1
|
Joshi J, Wang-Pruski G. De novo transcriptome assembly and differential gene expression analysis in different developmental stages of Agriotes sputator (click beetle). Sci Rep 2024; 14:24451. [PMID: 39424855 PMCID: PMC11489763 DOI: 10.1038/s41598-024-74495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Wireworms, the larva of click beetle (Agriotes species), are one of the most destructive pests of horticultural crops in North America, responsible for considerable economic losses in Canada. Agriotes sputator (A. sputator) species is a predominant wireworm pest attacking potato fields in Eastern Canada. However, no information about its genome-wide gene expression profile, specifically for the genes involved with development is available to date. Therefore, we generated the transcriptome profile of A. sputator during five developmental stages, including the three larval stages and adult male and female click beetle. Out of 714.7 million raw reads, de novo assembly generated 564,561 transcripts. The data were subjected to differential expression analysis using DESeq2, gene ontology, annotation, and pathway analyses. A total of 34,709 differentially expressed genes (DEGs) were significant (log2 fold change > 2, padj < 0.05) across the developmental stages. Functional analysis of DEGs identified development signaling, metabolism, transport, cellular mechanisms, and drug metabolism (cytochrome p450) pathways. This study provides comprehensive sequence resources and potential gene differences at different developmental stages of A. sputator. These findings will represent a major step towards developing sustainable methods to control this widely distributed pest in agricultural fields.
Collapse
Affiliation(s)
- Jyoti Joshi
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Gefu Wang-Pruski
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
2
|
Hernandez JR, Xiong C, Pietrantonio PV. A fluorescently-tagged tick kinin neuropeptide triggers peristalsis and labels tick midgut muscles. Sci Rep 2024; 14:10863. [PMID: 38740831 DOI: 10.1038/s41598-024-61570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.
Collapse
Affiliation(s)
- Jonathan R Hernandez
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | | |
Collapse
|
3
|
Lorenzo MG, Fernandes GDR, Latorre-Estivalis JM. Local age-dependent neuromodulation in Rhodnius prolixus antennae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22106. [PMID: 38597092 DOI: 10.1002/arch.22106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.
Collapse
Affiliation(s)
- Marcelo Gustavo Lorenzo
- Instituto de Investigaciones en Biodiversidad y Biotecnología, CONICET, Mar del Plata, Buenos Aires, Argentina
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Jose Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Gao H, Li Y, Zhang X, Zhang H, Tian Y, Li B. Unraveling the G protein-coupled receptor superfamily in aphids: Contractions and duplications linked to phloem feeding. Gen Comp Endocrinol 2024; 347:114435. [PMID: 38135222 DOI: 10.1016/j.ygcen.2023.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The G Protein-Coupled Receptor (GPCR) superfamily is the largest and most diverse transmembrane receptor family, playing crucial roles in regulating various physiological processes. As one of the most destructive pests, aphids have been subject to previous studies, which revealed fewer GPCR superfamily members in Acyrthosiphon pisum and Aphis gossypii and the loss of multiple neuropeptide GPCRs. To elucidate the contraction patterns and evolutionary features of the aphid GPCR superfamily, we identified 97, 105, and 95 GPCR genes in Rhopalosiphum maidis, A. pisum, and A. gossypii, respectively. Comparative analysis and phylogenetic investigations with other hemipteran insects revealed a contracted GPCR superfamily in aphids. This contraction mainly occurred in biogenic amine receptors, GABA-B-R, and fz families, and several neuropeptide receptors such as ACPR, CrzR, and PTHR were completely lost. This phenomenon may be related to the parasitic nature of aphids. Additionally, several GPCRs associated with aphid feeding and water balance underwent duplication, including Lkr, NPFR, CCHa1-R, and DH-R, Type A LGRs, but the SK/CCKLR that inhibits feeding was completely lost, indicating changes in feeding genes that underpin the aphid's prolonged phloem feeding behavior. Furthermore, we observed fine-tuning in opsins, with reduced long-wavelength opsins and additional duplications of short-wavelength opsin, likely associated with daytime activity. Lastly, we found variations in the number of mthl genes in aphids. In conclusion, our investigation sheds light on the GPCR superfamily in aphids, revealing its association with diet lifestyle and laying the foundation for understanding and developing control strategies for the aphid GPCR superfamily.
Collapse
Affiliation(s)
- Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xianzhen Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Henriques-Santos BM, Xiong C, Pietrantonio PV. Automated analysis of feeding behaviors of females of the mosquito Aedes aegypti using a modified flyPAD system. Sci Rep 2023; 13:20188. [PMID: 37980438 PMCID: PMC10657447 DOI: 10.1038/s41598-023-47277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023] Open
Abstract
Mosquitoes present a global health challenge due to their ability to transmit human and animal pathogens upon biting and blood feeding. The investigation of tastants detected by mosquitoes and their associated feeding behaviors is needed to answer physiological and ecological questions that could lead to novel control methods. A high-throughput system originally developed for research in fruit flies feeding behavior, the flyPAD, was adapted and tested for behaviors associated with the interaction or consumption of liquid diets offered to females of the mosquito Aedes aegypti Liverpool strain. Females were given water, sucrose solution and sheep blood in choice and non-choice assays. The volume ingested was evaluated with fluorescein. The placement of the system on a heated surface allowed blood consumption, and without females puncturing a membrane. The flyPAD system recorded nine feeding behavioral variables, of which the number of sips and number of activity bouts correlated with meal volume ingested for both sucrose solution and blood. The adaptation to mosquitoes of the flyPAD system differentiated feeding behavior variables between two feeding deterrents, capsaicin, and caffeine. The flyPAD has potential to quickly assess diverse tastants in both sucrose and blood and may contribute to characterizing more precisely their mode of action.
Collapse
Affiliation(s)
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | | |
Collapse
|
6
|
Zhou Y, Zhang Y, Zhang Y, Zhao Y, Xu W, Ye D, He Q, Iqbal C, Feng H, Li X, Zhang L, Qin Y, Yang X. Insect kinin mimics act as potential control agents for aphids: Structural modifications of Trp 4. J Pept Sci 2023; 29:e3444. [PMID: 35900188 DOI: 10.1002/psc.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Insect kinins are endogenous, biologically active peptides with various physiological functions. The use of insect kinins in plant protection is being evaluated by many groups. Some kinins have been chosen as lead compounds for pest control. We previously reported an insect kinin mimic IV-3 that had insecticidal activity. And by introducing a strong electron withdrawing group (-CF3 ) on the benzene ring (Phe2 ), we discovered a compound, L7 , with better activity than lead IV-3. In this work, taking L7 as the lead compound, we designed and synthesized 13 compounds to evaluate the influence of position 4 (Trp4 ) of insect kinin on insecticidal activity, by replacing the H atom on tryptophan with -CH3 and -Cl or substituting the indole ring of tryptophan with the benzene, naphthalene, pyridine, imidazole, cyclohexane, and alkyl carboxamides. The aphid bioassay results showed that the compounds M1 , M3 , and M5 were more active than the positive control, pymetrozine. Especially, replacing the side chain by an indole ring with 4-Cl substitution (M1 , LC50 = 0.0029 mmol/L) increased the aphicidal activity. The structure-activity relationships (SARs) indicated that the side chain benzene ring at this position may be important to the aphicidal activity. In addition, the toxicity prediction by Toxtree, and the toxicity experiments on Apis mellifera suggested that M1 was no toxicity risk on a non-target organism. It could be used as a selective and bee-friendly insecticide to control aphids.
Collapse
Affiliation(s)
- Yuanlin Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yimeng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, China
| | - Yingru Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Weilong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dexing Ye
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qi He
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chandni Iqbal
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Haoyuan Feng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yaoguo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zhou YL, Li XL, Zhang YM, Shi Y, Li HH, Zhang Z, Iqbal C, Ye DX, Li XS, Zhao YR, Xu WL, Smagghe G, Yang XL. A novel bee-friendly peptidomimetic insecticide: Synthesis, aphicidal activity and 3D-QSAR study of insect kinin analogs at Phe 2 modification. PEST MANAGEMENT SCIENCE 2022; 78:2952-2963. [PMID: 35419934 DOI: 10.1002/ps.6920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND As one of the most abundant and destructive pests in agriculture, aphids cause significant damage to crops due to their sap-taking and as virus vectors. Chemical insecticides are the most effective method to control aphids, but they bring insecticide resistance problems and harm nontarget organisms, especially bees, therefore the search for novel eco-friendly aphid control agents with low bee toxicity is urgent. Insect kinins are a class of small neuropeptides that control important functions in insects. In our previous study, we found insect kinin analog IV-3 has good aphicidal activity and the location of the aromatic ring on the side chain of Phe2 is the key to the formation of the β-turn resulting in the biological activity of insect kinin analogs. However, there are few studies on insect kinin Phe2 substitution and modification, and its structure-activity relationship is still unclear. RESULTS In this project, 44 insect kinin analogs with the Phe2 modification, replacing it with different natural or unnatural amino acids, were designed and synthesized based on the lead IV-3 to explore the role of the Phe2 residues. Bioassays with soybean aphids of Aphis glycines indicated that nine analogs have better aphicidal activity than the lead IV-3. In particular, compound L25 exhibits excellent aphicidal activity (LC50 = 0.0047 mmol L-1 ) and has low toxicity to bees. Furthermore, a reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) was established to produce a helpful clue that introducing hydrophobic groups away from the backbone chain is beneficial to improve aphicidal activity. CONCLUSION The residue Phe2 of insect kinin analogs is the key position and has a significant impact on the activity. L25 has a high toxicity for aphids, while a low toxicity to bees, and therefore can be considered as a lead compound to develop new biosafe aphid control agents. Finally, we provide a useful 3D-QSAR model as theoretical guidance for further structural optimization. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Lin Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Xin-Lu Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yi-Meng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yan Shi
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province, Qingdao, 266109, China
| | - Hong-Hong Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Zhe Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Chandni Iqbal
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - De-Xing Ye
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Xue-Sheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Ying-Ru Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Wei-Long Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Xin-Ling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
8
|
Murgia MV, Sharan S, Kaur J, Austin W, Hagen L, Wu L, Chen L, Scott JA, Flaherty DP, Scharf ME, Watts VJ, Hill CA. High-content phenotypic screening identifies novel chemistries that disrupt mosquito activity and development. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105037. [PMID: 35249647 DOI: 10.1016/j.pestbp.2022.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
New classes of chemistries are needed to control insecticide resistant populations of mosquitoes and prevent transmission of vector-borne diseases (VBDs). Organismal screens of chemical collections have played an important role in the search for new vector insecticides and the identification of active ingredients (AIs) that cause rapid mortality of mosquitoes. Advances in image-based screening offer an opportunity to identify chemistries that operate via novel biochemical modes and investigate the range of phenotypes exhibited by mosquitoes following exposure to lethal and sub-lethal chemical dose. An automated, high throughput phenotypic screen (HTS) employing high-content imaging of first instar (L1) Aedes aegypti larvae was developed to identify chemistries associated with mortality and atypical morphological phenotypes. A pilot screen of the Library of Pharmacologically Active Compounds (LOPAC1280) identified 92 chemistries that disrupted larval activity and development, including conventional insecticides and chemistries known to modulate G protein-coupled receptors (GPCRs) and other molecular targets in mammalian systems. Secondary assay series were used to evaluate a selection of chemistries for impacts on mosquito activity, survival and development. Ritodrine hydrochloride reduced mobility of larvae but had no observable effect on survival and development of mosquitoes. High doses of metergoline suppressed larval activity and sub-lethal dose resulted in pupal mortality. Assay data support the utility of phenotypic screening and diverse entomological end-points for discovery of novel insecticidal chemical scaffolds. The insecticide discovery process must consider how multi-modal efficacy spectra contribute to vector and VBD control.
Collapse
Affiliation(s)
- M V Murgia
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - S Sharan
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - J Kaur
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - W Austin
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - L Hagen
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - L Wu
- Chemical Genomics Facility at Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907-2089, USA
| | - L Chen
- Chemical Genomics Facility at Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907-2089, USA
| | - J A Scott
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - D P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - M E Scharf
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - V J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - C A Hill
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA.
| |
Collapse
|
9
|
Hernandez JR, Longnecker M, Fredregill CL, Debboun M, Pietrantonio PV. Kdr genotyping (V1016I, F1534C) of the Nav channel of Aedes aegypti (L.) mosquito populations in Harris County (Houston), Texas, USA, after Permanone 31-66 field tests and its influence on probability of survival. PLoS Negl Trop Dis 2021; 15:e0009833. [PMID: 34735439 PMCID: PMC8568202 DOI: 10.1371/journal.pntd.0009833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Aedes aegypti (L.) is an important mosquito vector of emerging arboviruses such as Zika, dengue, yellow fever, and chikungunya. To quell potential disease outbreaks, its populations are controlled by applying pyrethroid insecticides, which selection pressure may lead to the development of insecticide resistance. Target site insensitivity to pyrethroids caused by non-synonymous knockdown resistance (kdr) mutations in the voltage-gated sodium (NaV) channel is a predominant mechanism of resistance in mosquitoes. To evaluate the potential impact of pyrethroid resistance on vector control, Ae. aegypti eggs were collected from eight mosquito control operational areas in Harris County, Texas, and emerged females were treated in field tests at four different distances from the pyrethroid Permanone 31-66 source. The females were genotyped by melting curve analyses to detect two kdr mutations (V1016I and F1534C) in the NaV channel. Harris County females had higher survivorship rates at each distance than the pyrethroid-susceptible Orlando strain females. Survivorship increased with distance from the pyrethroid source, with 39% of field-collected mosquitoes surviving at 7.62 m and 82.3% at 22.86 m from the treatment source. Both the V1016I and F1534C pyrethroid resistant genotypes were widely distributed and at high frequency, with 77% of the females being double homozygous resistant (II/CC), this being the first report of kdr mutations in Ae. aegypti in Harris County. Analysis of the probability of survival for each mutation site independently indicated that the CC genotype had similar probability of survival as the FC heterozygous, while the II genotype had higher survival than both the VI and VV, that did not differ. The double homozygous resistant genotype (II/CC) had the highest probability of survival. A linear model estimated probability of survival for areas and genotypes. The high frequency and widespread distribution of double-homozygote pyrethroid-resistant Ae. aegypti may jeopardize disease vector control efforts in Harris County.
Collapse
Affiliation(s)
- Jonathan R. Hernandez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Longnecker
- Department of Statistics, Texas A&M University, College Station, Texas, United States of America
| | - Chris L. Fredregill
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Houston, Texas, United States of America
| | - Mustapha Debboun
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Houston, Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
10
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
11
|
Sun L, Ma H, Gao Y, Wang Z, Cao C. Functional Identification and Characterization of Leucokinin and Its Receptor in the Fall Webworm, Hyphantria cunea. Front Physiol 2021; 12:741362. [PMID: 34690813 PMCID: PMC8529013 DOI: 10.3389/fphys.2021.741362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
Neuropeptides function as central neuromodulators and circulating hormones that modulate insect behavior and physiology. Leucokinin (LK) is an intercellular signaling molecule that mediates many physiological and behavioral processes. However, the functions of LK associated with environmental stress and feeding behavior in the fall webworm, Hyphantria cunea, is little known. Our primary objective is to understand the function of LK and LK receptor (LKR) neuroendocrine system in H. cunea. In the present study, the results showed that LK/LKR are expressed at different developmental stages and in various tissues of H. cunea. A candidate receptor-ligand pairing for LK was identified in the larval transcriptome of H. cunea. In a heterologous expression system, the calcium assay was used to demonstrate that LKR is activated by HcLKs in a dose-dependent manner, with 50% effective concentration (EC50) values of 8.44-90.44nM. Knockdown of HcLK and HcLKR by microinjecting target-specific dsRNA leads to several effects in H. cunea, including feeding promotion, increase in resistance to desiccation and starvation stress, and regulation of water homeostasis. The transcript levels of HILP2 (except in the LK knockdown group), HILP5, and HILP8 increased, whereas those of HILP3, HILP4, and HILP6 decreased; HILP1, HILP2 (in the LK knockdown group), and HILP7 gene expression was not influenced after LK and LKR knockdown. Variations in mRNA expression levels in insulin-like peptide genes in the knockdown larvae suggest an essential role of these genes in survival in H. cunea. To our knowledge, the present study is the first comprehensive study of LK and LKR - from gene to behavior - in H. cunea.
Collapse
Affiliation(s)
| | | | | | | | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Dong CL, Lu MX, Du YZ. Transcriptomic analysis of pre-diapause larvae of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) in natural populations. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100903. [PMID: 34455148 DOI: 10.1016/j.cbd.2021.100903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Chilo suppressalis Walker is a devastating pest of rice in Asia and exhibits facultative diapause in the larval stage. Most prior experiments on diapausing and non-diapausing C. suppressalis were conducted in the laboratory. In this study, transcriptome analyses were performed on pre-diapausing larvae collected from field populations of C. suppressalis and compared to laboratory populations. Among 2674 differentially expressed genes (DEGs), 32 DEGs related to pre-diapause and 239 universally expressed genes were screened; these were primarily enriched in "neuroactive ligand-receptor interaction", "lysosome" and "glycerolipid metabolism" in KEGG pathway analysis. With respect to clusters of orthologous genes (COG), DEGs were assigned to "posttranslational modification, protein turnover, chaperones", "carbohydrate transport and metabolism", and "secondary metabolite biosynthesis, transport and catabolism" categories. Further analysis also revealed that a key "circadian clock-controlled protein" gene is sensitive to photoperiod and significantly decreased during the pre-diapause phase. Genes encoding two small heat shock proteins, hsp21.4 and hsp27.2, were significantly expressed on August 15 as compared to three other sampling times in August 2018. Eight DEGs were randomly chosen and evaluated by real-time quantitative PCR (RT-qPCR) to validate the accuracy of the transcriptome data. The expression of six DEGs (gene-evm_000752, gene-evm_006486, gene-evm_008626, gene-evm_002485, gene-evm_011981 and Chilo_suppressalis_newGene_18103) showed significant same patterns of differential expression in both the RT-qPCR and RNA-Seq analyses. This study increases our understanding of the complex physiological and molecular mechanisms involved in C. suppressalis at the pre-diapause phase.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
13
|
Liu N, Li T, Wang Y, Liu S. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development. Molecules 2021; 26:2993. [PMID: 34069969 PMCID: PMC8157829 DOI: 10.3390/molecules26102993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) play important roles in cell biology and insects' physiological processes, toxicological response and the development of insecticide resistance. New information on genome sequences, proteomic and transcriptome analysis and expression patterns of GPCRs in organs such as the central nervous system in different organisms has shown the importance of these signaling regulatory GPCRs and their impact on vital cell functions. Our growing understanding of the role played by GPCRs at the cellular, genome, transcriptome and tissue levels is now being utilized to develop new targets that will sidestep many of the problems currently hindering human disease control and insect pest management. This article reviews recent work on the expression and function of GPCRs in insects, focusing on the molecular complexes governing the insect physiology and development of insecticide resistance and examining the genome information for GPCRs in two medically important insects, mosquitoes and house flies, and their orthologs in the model insect species Drosophila melanogaster. The tissue specific distribution and expression of the insect GPCRs is discussed, along with fresh insights into practical aspects of insect physiology and toxicology that could be fundamental for efforts to develop new, more effective, strategies for pest control and resistance management.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Shikai Liu
- College of Fisheries, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
14
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
15
|
Xiong C, Baker D, Pietrantonio PV. A random small molecule library screen identifies novel antagonists of the kinin receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2021; 77:2238-2251. [PMID: 33415807 DOI: 10.1002/ps.6249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The southern cattle tick, Rhipicephalus microplus, is a primary vector of the deadly bovine disease babesiosis. Worldwide populations of ticks have developed resistance to acaricides, underscoring the need for novel target discovery for tick control. The arthropod-specific R. microplus kinin receptor is such a target, previously validated by silencing, which resulted in female reproductive fitness costs, including a reduced percentage of eggs hatching. RESULTS In order to identify potent small molecules that bind and activate or inhibit the kinin receptor, a high-throughput screening (HTS) assay was developed using a CHO-K1 cell line expressing the recombinant tick kinin receptor (BMLK3 ). A total of ~20 000 molecules from a random in-house small molecule library were screened in a 'dual-addition' calcium fluorescence assay. This was followed by dose-response validation of the hit molecules identified both from HTS and an in silico screen of ~390 000 molecules. We validated 29 antagonists, 11 of them were full antagonists with IC50 values between 0.67 and 8 μmol L-1 . To explore the structure-activity relationships (SAR) of the small molecules, we tested the activities of seven analogs of the most potent identified antagonist, additionally discovering three full antagonists and four partial antagonists. These three potent antagonists (IC50 < 3.2 μmol L-1 ) were validated in vitro using the recombinant mosquito kinin receptor and showed similar antagonistic activities. In vivo, these three compounds also inhibited the mosquito hindgut contraction rate induced by a myotropic kinin agonist analog 1728. CONCLUSION Antagonists identified in this study could become pesticide leads and are reagents for probing the kinin signaling system. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
16
|
Nässel DR. Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila. Int J Mol Sci 2021; 22:1940. [PMID: 33669286 PMCID: PMC7920058 DOI: 10.3390/ijms22041940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly's behavior and physiology, including feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
17
|
Nässel DR, Wu SF. Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates. Int J Mol Sci 2021; 22:1531. [PMID: 33546414 PMCID: PMC7913504 DOI: 10.3390/ijms22041531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding LKs and their receptors are absent. Furthermore, genomics has revealed that LK signaling is lacking in several of the invertebrate phyla and in vertebrates. In insects, the number and complexity of LK-expressing neurons vary, from the simple pattern in the Drosophila larva where the entire CNS has 20 neurons of 3 main types, to cockroaches with about 250 neurons of many different types. Common to all studied insects is the presence or 1-3 pairs of LK-expressing neurosecretory cells in each abdominal neuromere of the ventral nerve cord, that, at least in some insects, regulate secretion in Malpighian tubules. This review summarizes the diverse functional roles of LK signaling in insects, as well as other arthropods and mollusks. These functions include regulation of ion and water homeostasis, feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. Other functions are implied by the neuronal distribution of LK, but remain to be investigated.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
18
|
Xiong C, Kaczmarek K, Zabrocki J, Nachman RJ, Pietrantonio PV. Activity of native tick kinins and peptidomimetics on the cognate target G protein-coupled receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2020; 76:3423-3431. [PMID: 31794138 DOI: 10.1002/ps.5704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Kinins are multifunctional neuropeptides that regulate key insect physiological processes such as diuresis, feeding, and ecdysis. However, the physiological roles of kinins in ticks are unclear. Furthermore, ticks have an expanded number of kinin paracopies in the kinin gene. Silencing the kinin receptor (KR) in females of Rhipicephalus microplus reduces reproductive fitness. Thus, it appears the kinin signaling system is important for tick physiology and its disruption may have potential for tick control. RESULTS We determined the activities of endogenous kinins on the KR, a G protein-coupled receptor, and identified potent peptidomimetics. Fourteen predicted R. microplus kinins (Rhimi-K), and 11 kinin analogs containing aminoisobutyric acid (Aib) were tested. The latter incorporated tick kinin sequences and/or were modified for enhanced resistance to arthropod peptidases. A high-throughput screen using a calcium fluorescence assay in 384-well plates was performed. All tested kinins and Aib analogs were full agonists. The most potent kinin and two kinin analogs were equipotent. Analogs 2414 ([Aib]FS[Aib]WGa) and 2412 ([Aib]FG[Aib]WGa) were the most active with EC50 values of 0.9 and 1.1 nM, respectively, matching the EC50 of the most potent tick kinin, Rhimi-K-14 (QDSFNPWGa) (EC50 = 1 nM). The potent analog 2415 ([Aib]FR[Aib]WGa, EC50 = 6.8 nM) includes both Aib molecules for resistance to peptidases and a positively charged residue, R, for enhanced water solubility and amphiphilic character. CONCLUSION These tick kinins and pseudopeptides expand the repertoire of reagents for tick physiology and toxicology towards finding novel targets for tick management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | - Ronald J Nachman
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | | |
Collapse
|
19
|
Charroux B, Daian F, Royet J. Drosophila Aversive Behavior toward Erwinia carotovora carotovora Is Mediated by Bitter Neurons and Leukokinin. iScience 2020; 23:101152. [PMID: 32450516 PMCID: PMC7251953 DOI: 10.1016/j.isci.2020.101152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/02/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
The phytopathogen Erwinia carotovora carotovora (Ecc) has been used successfully to decipher some of the mechanisms that regulate the interactions between Drosophila melanogaster and bacteria, mostly following forced association between the two species. How do Drosophila normally perceive and respond to the presence of Ecc is unknown. Using a fly feeding two-choice assay and video tracking, we show that Drosophila are first attracted but then repulsed by an Ecc-contaminated solution. The initial attractive phase is dependent on the olfactory Gr63a and Gαq proteins, whereas the second repulsive phase requires a functional gustatory system. Genetic manipulations and calcium imaging indicate that bitter neurons and gustatory receptors Gr66a and Gr33a are needed for the aversive phase and that the neuropeptide leukokinin is also involved. We also demonstrate that these behaviors are independent of the NF-κB cascade that controls some of the immune, metabolic, and behavioral responses to bacteria.
Collapse
Affiliation(s)
| | - Fabrice Daian
- Aix-Marseille Université, CNRS, IBDM, Marseille, France
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
20
|
Barredo E, DeGennaro M. Not Just from Blood: Mosquito Nutrient Acquisition from Nectar Sources. Trends Parasitol 2020; 36:473-484. [PMID: 32298634 DOI: 10.1016/j.pt.2020.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023]
Abstract
Anthropophilic female mosquitoes are well known for their strong attraction to human hosts, but plant nectar is a common energy source in their diets. When sugar sources are scarce, female mosquitoes of some species can compensate by taking larger and more frequent blood meals. Male mosquitoes are exclusively dependent on plant nectar or alternative sugar sources. Plant preference is likely driven by an innate attraction that may be enhanced by experience, as mosquitoes learn to recognize available sugar rewards. Nectar-seeking involves the integration of at least three sensory systems: olfaction, vision and taste. The prevention of vector-borne illnesses, the determination of the mosquitoes' ecological role, and the design of efficient sugar-baited traps will all benefit from understanding the molecular basis of nectar-seeking.
Collapse
Affiliation(s)
- Elina Barredo
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Matthew DeGennaro
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
21
|
Latorre-Estivalis JM, Sterkel M, Ons S, Lorenzo MG. Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus. BMC Genomics 2020; 21:101. [PMID: 32000664 PMCID: PMC6993403 DOI: 10.1186/s12864-020-6514-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. Results Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. Conclusions We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil. .,Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Engineered action at a distance: Blood-meal-inducible paralysis in Aedes aegypti. PLoS Negl Trop Dis 2019; 13:e0007579. [PMID: 31479450 PMCID: PMC6719823 DOI: 10.1371/journal.pntd.0007579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background Population suppression through mass-release of Aedes aegypti males carrying dominant-lethal transgenes has been demonstrated in the field. Where population dynamics show negative density-dependence, suppression can be enhanced if lethality occurs after the density-dependent (i.e. larval) stage. Existing molecular tools have limited current examples of such Genetic Pest Management (GPM) systems to achieving this through engineering ‘cell-autonomous effectors’ i.e. where the expressed deleterious protein is restricted to the cells in which it is expressed–usually under the control of the regulatory elements (e.g. promoter regions) used to build the system. This limits the flexibility of these technologies as regulatory regions with useful spatial, temporal or sex-specific expression patterns may only be employed if the cells they direct expression in are simultaneously sensitive to existing effectors, and also precludes the targeting of extracellular regions such as cell-surface receptors. Expanding the toolset to ‘non-cell autonomous’ effectors would significantly reduce these limitations. Methodology/Principal findings We sought to engineer female-specific, late-acting lethality through employing the Ae. aegypti VitellogeninA1 promoter to drive blood-meal-inducible, fat-body specific expression of tTAV. Initial attempts using pro-apoptotic effectors gave no evident phenotype, potentially due to the lower sensitivity of terminally-differentiated fat-body cells to programmed-death signals. Subsequently, we dissociated the temporal and spatial expression of this system by engineering a novel synthetic effector (Scorpion neurotoxin–TetO-gp67.AaHIT) designed to be secreted out of the tissue in which it was expressed (fat-body) and then affect cells elsewhere (neuro-muscular junctions). This resulted in a striking, temporary-paralysis phenotype after blood-feeding. Conclusions/Significance These results are significant in demonstrating for the first time an engineered ‘action at a distance’ phenotype in a non-model pest insect. The potential to dissociate temporal and spatial expression patterns of useful endogenous regulatory elements will extend to a variety of other pest insects and effectors. A recent addition to the toolbox for controlling populations of the disease vector Aedes aegypti is the mass-release of males engineered with dominant, lethal transgenes. The lethal effect of these transgenes is activated in the progeny of these released engineered males and wild females they mate with in the field and with continuous release of males can cause population collapse. To date, these systems have relied on the use of ‘cell-autonomous’ effectors, meaning that their action is restricted to the cells in which they are expressed, limiting the flexibility of designing new, more complex systems. Here we demonstrate that it is possible to engineer ‘non-cell autonomous’ effectors–that is where the effect (e.g. the action of a toxic protein) can act on cells distant from the tissues in which they are originally expressed. To achieve this we utilised the endogenous cell secretory pathway to engineer a novel control phenotype–blood-meal inducible (i.e. late-acting, female-specific) reversible paralysis. The logic behind engineering such ‘action at a distance’ phenotypes will extend to a variety of other pest insects and control phenotypes.
Collapse
|
23
|
Xiong C, Baker D, Pietrantonio PV. The Cattle Fever Tick, Rhipicephalus microplus, as a Model for Forward Pharmacology to Elucidate Kinin GPCR Function in the Acari. Front Physiol 2019; 10:1008. [PMID: 31447698 PMCID: PMC6692460 DOI: 10.3389/fphys.2019.01008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The success of the acaricide amitraz, a ligand of the tick tyramine/octopamine receptor (a G protein-coupled receptor; GPCR), stimulated interest on arthropod-specific GPCRs as targets to control tick populations. This search advances tick physiology because little is known about the pharmacology of tick GPCRs, their endogenous ligands or their physiological functions. Here we explored the tick kinin receptor, a neuropeptide GPCR, and its ligands. Kinins are pleiotropic insect neuropeptides but their function in ticks is unknown. The endogenous tick kinins are unknown and their cDNAs have not been cloned in any species. In contrast, more than 271 insect kinin sequences are available in the DINeR database. To fill this gap, we cloned the kinin cDNA from the cattle fever tick, Rhipicephalus microplus, which encodes 17 predicted kinins, and verified the kinin gene structure. We predicted the kinin precursor sequences from additional seven tick species, including Ixodes scapularis. All species showed an expansion of kinin paracopies. The "kinin core" (minimal active sequence) of tick kinins FX1X2WGamide is similar to those in insects. Pro was predominant at the X2 position in tick kinins. Toward accelerating the discovery of kinin function in ticks we searched for novel synthetic receptor ligands. We developed a dual-addition assay for functional screens of small molecules and/or peptidomimetics that uses a fluorescent calcium reporter. A commercial library of fourteen small molecules antagonists of mammalian neurokinin (NK) receptors was screened using this endpoint assay. One acted as full antagonist (TKSM02) with inhibitory concentration fifty (IC50) of ∼45 μM, and three were partial antagonists. A subsequent calcium bioluminescence assay tested these four antagonists through kinetic curves and confirmed TKSM02 as full antagonist and one as partial antagonist (TKSM14). Antagonists of NK receptors displayed selectivity (>10,000-fold) on the tick kinin receptor. Three peptidomimetic ligands of the mammalian NK receptors (hemokinin 1, antagonist G, and spantide I) were tested in the bioluminescence assay but none were active. Forward approaches may accelerate discovery of kinin ligands, either as reagents for tick physiological research or as lead molecules for acaricide development, and they demonstrate that selectivity is achievable between mammalian and tick neuropeptide systems.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
24
|
Xiong C, Kaczmarek K, Zabrocki J, Pietrantonio PV, Nachman RJ. Evaluation of Aib and PEG-polymer insect kinin analogs on mosquito and tick GPCRs identifies potent new pest management tools with potentially enhanced biostability and bioavailability. Gen Comp Endocrinol 2019; 278:58-67. [PMID: 30107140 DOI: 10.1016/j.ygcen.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022]
Abstract
Insect kinins modulate aspects of diuresis, digestion, development, and sugar taste perception in tarsi and labellar sensilla in mosquitoes. They are, however, subject to rapid biological degradation by endogenous invertebrate peptidases. A series of α-aminoisobutyric (Aib) acid-containing insect kinin analogs incorporating sequences native to the Aedes aegypti mosquito aedeskinins were evaluated on two recombinant kinin invertebrate receptors stably expressed in cell lines, discovering a number of highly potent and biostable insect kinin mimics. On the Ae. aegypti mosquito kinin receptor, three highly potent, biostable Aib analogs matched the activity of the Aib-containing biostable insect kinin analog 1728, which previously showed disruptive and/or aversive activity in aphid, mosquito and kissing bug. These three analogs are IK-Aib-19 ([Aib]FY[Aib]WGa, EC50 = 18 nM), IK-Aib-12 (pQKFY[Aib]WGa, EC50 = 23 nM) and IK-Aib-20 ([Aib]FH[Aib]WGa, EC50 = 28 nM). On the Rhipicephalus (Boophilus) microplus tick receptor, IK-Aib-20 ([Aib]FH[Aib]WGa, EC50 = 2 nM) is more potent than 1728 by a factor of 3. Seven other potentially biostable analogs exhibited an EC50 range of 5-10 nM, all of which match the potency of 1728. Among the multi-Aib hexapeptide kinin analogs tested the tick receptor has a preference for the positively-charged, aromatic H over the aromatic residues Y and F in the X1 variable position ([Aib]FX1[Aib]WGa), whereas the mosquito receptor does not distinguish between them. In contrast, in a mono-Aib pentapeptide analog framework (FX1[Aib]WGa), both receptors exhibit a preference for Y over H in the variable position. Among analogs incorporating polyethylene glycol (PEG) polymer attachments at the N-terminus that can confer enhanced bioavailability and biostability, three matched or surpassed the potency of a positive control peptide. On the tick receptor IK-PEG-9 (P8-R[Aib]FF[Aib]WGa) was the most potent. Two others, IK-PEG-8 (P8-RFFPWGa) and IK-PEG-6 (P4-RFFPWGa), were most potent on the mosquito receptor, with the first surpassing the activity of the positive control peptide. These analogs and others in the IK-Aib series expand the toolbox of potent analogs accessible to invertebrate endocrinologists studying the structural requirements for bioactivity and the as yet unknown role of the insect kinins in ticks. They may contribute to the development of selective, environmentally friendly pest arthropod control agents.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F/B Road, College Station, TX 77845, USA; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F/B Road, College Station, TX 77845, USA; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | | | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F/B Road, College Station, TX 77845, USA.
| |
Collapse
|
25
|
Montero-Mendieta S, Tan K, Christmas MJ, Olsson A, Vilà C, Wallberg A, Webster MT. The genomic basis of adaptation to high-altitude habitats in the eastern honey bee (Apis cerana). Mol Ecol 2019; 28:746-760. [PMID: 30576015 DOI: 10.1111/mec.14986] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023]
Abstract
The eastern honey bee (Apis cerana) is of central importance for agriculture in Asia. It has adapted to a wide variety of environmental conditions across its native range in southern and eastern Asia, which includes high-altitude regions. eastern honey bees inhabiting mountains differ morphologically from neighbouring lowland populations and may also exhibit differences in physiology and behaviour. We compared the genomes of 60 eastern honey bees collected from high and low altitudes in Yunnan and Gansu provinces, China, to infer their evolutionary history and to identify candidate genes that may underlie adaptation to high altitude. Using a combination of FST -based statistics, long-range haplotype tests and population branch statistics, we identified several regions of the genome that appear to have been under positive selection. These candidate regions were strongly enriched for coding sequences and had high haplotype homozygosity and increased divergence specifically in highland bee populations, suggesting they have been subjected to recent selection in high-altitude habitats. Candidate loci in these genomic regions included genes related to reproduction and feeding behaviour in honey bees. Functional investigation of these candidate loci is necessary to fully understand the mechanisms of adaptation to high-altitude habitats in the eastern honey bee.
Collapse
Affiliation(s)
| | - Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Brock CM, Temeyer KB, Tidwell J, Yang Y, Blandon MA, Carreón-Camacho D, Longnecker MT, Almazán C, Pérez de León AA, Pietrantonio PV. The leucokinin-like peptide receptor from the cattle fever tick, Rhipicephalus microplus, is localized in the midgut periphery and receptor silencing with validated double-stranded RNAs causes a reproductive fitness cost. Int J Parasitol 2019; 49:287-299. [PMID: 30673587 DOI: 10.1016/j.ijpara.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/25/2022]
Abstract
The cattle fever tick, Rhipicephalus microplus (Canestrini) (Acari: Ixodidae), is a one-host tick that infests primarily cattle in tropical and sub-tropical regions of the world. This species transmits deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. Although R. microplus was eradicated in the USA, tick populations in Mexico and South America have acquired resistance to many of the applied acaricides. Recent acaricide-resistant tick reintroductions detected in the U.S. underscore the need for novel tick control methods. The octopamine and tyramine/octopamine receptors, both G protein-coupled receptors (GPCR), are believed to be the main molecular targets of the acaricide amitraz. This provides the proof of principle that investigating tick GPCRs, especially those that are invertebrate-specific, may be a feasible strategy for discovering novel targets and subsequently new anti-tick compounds. The R. microplus leucokinin-like peptide receptor (LKR), also known as the myokinin- or kinin receptor, is such a GPCR. While the receptor was previously characterized in vitro, the function of the leucokinin signaling system in ticks remains unknown. In this work, the LKR was immunolocalized to the periphery of the female midgut and silenced through RNA interference (RNAi) in females. To optimize RNAi experiments, a dual-luciferase system was developed to determine the silencing efficiency of LKR-double stranded RNA (dsRNA) constructs prior to testing those in ticks placed on cattle. This assay identified two effective dsRNAs. Silencing of the LKR with these two validated dsRNA constructs was verified by quantitative real time PCR (qRT-PCR) of female tick dissected tissues. Silencing was significant in midguts and carcasses. Silencing caused decreases in weights of egg masses and in the percentages of eggs hatched per egg mass, as well as delays in time to oviposition and egg hatching. A role of the kinin receptor in tick reproduction is apparent.
Collapse
Affiliation(s)
- Christina M Brock
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | - Jason Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture - Agricultural Research Service, 22675 N. Moorefield Rd. Building 6419 Edinburg, TX 78541-5033, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Maria A Blandon
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Diana Carreón-Camacho
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Michael T Longnecker
- Department of Statistics, Texas A&M University, College Station, TX 77843-2475, USA
| | - Consuelo Almazán
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | | |
Collapse
|
27
|
Hill CA, Sharan S, Watts VJ. Genomics, GPCRs and new targets for the control of insect pests and vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 30:99-106. [PMID: 30553493 DOI: 10.1016/j.cois.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 06/09/2023]
Abstract
The pressing need for new pest control products with novel modes of action has spawned interest in small molecules and peptides targeting arthropod GPCRs. Genome sequence data and tools for reverse genetics have enabled the prediction and characterization of GPCRs from many invertebrates. We review recent work to identify, characterize and de-orphanize arthropod GPCRs, with a focus on studies that reveal exciting new functional roles for these receptors, including the regulation of metabolic resistance. We explore the potential for insecticides targeting Class A biogenic amine-binding and peptide-binding receptors, and consider the innovation required to generate pest-selective leads for development, within the context of new PCR-targeting products to control arthropod vectors of disease.
Collapse
Affiliation(s)
- Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN 47907-2089, USA.
| | - Shruti Sharan
- Department of Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| |
Collapse
|
28
|
Pietrantonio PV, Xiong C, Nachman RJ, Shen Y. G protein-coupled receptors in arthropod vectors: omics and pharmacological approaches to elucidate ligand-receptor interactions and novel organismal functions. CURRENT OPINION IN INSECT SCIENCE 2018; 29:12-20. [PMID: 30551818 PMCID: PMC6296246 DOI: 10.1016/j.cois.2018.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
Regulation of many physiological processes in animals, certainly those controlled by neuropeptide hormones, involves G protein-coupled receptors (GPCRs). Our work focusing on endocrine regulation of diuresis and water balance in mosquitoes and ticks started in 1997 with the kinin receptor, at the dawn of the omics era. After the genomic revolution, we began work on the endocrinology of reproduction in the red imported fire ant. We will use the template of this comparative work to summarize key points about GPCRs and signaling, and emphasize the most recent developments in the pharmacology of arthropod neuropeptide GPCRs. We will discuss omics' contributions to the advancement of this field, and its influence on peptidomimetic design while emphasizing work on blood feeding arthropods.
Collapse
Affiliation(s)
- Patricia V Pietrantonio
- Department of Entomology, Texas A&M University (TAMU), College Station, TX 77843-2475, United States.
| | - Caixing Xiong
- Department of Entomology, TAMU, College Station, TX 77843-2475, United States
| | - Ronald James Nachman
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TAMU, College Station, TX 77843-3128, United States
| |
Collapse
|
29
|
Wang L, Liu X, Liu Z, Wang X, Lei C, Zhu F. Members of the neuropeptide transcriptional network in Helicoverpa armigera and their expression in response to light stress. Gene 2018; 671:67-77. [PMID: 29787823 DOI: 10.1016/j.gene.2018.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Neuropeptides and peptide hormones play central roles in the regulation of various types of insect physiology and behavior. Artificial light at night, a form of environmental stress, has recently been regarded as a source of light stress on nocturnal insects. Because related genomic information is not available, molecular biological studies on the response of neuropeptides in nocturnal insects to light stress are limited. Based on the de novo sequencing of the Helicoverpa armigera head transcriptome, we obtained 124,960 unigenes. Of these, the number of unigenes annotated as neuropeptides and peptide hormones, neurotransmitter precursor processing enzymes, and neurotransmitter receptors were 34, 17, and 58, respectively. Under light stress, there were sex-specific differences in gene expression measured by qRT-PCR. The IMFamide, leucokinin and sNPF genes were differentially expressed at the mRNA level in males but not in females in response to light stress. The results provide new insights on the diversity of the neuropeptide transcriptional network of H. armigera. In addition, some neuropeptides exhibited sex-specific differential expression in response to light stress. Taken collectively, these results not only expand the catalog of known insect neuropeptides but also provide a framework for future functional studies on the physiological roles they play in the light stress response behavior of nocturnal moths.
Collapse
Affiliation(s)
- Lijun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinhui Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhengxing Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Miriyala A, Kessler S, Rind FC, Wright GA. Burst Firing in Bee Gustatory Neurons Prevents Adaptation. Curr Biol 2018; 28:1585-1594.e3. [PMID: 29754900 DOI: 10.1016/j.cub.2018.03.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 10/16/2022]
Abstract
Animals detect changes in the environment using modality-specific, peripheral sensory neurons. The insect gustatory system encodes tastant identity and concentration through the independent firing of gustatory receptor neurons (GRNs) that spike rapidly at stimulus onset and quickly adapt. Here, we show the first evidence that concentrated sugar evokes a temporally structured burst pattern of spiking involving two GRNs within the gustatory sensilla of bumblebees. Bursts of spikes resulted when a sucrose-activated GRN was inhibited by another GRN at a frequency of ∼22 Hz during the first 1 s of stimulation. Pharmacological blockade of gap junctions abolished bursting, indicating that bee GRNs have electrical synapses that produce a temporal pattern of spikes when one GRN is activated by a sugar ligand. Bursting permitted bee GRNs to maintain a high rate of spiking and to exhibit the slowest rate of adaptation of any insect species. Feeding bout duration correlated with coherent bursting; only sugar concentrations that produced bursting evoked the bumblebee's feeding reflex. Volume of solution imbibed was a direct function of time in contact with food. We propose that gap junctions among GRNs enable a sustained rate of GRN spiking that is necessary to drive continuous feeding by the bee proboscis.
Collapse
Affiliation(s)
- Ashwin Miriyala
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sébastien Kessler
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - F Claire Rind
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
31
|
Inocente EA, Shaya M, Acosta N, Rakotondraibe LH, Piermarini PM. A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 2018; 12:e0006265. [PMID: 29425195 PMCID: PMC5823474 DOI: 10.1371/journal.pntd.0006265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/22/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Plants produce various secondary metabolites that offer a potential source of novel insecticides and repellents for the control of mosquito vectors. Plants of the genus Cinnamosma are endemic to, and widely-distributed throughout, the island of Madagascar. The barks of these species are commonly used in traditional medicines for treating a wide range of maladies. The therapeutic nature of the bark is thought to be associated with its enrichment of pungent drimane sesquiterpenes, which elicit antifeedant and toxic effects in some insects. Here we test the hypothesis that a bark extract of Cinnamosma fragrans (CINEX) and its major drimane sesquiterpenes are insecticidal, antifeedant, and repellent to Aedes aegypti, the principal mosquito vector of chikungunya, dengue, yellow fever, and Zika viruses. We demonstrate that CINEX is 1) toxic to larval and adult female mosquitoes, and 2) antifeedant and repellent to adult female mosquitoes. Moreover, we show that cinnamodial (CDIAL), a sesquiterpene dialdehyde isolated from CINEX, duplicates these bioactivities and exhibits similar toxic potency against pyrethroid-susceptible and -resistant strains of Ae. aegypti. Importantly, we show that CDIAL is an agonist of heterologously-expressed mosquito Transient Receptor Potential A1 (TRPA1) channels, and the antifeedant activity of CDIAL is dampened in a TRPA1-deficient strain of Ae. aegypti (TRPA1-/-). Intriguingly, TRPA1-/- mosquitoes do not exhibit toxic resistance to CDIAL. The data indicate that modulation of TRPA1 is required for the sensory detection and avoidance of CDIAL by mosquitoes, but not for inducing the molecule's toxicity. Our study suggests that CDIAL may serve as a novel chemical platform for the development of natural product-based insecticides and repellents for controlling mosquito vectors.
Collapse
Affiliation(s)
- Edna Alfaro Inocente
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| | - Marguerite Shaya
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| | - Nuris Acosta
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| | | | - Peter M. Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| |
Collapse
|
32
|
Abstract
Fluid clearance from the respiratory system during developmental transitions is critically important for achieving optimal gas exchange in animals. During insect development from embryo to adult, airway clearance occurs episodically each time the molt is completed by performance of the ecdysis sequence, coordinated by a peptide-signaling cascade initiated by ecdysis-triggering hormone (ETH). We find that the neuropeptide Kinin (also known as Drosokinin or Leukokinin) is required for normal respiratory fluid clearance or "tracheal air-filling" in Drosophila larvae. Disruption of Kinin signaling leads to defective air-filling during all larval stages. Such defects are observed upon ablation or electrical silencing of Kinin neurons, as well as RNA silencing of the Kinin gene or the ETH receptor in Kinin neurons, indicating that ETH targets Kinin neurons to promote tracheal air-filling. A Kinin receptor mutant fly line (Lkrf02594 ) also exhibits tracheal air-filling defects in all larval stages. Targeted Kinin receptor silencing in tracheal epithelial cells using breathless or pickpocket (ppk) drivers compromises tracheal air-filling. On the other hand, promotion of Kinin signaling in vivo through peptide injection or Kinin neuron activation through Drosophila TrpA1 (dTrpA1) expression induces premature tracheal collapse and air-filling. Moreover, direct exposure of tracheal epithelial cells in vitro to Kinin leads to calcium mobilization in tracheal epithelial cells. Our findings strongly implicate the neuropeptide Kinin as an important regulator of airway clearance via intracellular calcium mobilization in tracheal epithelial cells of Drosophila.
Collapse
|
33
|
Sparks JT, Dickens JC. Mini review: Gustatory reception of chemicals affecting host feeding in aedine mosquitoes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:15-20. [PMID: 29107239 DOI: 10.1016/j.pestbp.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 06/07/2023]
Abstract
Mosquitoes vector dangerous human diseases during blood feeding. Gustatory (taste) receptor neurons in the mosquito provide important chemical information including the nature and suitability of a potential host. Here we discuss the behavior, neurophysiology and molecular mechanisms associated with feeding in aedine mosquitoes, important vectors of emerging diseases including Zika fever, chikungunya and dengue fever. We describe how interactions between feeding stimulation and deterrency at the peripheral neural receptor level provide input to higher order neural processing centers affecting decisions to feed. A better understanding of gustatory mechanisms involved in the female's decision to bite will provide the framework for novel strategies aimed at preventing the spread of vector-borne disease.
Collapse
Affiliation(s)
- Jackson T Sparks
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA.
| | - Joseph C Dickens
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| |
Collapse
|
34
|
Benton R. The neurobiology of gustation in insect disease vectors: progress and potential. CURRENT OPINION IN INSECT SCIENCE 2017; 20:19-27. [PMID: 28602232 DOI: 10.1016/j.cois.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
For insect vectors of human diseases, mealtimes are a key moment of infection. Understanding how and when such species decide on what to feed is both an interesting problem in sensory neurobiology and a source of information for intervention of these behaviors to control spread of infectious agents. Here I review the current knowledge of the molecular and cellular mechanisms of gustation in insect disease vectors, covering blood-feeders as well as scavengers that spread pathogens indirectly. I also consider how these behaviors are modulated over short and long timescales, and describe efforts to artificially modulate them. Though a relatively nascent field, gustatory neurobiology in insect vectors has much promise for future fundamental discoveries and practical applications.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
35
|
Christie AE, Hull JJ, Richer JA, Geib SM, Tassone EE. Prediction of a peptidome for the western tarnished plant bug Lygus hesperus. Gen Comp Endocrinol 2017; 243:22-38. [PMID: 27789347 DOI: 10.1016/j.ygcen.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Many strategies for controlling insect pests require an understanding of their hormonal signaling agents, peptides being the largest and most diverse single class of these molecules. Lygus hesperus is a pest species of particular concern, as it is responsible for significant damage to a wide variety of commercially important plant crops. At present, little is known about the peptide hormones of L. hesperus. Here, transcriptomic data were used to predict a peptidome for L. hesperus. Fifty-three L. hesperus transcripts encoding peptide precursors were identified, with a subset amplified by PCR for sequence verification. The proteins deduced from these transcripts allowed for the prediction of a 119-sequence peptidome for L. hesperus. The predicted peptides include isoforms of allatostatin A, allatostatin B (AST-B), allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, GSEFLamide, insulin-like peptide, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pyrokinin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. Of note were several isoforms of AST-B that possess -WX7Wamide carboxyl-termini rather than the stereotypical -WX6Wamide (e.g., KWQDMQNPGWamide), an allatotropin ending in -SARGFamide rather than -TARGFamide (GLKNGPLNSARGFamide), a GSEFLamide ending in -GTEFLamide (TVGTEFLamide), several orcokinins with PMDEIDR- rather than NFDEIDR- amino-termini (e.g., PMDEIDRAGFTHFV), and an eight rather than 12 amino acid long isoform of SIFamide (PPFNGSIFamide). Collectively, the L. hesperus peptidome predicted here provides a resource for initiating physiological investigations of peptidergic signaling in this species, including studies directed at the biological control of this agricultural pest.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Josh A Richer
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA Agricultural Research Services, Hilo, HI 96720, USA
| | - Erica E Tassone
- Plant Physiology and Genetics Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| |
Collapse
|
36
|
Traverso L, Sierra I, Sterkel M, Francini F, Ons S. Neuropeptidomics in Triatoma infestans. Comparative transcriptomic analysis among triatomines. ACTA ACUST UNITED AC 2016; 110:83-98. [PMID: 27993629 DOI: 10.1016/j.jphysparis.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023]
Abstract
Chagas' disease, affecting up to 6-7 million people worldwide, is transmitted to humans through the feces of triatomine kissing bugs. From these, Rhodnius prolixus, Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis are important vectors distributed throughout the Latin American subcontinent. Resistance to pyrethroids has been developed by some triatomine populations, especially T. infestans, obstructing their control. Given their role in the regulation of physiological processes, neuroendocrine-derived factors have been proposed as a source of molecular targets for new-generation insecticides. However, the involvement of neuropeptides in insecticide metabolism and resistance in insects has been poorly studied. In the present work, the sequences of 20 neuropeptide precursor genes in T. infestans, 16 in T. dimidiata, and 13 in T. pallidipennis detected in transcriptomic databases are reported, and a comparative analysis in triatomines is presented. A total of 59 neuropeptides were validated by liquid chromatography-tandem mass spectrometry in brain and nervous ganglia from T. infestans, revealing the existence of differential post-translational modifications, extended and truncated forms. The results suggest a high sequence conservation in some neuropeptide systems in triatomines, whereas remarkable differences occur in several others within the core domains. Comparisons of the basal expression levels for several neuropeptide precursor genes between pyrethroid sensitive and resistant population of T. infestans are also presented here, in order to introduce a proof of concept to test the involvement of neuropeptides in insecticide resistance. From the precursors tested, NVP and ITG peptides are significantly higher expressed in the resistant population. To our knowledge, this is the first report to associate differential neuropeptide expression with insecticide resistance. The information provided here contributes to creating conditions to widely extend functional and genetic studies involving neuropeptides in triatomines.
Collapse
Affiliation(s)
- Lucila Traverso
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Ivana Sierra
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Marcos Sterkel
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Flavio Francini
- Center of Experimental and Applied Endocrinology, CONICET-CCT La Plata, National University of La Plata, 60 and 120 Street, CP: 1900, La Plata, Argentina
| | - Sheila Ons
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina.
| |
Collapse
|