRNA genes, SNP density is reduced compared with their flanking non-miRNA regions. By sequencing the genomes of five Duroc boars, we identified 12 miRNA SNPs that were subsequently genotyped in their offspring (N = 345, Lipgen population). Association analyses of miRNA SNPs with 38 lipid-related traits and hepatic and muscle microarray expression phenotypes recorded in the Lipgen population were performed. The most relevant detected association was between the genotype of the rs319154814 (G/A) SNP located in the apical loop of the ssc-miR-326 hairpin precursor and PPP1CC mRNA levels in the liver (q-value = 0.058). This result was subsequently confirmed by qPCR (P-value = 0.027). The rs319154814 (G/A) genotype was also associated with several fatty acid composition traits. CONCLUSIONS Our findings show a reduced variability of porcine miRNA genes, which is consistent with strong purifying selection, particularly in the seed region that plays a critical role in miRNA binding. Although it is generally assumed that SNPs mapping to the seed region are those with the most pronounced consequences on mRNA expression, we show that a SNP mapping to the apical region of ssc-miR-326 is significantly associated with hepatic mRNA levels of the PPP1CC gene, one of its predicted targets. Although experimental confirmation of such an interaction is reported in humans but not in pigs, this result highlights the need to further investigate the functional effects of miRNA polymorphisms that are located outside the seed region on gene expression in pigs.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Anna Castelló
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Raul Tonda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
15
|
Ram DR, Kroll K, Reeves RK. Skipped Over: Tuning Natural Killer Cells Toward HIV Through Alternative Splicing. AIDS Res Hum Retroviruses 2020; 36:969-972. [PMID: 32862656 PMCID: PMC7703092 DOI: 10.1089/aid.2020.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells provide some of the earliest immune responses to infection, but when viruses manipulate or perturb the immune environment to alter NK cell function, this places the host at a disadvantage. Indeed, others and we observe that in the context of HIV/simian immunodeficiency virus (SIV) infection, although NK cells are not infected, they can become dysfunctional over time. Several studies have characterized protein and transcriptional profiles of NK cells during HIV/SIV infection, but none have examined whether the production of alternative transcripts and corresponding isoforms is modulated. This phenomenon occurs broadly in normal biology and in other disease states, and could provide a novel avenue of investigation that may yield better targets to restore or augment NK cell responses to HIV/SIV. Herein, we briefly summarize published and new data that may provide a perspective on how to target NK cell splice variants.
Collapse
Affiliation(s)
- Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Ranjan K, Waghela BN, Vaidya FU, Pathak C. Cell-Penetrable Peptide-Conjugated FADD Induces Apoptosis and Regulates Inflammatory Signaling in Cancer Cells. Int J Mol Sci 2020; 21:ijms21186890. [PMID: 32961826 PMCID: PMC7555701 DOI: 10.3390/ijms21186890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulated expression of Fas-associated death domain (FADD) is associated with the impediment of various cellular pathways, including apoptosis and inflammation. The adequate cytosolic expression of FADD is critical to the regulation of cancer cell proliferation. Importantly, cancer cells devise mechanisms to suppress FADD expression and, in turn, escape from apoptosis signaling. Formulating strategies, for direct delivery of FADD proteins into cancer cells in a controlled manner, may represent a promising therapeutic approach in cancer therapy. We chemically conjugated purified FADD protein with cell permeable TAT (transactivator of transcription) peptide, to deliver in cancer cells. TAT-conjugated FADD protein internalized through the caveolar pathway of endocytosis and retained in the cytosol to augment cell death. Inside cancer cells, TAT-FADD rapidly constituted DISC (death inducing signaling complex) assembly, which in turn, instigate apoptosis signaling. The apoptotic competency of TAT-FADD showed comparable outcomes with the conventional apoptosis inducers. Notably, TAT-FADD mitigates constitutive NF-κB activation and associated downstream anti-apoptotic genes Bcl2, cFLIPL, RIP1, and cIAP2, independent of pro-cancerous TNF-α priming. In cancer cells, TAT-FADD suppresses the canonical NLRP3 inflammasome priming and restricts the processing and secretion of proinflammatory IL-1β. Our results demonstrate that TAT-mediated intracellular delivery of FADD protein can potentially recite apoptosis signaling with simultaneous regulation of anti-apoptotic and proinflammatory NF-κB signaling activation in cancer cells.
Collapse
|
17
|
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 2020; 109:121-141. [PMID: 32531842 DOI: 10.1002/jlb.3mr0420-305r] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Caspase-8 is an apical caspase involved in the programmed form of cell death called apoptosis that is critically important for mammalian development and immunity. Apoptosis was historically described as immunologically silent in contrast to other types of programmed cell death such as necroptosis or pyroptosis. Recent reports suggest considerable crosstalk between these different forms of cell death. It is becoming increasingly clear that caspase-8 has many non-apoptotic roles, participating in multiple processes including regulation of necroptosis (mediated by receptor-interacting serine/threonine kinases, RIPK1-RIPK3), inflammatory cytokine expression, inflammasome activation, and cleavage of IL-1β and gasdermin D, and protection against shock and microbial infection. In this review, we discuss the involvement of caspase-8 in cell death and inflammation and highlight its role in innate immune responses and in the relationship between different forms of cell death. Caspase-8 is one of the central components in this type of crosstalk.
Collapse
Affiliation(s)
- Pontus Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
18
|
Data-Driven Modeling Identifies TIRAP-Independent MyD88 Activation Complex and Myddosome Assembly Strategy in LPS/TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21093061. [PMID: 32357531 PMCID: PMC7246728 DOI: 10.3390/ijms21093061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
TLR4 complexes are essential for the initiation of the LPS-induced innate immune response. The Myddosome, which mainly contains TLR4, TIRAP, MyD88, IRAK1/4 and TRAF6 proteins, is regarded as a major complex of TLR4. Although the Myddosome has been well studied, a quantitative description of the Myddosome assembly dynamics is still lacking. Furthermore, whether some unknown TLR4 complexes exist remains unclear. In this study, we constructed a SWATH-MS data-based mathematical model that describes the component assembly dynamics of TLR4 complexes. In addition to Myddosome, we suggest that a TIRAP-independent MyD88 activation complex is formed upon LPS stimulation, in which TRAF6 is not included. Furthermore, quantitative analysis reveals that the distribution of components in TIRAP-dependent and -independent MyD88 activation complexes are LPS stimulation-dependent. The two complexes compete for recruiting IRAK1/4 proteins. MyD88 forms higher-order assembly in the Myddosome and we show that the strategy to form higher-order assembly is also LPS stimulation-dependent. MyD88 forms a long chain upon weak stimulation, but forms a short chain upon strong stimulation. Higher-order assembly of MyD88 is directly determined by the level of TIRAP in the Myddosome, providing a formation mechanism for efficient signaling transduction. Taken together, our study provides an enhanced understanding of component assembly dynamics and strategies in TLR4 complexes.
Collapse
|
19
|
Muendlein HI, Jetton D, Connolly WM, Eidell KP, Magri Z, Smirnova I, Poltorak A. cFLIP L protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science 2020; 367:1379-1384. [PMID: 32193329 DOI: 10.1126/science.aay3878] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/16/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Cell death and inflammation are interdependent host responses to infection. During pyroptotic cell death, interleukin-1β (IL-1β) release occurs through caspase-1 and caspase-11-mediated gasdermin D pore formation. In vivo, responses to lipopolysaccharide (LPS) result in IL-1β secretion. In vitro, however, murine macrophages require a second "danger signal" for the inflammasome-driven maturation of IL-1β. Recent reports have shown caspase-8-mediated pyroptosis in LPS-activated macrophages but have provided conflicting evidence regarding the release of IL-1β under these conditions. Here, to further characterize the mechanism of LPS-induced secretion in vitro, we reveal an important role for cellular FLICE-like inhibitory protein (cFLIP) in the regulation of the inflammatory response. Specifically, we show that deficiency of the long isoform cFLIPL promotes complex II formation, driving pyroptosis, and the secretion of IL-1β in response to LPS alone.
Collapse
Affiliation(s)
- Hayley I Muendlein
- Graduate Program in Genetics, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith P Eidell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA. .,Laboratory of Genetics of Innate Immunity, Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia
| |
Collapse
|
20
|
Zheng Z, Li G. Mechanisms and Therapeutic Regulation of Pyroptosis in Inflammatory Diseases and Cancer. Int J Mol Sci 2020; 21:ijms21041456. [PMID: 32093389 PMCID: PMC7073143 DOI: 10.3390/ijms21041456] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed Cell Death (PCD) is considered to be a pathological form of cell death when mediated by an intracellular program and it balances cell death with survival of normal cells. Pyroptosis, a type of PCD, is induced by the inflammatory caspase cleavage of gasdermin D (GSDMD) and apoptotic caspase cleavage of gasdermin E (GSDME). This review aims to summarize the latest molecular mechanisms about pyroptosis mediated by pore-forming GSDMD and GSDME proteins that permeabilize plasma and mitochondrial membrane activating pyroptosis and apoptosis. We also discuss the potentiality of pyroptosis as a therapeutic target in human diseases. Blockade of pyroptosis by compounds can treat inflammatory disease and pyroptosis activation contributes to cancer therapy.
Collapse
Affiliation(s)
| | - Guorong Li
- Correspondence: ; Tel.: +86-531-8618-2690
| |
Collapse
|
21
|
Zhuang Y, Xu HC, Shinde PV, Warfsmann J, Vasilevska J, Sundaram B, Behnke K, Huang J, Hoell JI, Borkhardt A, Pfeffer K, Taha MS, Herebian D, Mayatepek E, Brenner D, Ahmadian MR, Keitel V, Wieczorek D, Häussinger D, Pandyra AA, Lang KS, Lang PA. Fragile X mental retardation protein protects against tumour necrosis factor-mediated cell death and liver injury. Gut 2020; 69:133-145. [PMID: 31409605 PMCID: PMC6943250 DOI: 10.1136/gutjnl-2019-318215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/08/2022]
Abstract
OBJECTIVE The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Prashant V Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jens Warfsmann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Jelena Vasilevska
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Balamurugan Sundaram
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kristina Behnke
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jun Huang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jessica I Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mohamed S Taha
- Research on Children with Special Needs Department, Medical research Branch, National Research Centre, Cairo, Egypt,Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental & Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University Hospital, University of Southern Denmark, Odense, Denmark,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
Borisov N, Sorokin M, Garazha A, Buzdin A. Quantitation of Molecular Pathway Activation Using RNA Sequencing Data. Methods Mol Biol 2020; 2063:189-206. [PMID: 31667772 DOI: 10.1007/978-1-0716-0138-9_15] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intracellular molecular pathways (IMPs) control all major events in the living cell. IMPs are considered hotspots in biomedical sciences and thousands of IMPs have been discovered for humans and model organisms. Knowledge of IMPs activation is essential for understanding biological functions and differences between the biological objects at the molecular level. Here we describe the Oncobox system for accurate quantitative scoring activities of up to several thousand molecular pathways based on high throughput molecular data. Although initially designed for gene expression and mainly RNA sequencing data, Oncobox is now also applicable for quantitative proteomics, microRNA and transcription factor binding sites mapping data. The Oncobox system includes modules of gene expression data harmonization, aggregation and comparison and a recursive algorithm for automatic annotation of molecular pathways. The universal rationale of Oncobox enables scoring of signaling, metabolic, cytoskeleton, immunity, DNA repair, and other pathways in a multitude of biological objects. The Oncobox system can be helpful to all those working in the fields of genetics, biochemistry, interactomics, and big data analytics in molecular biomedicine.
Collapse
Affiliation(s)
- Nicolas Borisov
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Omicsway Corp., Walnut, CA, USA
| | - Maxim Sorokin
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Omicsway Corp., Walnut, CA, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Anton Buzdin
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
- Omicsway Corp., Walnut, CA, USA.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
23
|
Molecular pathway activation – New type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol 2018; 53:110-124. [DOI: 10.1016/j.semcancer.2018.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
|
24
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 2018; 115:E10888-E10897. [PMID: 30381458 DOI: 10.1073/pnas.1809548115] [Citation(s) in RCA: 637] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell death and inflammation are intimately linked during Yersinia infection. Pathogenic Yersinia inhibits the MAP kinase TGFβ-activated kinase 1 (TAK1) via the effector YopJ, thereby silencing cytokine expression while activating caspase-8-mediated cell death. Here, using Yersinia pseudotuberculosis in corroboration with costimulation of lipopolysaccharide and (5Z)-7-Oxozeaenol, a small-molecule inhibitor of TAK1, we show that caspase-8 activation during TAK1 inhibition results in cleavage of both gasdermin D (GSDMD) and gasdermin E (GSDME) in murine macrophages, resulting in pyroptosis. Loss of GsdmD delays membrane rupture, reverting the cell-death morphology to apoptosis. We found that the Yersinia-driven IL-1 response arises from asynchrony of macrophage death during bulk infections in which two cellular populations are required to provide signal 1 and signal 2 for IL-1α/β release. Furthermore, we found that human macrophages are resistant to YopJ-mediated pyroptosis, with dampened IL-1β production. Our results uncover a form of caspase-8-mediated pyroptosis and suggest a hypothesis for the increased sensitivity of humans to Yersinia infection compared with the rodent reservoir.
Collapse
|
26
|
Poltorak A, Apalko S, Sherbak S. Wild-derived mice: from genetic diversity to variation in immune responses. Mamm Genome 2018; 29:577-584. [PMID: 30056578 DOI: 10.1007/s00335-018-9766-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Classical inbred mouse strains have historically been instrumental in mapping immunological traits. However, most of the classical strains originate from a relatively limited number of founder animals, largely within the Mus musculus domesticus subspecies. Therefore, their genetic diversity is ultimately limited. For this reason, it is not feasible to use these mice for exhaustive interrogation of immune signaling pathways. In order to investigate networks through forward genetic analysis, larger genetic diversity is required than is introduced under laboratory conditions. Recently, inbred strains from other mouse subspecies were established such as Mus musculus castaneus and Mus musculus musculus, which diverged from a shared common ancestor with Mus musculus domesticus more than one million years ago. A direct genomic comparison clearly demonstrates the evolutionary divergence that has occurred between wild-derived mice and the classical inbred strains. When compared to classical inbred strains, wild-derived mice exhibit polymorphisms every 100-200 base pairs. Studying the molecular basis of these traits provides us with insight into how the immune system can evolve regulatory features to accommodate environment-specific constraints. Because most wild-derived strains are able to breed with classical inbred mice, they represent a rich source of evolutionarily significant diversity for forward genetic studies. These organisms are an emerging, though still largely unexplored, model for the identification and study of novel immunological genes.
Collapse
Affiliation(s)
- Alexander Poltorak
- Department of Immunology, Tufts University, Boston, MA, 02111, USA.
- Petrozavodsk State University, Karelia, Russian Federation.
| | | | - Sergei Sherbak
- City Hospital, 40, St. Petersburg, Russian Federation
- St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
27
|
Down‐regulation of intracellular anti‐apoptotic proteins, particularly c‐FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J Cell Physiol 2018; 233:6470-6485. [PMID: 29741767 DOI: 10.1002/jcp.26585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
28
|
Alternative Splicing as a Target for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19020545. [PMID: 29439487 PMCID: PMC5855767 DOI: 10.3390/ijms19020545] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.
Collapse
|
29
|
Hu J, Boritz E, Wylie W, Douek DC. Stochastic principles governing alternative splicing of RNA. PLoS Comput Biol 2017; 13:e1005761. [PMID: 28910283 PMCID: PMC5614656 DOI: 10.1371/journal.pcbi.1005761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/26/2017] [Accepted: 09/03/2017] [Indexed: 12/18/2022] Open
Abstract
The dominance of the major transcript isoform relative to other isoforms from the same gene generated by alternative splicing (AS) is essential to the maintenance of normal cellular physiology. However, the underlying principles that determine such dominance remain unknown. Here, we analyzed the physical AS process and found that it can be modeled by a stochastic minimization process, which causes the scaled expression levels of all transcript isoforms to follow the same Weibull extreme value distribution. Surprisingly, we also found a simple equation to describe the median frequency of transcript isoforms of different dominance. This two-parameter Weibull model provides the statistical distribution of all isoforms of all transcribed genes, and reveals that previously unexplained observations concerning relative isoform expression derive from these principles. Alternative RNA splicing within eukaryotic cells enables each gene to generate multiple different mature transcripts which further encode proteins with distinct or even opposing functions. The relative frequencies of the transcript isoforms generated by a particular gene are essential to the maintenance of normal cellular physiology; however, the underlying mechanisms and principles that govern these frequencies are unknown. We analyzed the frequency distribution of all transcript isoforms in highly purified human T cell subsets and built a simple mathematical model, based on the physical process of alternative splicing, which provides statistical principles that govern this process. This model matches very well with the observed distributions of expression levels and relative frequencies of all transcript isoforms from different tissues and cell lines. Notably, we used this model to elucidate many previously unexplained observations concerning transcript isoform expression. More importantly, this model reveals the existence of simple statistical principles that can be applied to understanding an essential and complex biological process such as alternative splicing.
Collapse
Affiliation(s)
- Jianfei Hu
- Genome Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JH); (DCD)
| | - Eli Boritz
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William Wylie
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel C. Douek
- Genome Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JH); (DCD)
| |
Collapse
|
30
|
Padmanabhan C, Rellinger EJ, Zhu J, An H, Woodbury LG, Chung DH, Waterson AG, Lindsley CW, Means AL, Beauchamp RD. cFLIP critically modulates apoptotic resistance in epithelial-to-mesenchymal transition. Oncotarget 2017; 8:101072-101086. [PMID: 29254146 PMCID: PMC5731856 DOI: 10.18632/oncotarget.19557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022] Open
Abstract
Epithelial cancers (carcinomas) comprise the top four causes of cancer-related deaths in the United States. While overall survival has been steadily improving, therapy-resistant disease continues to present a major therapeutic challenge. Carcinomas often exploit the normal developmental program, epithelial-to-mesenchymal transition (EMT), to gain a mesenchymal phenotype associated with increased invasiveness and resistance to apoptosis. We have previously shown that an isoxazole-based small molecule, ML327, partially reverses TGF-β-induced EMT in an immortalized mouse mammary epithelial cell line. Herein, we demonstrate that ML327 reverses much of the EMT gene expression program in cultured carcinoma cell lines. The reversal of EMT sensitizes these cancer cells to the apoptosis-inducing ligand TRAIL. This sensitization is independent of E-cadherin expression and rather relies on the downregulation of a major anti-apoptotic protein, cFLIPS. Loss of cFLIPS is sufficient to overcome resistance to TRAIL and exogenous overexpression of cFLIPS restores resistance to TRAIL-induced apoptosis despite EMT reversal with ML327. In summary, we have utilized an isoxazole-based small molecule that partially reverses EMT in carcinoma cells to demonstrate that cFLIPS critically regulates the apoptosis resistance phenotype associated with EMT.
Collapse
Affiliation(s)
- Chandrasekhar Padmanabhan
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - Eric J Rellinger
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - Jing Zhu
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - Hanbing An
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - Luke G Woodbury
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville TN, 37232, USA
| | - Dai H Chung
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville TN 37232, USA
| | - Alex G Waterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Anna L Means
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville TN, 37232, USA.,The Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| |
Collapse
|
31
|
Mo XQ, Wei HY, Huang GR, Xu LY, Chen YL, Qi J, Xian W, Qin YC, Wei LD, Zhao LJ, Huang YQ, Xing W, Pu HQ, Wei PY, Li CG, Liang QC. Molecular mechanisms of apoptosis in hepatocellular carcinoma cells induced by ethanol extracts of Solanum lyratum Thumb through the mitochondrial pathway. World J Gastroenterol 2017; 23:1010-1017. [PMID: 28246474 PMCID: PMC5311089 DOI: 10.3748/wjg.v23.i6.1010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/04/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the induction effects and mechanism of Solanum lyratum Thumb (ST) on human hepatocellular carcinoma SMMC-7721 cells through the mitochondrial pathway. METHODS The experiments were conducted on three groups: an experimental group (with ST ethanol extracts' concentration being 2.5, 5 and 10 mg/L), a negative control group (with only nutrient solution, 0 mg/L ST ethanol extracts), and a positive control group (2.5 mg/L DDP). The inhibition rate of cell proliferation was checked by using the methyl thiazolyl tetrazolium method, and cell apoptosis was tested by TUNEL method. Furthermore, RT-PCR was used to examine mRNA expression of Fas, FasL, caspase-8, caspase-3, p53 and Bcl-2 genes. RESULTS Compared with the negative control group, the inhibition and apoptosis rates of the experimental group with different concentrations of ST extracts on human hepatocellular carcinoma SMMC-7721 cells significantly increased (P < 0.05). Besides, the mRNA expression of FasL and Bcl-2 significantly decreased (P < 0.05) while the mRNA expression of Fas, caspase-8, caspase-3 and p53 increased significantly. When compared with the positive control group, the experimental groups with 5 mg/L ST ethanol extracts showed effects similar to the positive control group. CONCLUSION ST ethanol extracts induced the apoptosis of hepatocellular carcinoma SMMC-7721 cells through up-regulated Fas, caspase-8, caspse-3 and p53, and down-regulated FasL and Bcl-2 in the mitochondrial pathway.
Collapse
|
32
|
Buzdin AA, Prassolov V, Zhavoronkov AA, Borisov NM. Bioinformatics Meets Biomedicine: OncoFinder, a Quantitative Approach for Interrogating Molecular Pathways Using Gene Expression Data. Methods Mol Biol 2017; 1613:53-83. [PMID: 28849558 DOI: 10.1007/978-1-4939-7027-8_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We propose a biomathematical approach termed OncoFinder (OF) that enables performing both quantitative and qualitative analyses of the intracellular molecular pathway activation. OF utilizes an algorithm that distinguishes the activator/repressor role of every gene product in a pathway. This method is applicable for the analysis of any physiological, stress, malignancy, and other conditions at the molecular level. OF showed a strong potential to neutralize background-caused differences between experimental gene expression data obtained using NGS, microarray and modern proteomics techniques. Importantly, in most cases, pathway activation signatures were better markers of cancer progression compared to the individual gene products. OF also enables correlating pathway activation with the success of anticancer therapy for individual patients. We further expanded this approach to analyze impact of micro RNAs (miRs) on the regulation of cellular interactome. Many alternative sources provide information about miRs and their targets. However, instruments elucidating higher level impact of the established total miR profiles are still largely missing. A variant of OncoFinder termed MiRImpact enables linking miR expression data with its estimated outcome on the regulation of molecular processes, such as signaling, metabolic, cytoskeleton, and DNA repair pathways. MiRImpact was used to establish cancer-specific and cytomegaloviral infection-linked interactomic signatures for hundreds of molecular pathways. Interestingly, the impact of miRs appeared orthogonal to pathway regulation at the mRNA level, which stresses the importance of combining all available levels of gene regulation to build a more objective molecular model of cell.
Collapse
Affiliation(s)
- Anton A Buzdin
- Pathway Pharmaceuticals, Wan Chai, Hong Kong SAR.
- Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, National Research Centre "Kurchatov Institute", Bldg 140, Suite 415, 1, Akademika Kurchatova sq., Moscow, 123182, Russia.
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova street 32, Mosow, 119991, Russia
| | - Alex A Zhavoronkov
- Pathway Pharmaceuticals, Wan Chai, Hong Kong SAR
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nikolay M Borisov
- Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, National Research Centre "Kurchatov Institute", Bldg 140, Suite 415, 1, Akademika Kurchatova sq., Moscow, 123182, Russia
- Department of Personalized Medicine, First Oncology Research and Advisory Center, Moscow, Russia
| |
Collapse
|
33
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
34
|
Galluzzi L, Kepp O, Chan FKM, Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:103-130. [PMID: 27959630 DOI: 10.1146/annurev-pathol-052016-100247] [Citation(s) in RCA: 497] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065; .,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France;
| | | | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; .,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden.,Pôle de Biologie, Hôpital Européen George Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|