1
|
Yamaoka Y, Petroutsos D, Je S, Yamano T, Li-Beisson Y. Light, CO 2, and carbon storage in microalgae. CURRENT OPINION IN PLANT BIOLOGY 2025; 84:102696. [PMID: 39983365 DOI: 10.1016/j.pbi.2025.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/23/2025]
Abstract
Microalgae exhibit remarkable adaptability to environmental changes by integrating light and CO2 signals into regulatory networks that govern energy conversion, carbon fixation, and storage. Light serves not only as an energy source for photosynthesis but also as a regulatory signal mediated by photoreceptors. Specific light spectra distinctly influence carbon allocation, driving lipid or starch biosynthesis by altering transcriptional and metabolic pathways. The ratio of ATP to NADPH imbalances significantly impact carbon allocation toward lipid or starch production. To maintain this balance, alternative electron flow pathways play critical roles, while inter-organelle redox exchanges regulate cellular energy states to support efficient carbon storage. The CO2-concentrating mechanism (CCM) enhances photosynthetic efficiency by concentrating CO2 at Rubisco, energized by ATP from photosynthetic electron transport. This review examines how light receptors, energy-producing pathways, and the CCM interact to regulate carbon metabolism in microalgae, emphasizing their collective roles in balancing energy supply and carbon storage.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Dimitris Petroutsos
- Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden
| | - Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yonghua Li-Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance, 13108, France
| |
Collapse
|
2
|
Cardador M, Krüger S, Dunker S, Brakel A, Hoffmann R, Nagel R, Jakob T, Goss R, Sasso S. Extensive remodeling during Chlamydomonas reinhardtii zygote maturation leads to highly resistant zygospores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17238. [PMID: 39924694 PMCID: PMC11808170 DOI: 10.1111/tpj.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
The unicellular soil alga Chlamydomonas reinhardtii forms diploid zygotes during its sexual cycle. The process of a zygote maturing into a highly resistant zygospore remains poorly understood despite its importance for survival under adverse environmental conditions. Here we describe the detailed timeline of morphological and physiological changes during zygote maturation in darkness on ammonium-free Tris-acetate-phosphate agar plates. The formation of a multilayered cell wall is primarily responsible for the increase in cell size in the first few days after zygote formation. Desiccation and freezing tolerance also develop in the period 3-7 days. Photosynthetic and respiratory activity decrease to reach minimal levels after 7-10 days, accompanied by a partial dedifferentiation of the chloroplast that includes chlorophyll degradation followed by the possible disappearance of the pyrenoid. In contrast to the decreasing concentrations of most carotenoids in the first few days after zygote formation, ketocarotenoids can first be detected after 3 days and their accumulation is completed after 10 days. Furthermore, the zygote degrades a large proportion of its starch and enriches oligosaccharides that may serve as osmoprotectants. The storage lipid triacylglycerol is accumulated at the expense of thylakoid membrane lipids, which mirrors the conversion of a metabolically active cell into a dormant spore on the metabolic level. Taken together, zygote maturation is a multifaceted process that yields mature zygospores after ~ 3 weeks. This work sheds light on the complete time course of the remodeling of a photosynthetically active eukaryotic cell into a dormant, highly resistant spore.
Collapse
Affiliation(s)
| | - Stephanie Krüger
- Biozentrum, Microscopy UnitMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Susanne Dunker
- Helmholtz Centre for Environmental Research (UFZ)Department for Physiological DiversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Alexandra Brakel
- Institute of Bioanalytical ChemistryLeipzig UniversityLeipzigGermany
- Center for Biotechnology and BiomedicineLeipzigGermany
| | - Ralf Hoffmann
- Institute of Bioanalytical ChemistryLeipzig UniversityLeipzigGermany
- Center for Biotechnology and BiomedicineLeipzigGermany
| | - Raimund Nagel
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Torsten Jakob
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Reimund Goss
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Severin Sasso
- Institute of BiologyLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
3
|
Li C, Du X, Liu C. Enhancing crop yields to ensure food security by optimizing photosynthesis. J Genet Genomics 2025:S1673-8527(25)00017-7. [PMID: 39800260 DOI: 10.1016/j.jgg.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security. This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency. There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods, and this increase is accompanied by improved photosynthesis. We explore various aspects of the light reactions designed to enhance crop yield, including light harvest efficiency through smart canopy systems, expanding the absorbed light spectrum to include far-red light, optimizing non-photochemical quenching, and accelerating electron transport flux. At the same time, we investigate carbon reactions that can enhance crop yield, such as manipulating Rubisco activity, improving the Calvin-Benson-Bassham (CBB) cycle, introducing CO2 concentrating mechanisms (CCMs) in C3 plants, and optimizing carbon allocation. These strategies could significantly impact crop yield enhancement and help bridge the yield gap.
Collapse
Affiliation(s)
- Chunrong Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejia Du
- University of Houston, 5000 Gulf Fwy, Houston, TX 77023, United States of America
| | - Cuimin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Qin K, Ye X, Luo S, Fernie AR, Zhang Y. Engineering carbon assimilation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39783795 DOI: 10.1111/jipb.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/03/2024] [Indexed: 01/12/2025]
Abstract
Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO2, is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin-Benson-Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway. Consequently, RuBisCO needs to be present at very high concentrations, which is one of the factors contributing to its status as the most prevalent protein on Earth. Numerous attempts have been made to optimize the catalytic efficiency of RuBisCO and thereby promote plant growth. Furthermore, the limitations of this process highlight the potential benefits of engineering or discovering more efficient carbon fixation mechanisms, either by improving RuBisCO itself or by introducing alternative pathways. Here, we review advances in artificial carbon assimilation engineering, including the integration of synthetic biology, genetic engineering, metabolic pathway optimization, and artificial intelligence in order to create plants capable of performing more efficient photosynthesis. We additionally provide a perspective of current challenges and potential solutions alongside a personal opinion of the most promising future directions of this emerging field.
Collapse
Affiliation(s)
- Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Luo
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Catherall E, Musial S, Atkinson N, Walker CE, Mackinder LCM, McCormick AJ. From algae to plants: understanding pyrenoid-based CO 2-concentrating mechanisms. Trends Biochem Sci 2025; 50:33-45. [PMID: 39592300 DOI: 10.1016/j.tibs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Pyrenoids are the key component of one of the most abundant biological CO2 concentration mechanisms found in nature. Pyrenoid-based CO2-concentrating mechanisms (pCCMs) are estimated to account for one third of global photosynthetic CO2 capture. Our molecular understanding of how pyrenoids work is based largely on work in the green algae Chlamydomonas reinhardtii. Here, we review recent advances in our fundamental knowledge of the biogenesis, architecture, and function of pyrenoids in Chlamydomonas and ongoing engineering biology efforts to introduce a functional pCCM into chloroplasts of vascular plants, which, if successful, has the potential to enhance crop productivity and resilience to climate change.
Collapse
Affiliation(s)
- Ella Catherall
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sabina Musial
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
6
|
Robison TA, Oh ZG, Lafferty D, Xu X, Villarreal JCA, Gunn LH, Li FW. Hornworts reveal a spatial model for pyrenoid-based CO 2-concentrating mechanisms in land plants. NATURE PLANTS 2025; 11:63-73. [PMID: 39753956 DOI: 10.1038/s41477-024-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/31/2024] [Indexed: 01/25/2025]
Abstract
Pyrenoid-based CO2-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO2 around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs. Here we report a thorough investigation of a hornwort pCCM using the emerging model Anthoceros agrestis. The pyrenoids in A. agrestis exhibit liquid-like properties similar to those in Chlamydomonas, but they differ by lacking starch sheaths and being enclosed by multiple thylakoids. We found that the core pCCM components in Chlamydomonas, including BST, LCIB and CAH3, are conserved in A. agrestis and probably have similar functions on the basis of their subcellular localizations. The underlying chassis for concentrating CO2 might therefore be shared between hornworts and Chlamydomonas, and ancestral to land plants. Our study presents a spatial model for a pCCM in a land plant, paving the way for future biochemical and genetic investigations.
Collapse
Affiliation(s)
- Tanner A Robison
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Zhen Guo Oh
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | | | - Xia Xu
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Laura H Gunn
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Oh ZG, Robison TA, Loh DH, Ang WSL, Ng JZY, Li FW, Gunn LH. Unique biogenesis and kinetics of hornwort Rubiscos revealed by synthetic biology systems. MOLECULAR PLANT 2024; 17:1833-1849. [PMID: 39491367 DOI: 10.1016/j.molp.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Hornworts are the only land plants that employ a pyrenoid to optimize Rubisco's CO2 fixation, yet hornwort Rubisco remains poorly characterized. Here we assembled the hornwort Anthoceros agrestis Rubisco (AaRubisco) using the Arabidopsis thaliana SynBio expression system and observed the formation of stalled intermediates, prompting us to develop a new SynBio system with A. agrestis cognate chaperones. We successfully assembled AaRubisco and Rubisco from three other hornwort species. Unlike A. thaliana Rubisco, AaRubisco assembly is not dependent on RbcX or Raf2. Kinetic characterization reveals that hornwort Rubiscos exhibit a range of catalytic rates (3-10 s-1), but with similar affinity (∼30 μM) and specificity (∼70) for CO2. These results suggest that hornwort Rubiscos do not comply with the long-held canonical catalytic trade-off observed in other land plants, providing experimental support that Rubisco kinetics may be phylogenetically constrained. Unexpectedly, we observed a 50% increase in AaRubisco catalytic rates when RbcX was removed from our SynBio system, without any reduction in specificity. Structural biology, biochemistry, and proteomic analysis suggest that subtle differences in Rubisco large-subunit interactions, when RbcX is absent during biogenesis, increases the accessibility of active sites and catalytic turnover rate. Collectively, this study uncovered a previously unknown Rubisco kinetic parameter space and provides a SynBio chassis to expand the survey of other Rubisco kinetics. Our discoveries will contribute to developing new approaches for engineering Rubisco with superior kinetics.
Collapse
Affiliation(s)
- Zhen Guo Oh
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Tanner Ashton Robison
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Dan Hong Loh
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Fay-Wei Li
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA.
| | - Laura Helen Gunn
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden.
| |
Collapse
|
8
|
Huang PJ, Lin YL, Chen CH, Lin HY, Fang SC. A chloroplast sulphate transporter modulates glutathione-mediated redox cycling to regulate cell division. PLANT, CELL & ENVIRONMENT 2024; 47:5391-5410. [PMID: 39189939 DOI: 10.1111/pce.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Glutathione redox cycling is important for cell cycle regulation, but its mechanisms are not well understood. We previously identified a small-sized mutant, suppressor of mat3 15-1 (smt15-1) that has elevated cellular glutathione. Here, we demonstrated that SMT15 is a chloroplast sulphate transporter. Reducing expression of γ-GLUTAMYLCYSTEINE SYNTHETASE, encoding the rate-limiting enzyme required for glutathione biosynthesis, corrected the size defect of smt15-1 cells. Overexpressing GLUTATHIONE SYNTHETASE (GSH2) recapitulated the small-size phenotype of smt15-1 mutant, confirming the role of glutathione in cell division. Hence, SMT15 may regulate chloroplast sulphate concentration to modulate cellular glutathione levels. In wild-type cells, glutathione and/or thiol-containing molecules (GSH/thiol) accumulated in the cytosol at the G1 phase and decreased as cells entered the S/M phase. While the cytosolic GSH/thiol levels in the small-sized mutants, smt15-1 and GSH2 overexpressors, mirrored those of wild-type cells (accumulating during G1 and declining at early S/M phase), GSH/thiol was specifically accumulated in the basal bodies at early S/M phase in the small-sized mutants. Therefore, we propose that GSH/thiol-mediated redox signalling in the basal bodies may regulate mitotic division number in Chlamydomonas reinhardtii. Our findings suggest a new mechanism by which glutathione regulates the multiple fission cell cycle in C. reinhardtii.
Collapse
Affiliation(s)
- Pin-Jui Huang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Hennacy JH, Atkinson N, Kayser-Browne A, Ergun SL, Franklin E, Wang L, Eicke S, Kazachkova Y, Kafri M, Fauser F, Vilarrasa-Blasi J, Jinkerson RE, Zeeman SC, McCormick AJ, Jonikas MC. SAGA1 and MITH1 produce matrix-traversing membranes in the CO 2-fixing pyrenoid. NATURE PLANTS 2024; 10:2038-2051. [PMID: 39548241 DOI: 10.1038/s41477-024-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii. Mutants deficient in SAGA1 or MITH1 lack matrix-traversing membranes and exhibit growth defects under CO2-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant Arabidopsis thaliana, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields.
Collapse
Affiliation(s)
- Jessica H Hennacy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Eric Franklin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Simona Eicke
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yana Kazachkova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Friedrich Fauser
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Robert E Jinkerson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | | | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Hao S, Zhang L, Gao J, Dong T, Peng Y, Miyazawa A. Genomic synergistic efficient carbon fixation and nitrogen removal induced by excessive inorganic carbon in the anammox-centered coupling system. WATER RESEARCH 2024; 266:122366. [PMID: 39241382 DOI: 10.1016/j.watres.2024.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Given the significance of HCO3- for autotrophic anammox bacteria (AnAOB), excessive HCO3- was always provided in anammox-related systems and engineering applications. However, its impact mechanism on anammox process at genome-level remains unknown. This study firstly established an anammox-centered coupling system that entails heterotrophic partial denitrification (PD) and hydrolytic acidification (A-PDHA) fed mainly with inorganic carbon (high HCO3- concentration and low C/N ratio). Metagenomic binning and metatranscriptomics analyses indicated that high HCO3- concentration enhanced expression of natural most efficient phosphoenolpyruvate (PEP) carboxylase within AnAOB, by up to 30.59 folds. This further induced AnAOB to achieve high-speed carbon-fixing reaction through cross-feeding of phosphate and PEP precursors with heterotrophs. Additionally, the enhanced activity of transporters and catalytic enzymes (up to 4949-fold) induced by low C/N ratio enabled heterotrophs to eliminate extracellular accumulated energy precursors mainly derived from carbon fixation products of AnAOB. This maintained high-speed carbon-fixing reaction within AnAOB and supplemented heterotrophs with organics. Moreover, assimilated energy precursors stimulated nitrogen metabolism enzymes, especially NO2- reductase (968.14 times), in heterotrophs. This established an energy-saving PD-A process mediated by interspecies NO shuttle. These variation resulted in efficient nitrogen removal (>95 %) and reduced external organic carbon demand (67 %) in A-PDHA system. This study unveils the great potential of an anammox-centered autotrophic-heterotrophic coupling system for achieving cost-effective nitrogen removal and enhancing carbon fixation under excessive HCO3- doses.
Collapse
Affiliation(s)
- Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | | |
Collapse
|
11
|
Poh CW, Mueller-Cajar O. π-π Interactions Drive the Homotypic Phase Separation of the Prion-like Diatom Pyrenoid Scaffold PYCO1. J Mol Biol 2024; 436:168800. [PMID: 39326491 DOI: 10.1016/j.jmb.2024.168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
CO2 fixation in most unicellular algae relies on the pyrenoid, a biomolecular condensate, which sequesters the cell's carboxylase Rubisco. In the marine diatom Phaeodactylum tricornutum, the pyrenoid tandem repeat protein Pyrenoid Component 1 (PYCO1) multivalently binds Rubisco to form a heterotypic Rubisco condensate. PYCO1 contains prion-like domains and can phase-separate homotypically in a salt-dependent manner. Here we dissect PYCO1 homotypic liquid-liquid phase separation (LLPS) by evaluating protein fragments and the effect of site-directed mutagenesis. Two of PYCO1's six repeats are required for homotypic LLPS. Mutagenesis of a minimal phase-separating fragment reveals tremendous sensitivity to the substitution of aromatic residues. Removing positively charged lysines and arginines instead enhances the propensity of the fragment to condense. We conclude that PYCO1 homotypic LLPS is mostly driven by π-π interactions mediated by tyrosine and tryptophan stickers. In contrast π-cation interactions involving arginine or lysine are not significant drivers of LLPS in this system.
Collapse
Affiliation(s)
- Cheng Wei Poh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
12
|
Barrett J, Naduthodi MIS, Mao Y, Dégut C, Musiał S, Salter A, Leake MC, Plevin MJ, McCormick AJ, Blaza JN, Mackinder LCM. A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage. NATURE PLANTS 2024; 10:1801-1813. [PMID: 39384944 PMCID: PMC11570498 DOI: 10.1038/s41477-024-01812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
CO2 fixation is commonly limited by inefficiency of the CO2-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO2 in phase-separated condensates called pyrenoids, which complete up to one-third of global CO2 fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Mihris I S Naduthodi
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | | | - Sabina Musiał
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Aidan Salter
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Mark C Leake
- Department of Biology, University of York, York, UK
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Michael J Plevin
- Department of Biology, University of York, York, UK
- York Structural Biology Laboratory, University of York, York, UK
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - James N Blaza
- York Structural Biology Laboratory, University of York, York, UK
- Department of Chemistry, University of York, York, UK
| | - Luke C M Mackinder
- Department of Biology, University of York, York, UK.
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK.
| |
Collapse
|
13
|
Franklin E, Wang L, Cruz ER, Duggal K, Ergun SL, Garde A, Jonikas MC. Proteomic analysis of the pyrenoid-traversing membranes of Chlamydomonas reinhardtii reveals novel components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620638. [PMID: 39553959 PMCID: PMC11565738 DOI: 10.1101/2024.10.28.620638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pyrenoids are algal CO2-fixing organelles that mediate approximately one-third of global carbon fixation and hold the potential to enhance crop growth if engineered into land plants. Most pyrenoids are traversed by membranes that are thought to supply them with concentrated CO2. Despite the critical nature of these membranes for pyrenoid function, they are poorly understood, with few protein components known in any species.• Here we identify protein components of the pyrenoid-traversing membranes from the leading model alga Chlamydomonas reinhardtii by affinity purification and mass spectrometry of membrane fragments. Our proteome includes previously-known proteins as well as novel candidates.• We further characterize two of the novel pyrenoid-traversing membrane-resident proteins, Cre10.g452250, which we name Pyrenoid Membrane Enriched 1 (PME1), and LCI16. We confirm their localization, observe that they physically interact, and find that neither protein is required for normal membrane morphology.• Taken together, our study identifies the proteome of pyrenoid-traversing membranes and initiates the characterization of a novel pyrenoid-traversing membrane complex, building toward a mechanistic understanding of the pyrenoid.
Collapse
Affiliation(s)
- Eric Franklin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edward Renne Cruz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Keenan Duggal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Shimakawa G, Demulder M, Flori S, Kawamoto A, Tsuji Y, Nawaly H, Tanaka A, Tohda R, Ota T, Matsui H, Morishima N, Okubo R, Wietrzynski W, Lamm L, Righetto RD, Uwizeye C, Gallet B, Jouneau PH, Gerle C, Kurisu G, Finazzi G, Engel BD, Matsuda Y. Diatom pyrenoids are encased in a protein shell that enables efficient CO 2 fixation. Cell 2024; 187:5919-5934.e19. [PMID: 39357521 DOI: 10.1016/j.cell.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/13/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Pyrenoids are subcompartments of algal chloroplasts that increase the efficiency of Rubisco-driven CO2 fixation. Diatoms fix up to 20% of global CO2, but their pyrenoids remain poorly characterized. Here, we used in vivo photo-crosslinking to identify pyrenoid shell (PyShell) proteins, which we localized to the pyrenoid periphery of model pennate and centric diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. In situ cryo-electron tomography revealed that pyrenoids of both diatom species are encased in a lattice-like protein sheath. Single-particle cryo-EM yielded a 2.4-Å-resolution structure of an in vitro TpPyShell1 lattice, which showed how protein subunits interlock. T. pseudonana TpPyShell1/2 knockout mutants had no PyShell sheath, altered pyrenoid morphology, and a high-CO2 requiring phenotype, with reduced photosynthetic efficiency and impaired growth under standard atmospheric conditions. The structure and function of the diatom PyShell provide a molecular view of how CO2 is assimilated in the ocean, a critical ecosystem undergoing rapid change.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Manon Demulder
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Serena Flori
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland; Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Tsuji
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hermanus Nawaly
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Atsuko Tanaka
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Rei Tohda
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayoshi Ota
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Hiroaki Matsui
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Natsumi Morishima
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Ryosuke Okubo
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Lorenz Lamm
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland; HelmholtzAI, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ricardo D Righetto
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Clarisse Uwizeye
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Benoit Gallet
- University of Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Christoph Gerle
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
15
|
Nam O, Musiał S, Demulder M, McKenzie C, Dowle A, Dowson M, Barrett J, Blaza JN, Engel BD, Mackinder LCM. A protein blueprint of the diatom CO 2-fixing organelle. Cell 2024; 187:5935-5950.e18. [PMID: 39368476 DOI: 10.1016/j.cell.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/18/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Diatoms are central to the global carbon cycle. At the heart of diatom carbon fixation is an overlooked organelle called the pyrenoid, where concentrated CO2 is delivered to densely packed Rubisco. Diatom pyrenoids fix approximately one-fifth of global CO2, but the protein composition of this organelle is largely unknown. Using fluorescence protein tagging and affinity purification-mass spectrometry, we generate a high-confidence spatially defined protein-protein interaction network for the diatom pyrenoid. Within our pyrenoid interaction network are 10 proteins with previously unknown functions. We show that six of these form a shell that encapsulates the Rubisco matrix and is critical for pyrenoid structural integrity, shape, and function. Although not conserved at a sequence or structural level, the diatom pyrenoid shares some architectural similarities to prokaryotic carboxysomes. Collectively, our results support the convergent evolution of pyrenoids across the two main plastid lineages and uncover a major structural and functional component of global CO2 fixation.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Sabina Musiał
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Manon Demulder
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Caroline McKenzie
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam Dowle
- Department of Biology, University of York, York YO10 5DD, UK
| | - Matthew Dowson
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - James Barrett
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - James N Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
16
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Wu P, Li Y. Prion-like Proteins in Plants: Key Regulators of Development and Environmental Adaptation via Phase Separation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2666. [PMID: 39339640 PMCID: PMC11435361 DOI: 10.3390/plants13182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prion-like domains (PrLDs), a unique type of low-complexity domain (LCD) or intrinsically disordered region (IDR), have been shown to mediate protein liquid-liquid phase separation (LLPS). Recent research has increasingly focused on how prion-like proteins (PrLPs) regulate plant growth, development, and stress responses. This review provides a comprehensive overview of plant PrLPs. We analyze the structural features of PrLPs and the mechanisms by which PrLPs undergo LLPS. Through gene ontology (GO) analysis, we highlight the diverse molecular functions of PrLPs and explore how PrLPs influence plant development and stress responses via phase separation. Finally, we address unresolved questions about PrLP regulatory mechanisms, offering prospects for future research.
Collapse
Affiliation(s)
- Peisong Wu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
| | - Yihao Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
- Center for Biological Science and Technology, Guangdong Zhuhai–Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
18
|
Hennacy JH, Atkinson N, Kayser-Browne A, Ergun SL, Franklin E, Wang L, Kafri M, Fauser F, Vilarrasa-Blasi J, Jinkerson RE, McCormick AJ, Jonikas MC. Biogenesis, engineering and function of membranes in the CO 2 -fixing pyrenoid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.603944. [PMID: 39211136 PMCID: PMC11361040 DOI: 10.1101/2024.08.08.603944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Approximately one-third of global CO 2 assimilation is performed by the pyrenoid 1 , a liquid-like organelle found in most algae and some plants 2 . Specialized membranes are hypothesized to drive CO 2 assimilation in the pyrenoid by delivering concentrated CO 2 3,4 , but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga Chlamydomonas reinhardtii and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant Arabidopsis thaliana . SAGA1 localizes to the regions where thylakoid membranes transition into tubules and is necessary to initiate tubule formation. MITH1 localizes to the tubules and is necessary for their extension through the pyrenoid. Tubule-deficient mutants exhibit growth defects under CO 2 -limiting conditions, providing evidence for the function of membrane tubules in CO 2 delivery to the pyrenoid. Furthermore, these mutants form multiple aberrant condensates of pyrenoid matrix, indicating that a normal tubule network promotes the coalescence of a single pyrenoid. The reconstitution of pyrenoid-traversing membranes in a plant represents a key milestone toward engineering a functional pyrenoid into crops for improving crop yields. More broadly, our study demonstrates the functional importance of pyrenoid membranes, identifies key biogenesis factors, and paves the way for the molecular characterization of pyrenoid membranes across the tree of life.
Collapse
|
19
|
Duenas MA, Craig RJ, Gallaher SD, Moseley JL, Merchant SS. Leaky ribosomal scanning enables tunable translation of bicistronic ORFs in green algae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.605010. [PMID: 39091764 PMCID: PMC11291117 DOI: 10.1101/2024.07.24.605010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Advances in sequencing technology have unveiled examples of nucleus-encoded polycistronic genes, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for polycistronic expression in green algae. High-confidence manually curated datasets of bicistronic loci from two divergent green algae, Chlamydomonas reinhardtii and Auxenochlorella protothecoides, revealed 1) a preference for weak Kozak-like sequences for ORF 1 and 2) an underrepresentation of potential initiation codons before ORF 2, which are suitable conditions for leaky scanning to allow ORF 2 translation. We used mutational analysis in Auxenochlorella protothecoides to test the mechanism. In vivo manipulation of the ORF 1 Kozak-like sequence and start codon altered reporter expression at ORF 2, with a weaker Kozak-like sequence enhancing expression and a stronger one diminishing it. A synthetic bicistronic dual reporter demonstrated inversely adjustable activity of green fluorescent protein expressed from ORF 1 and luciferase from ORF 2, depending on the strength of the ORF 1 Kozak-like sequence. Our findings demonstrate that translation of multiple ORFs in green algal bicistronic transcripts is consistent with episodic leaky ribosome scanning of ORF 1 to allow translation at ORF 2. This work has implications for the potential functionality of upstream open reading frames found across eukaryotic genomes and for transgene expression in synthetic biology applications.
Collapse
Affiliation(s)
- Marco A. Duenas
- Department of Plant and Microbial Biology, University of California Berkeley, University of California, Berkeley, CA 94720, USA
| | - Rory J. Craig
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Sean D. Gallaher
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jeffrey L. Moseley
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California Berkeley, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, CA, USA
| |
Collapse
|
20
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
21
|
Zhang R, Mao S, Haataja MP. Chemically reactive and aging macromolecular mixtures I: Phase diagrams, spinodals, and gelation. J Chem Phys 2024; 160:244903. [PMID: 38940287 DOI: 10.1063/5.0196793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Multicomponent macromolecular mixtures often form higher-order structures, which may display non-ideal mixing and aging behaviors. In this work, we first propose a minimal model of a quaternary system that takes into account the formation of a complex via a chemical reaction involving two macromolecular species; the complex may then phase separate from the buffer and undergo a further transition into a gel-like state. We subsequently investigate how physical parameters such as molecular size, stoichiometric coefficients, equilibrium constants, and interaction parameters affect the phase behavior of the mixture and its propensity to undergo aging via gelation. In addition, we analyze the thermodynamic stability of the system and identify the spinodal regions and their overlap with gelation boundaries. The approach developed in this work can be readily generalized to study systems with an arbitrary number of components. More broadly, it provides a physically based starting point for the investigation of the kinetics of the coupled complex formation, phase separation, and gelation processes in spatially extended systems.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
22
|
Payne-Dwyer A, Kumar G, Barrett J, Gherman LK, Hodgkinson M, Plevin M, Mackinder L, Leake MC, Schaefer C. Predicting Rubisco-Linker Condensation from Titration in the Dilute Phase. PHYSICAL REVIEW LETTERS 2024; 132:218401. [PMID: 38856270 DOI: 10.1103/physrevlett.132.218401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/09/2024] [Indexed: 06/11/2024]
Abstract
The condensation of Rubisco holoenzymes and linker proteins into "pyrenoids," a crucial supercharger of photosynthesis in algae, is qualitatively understood in terms of "sticker-and-spacer" theory. We derive semianalytical partition sums for small Rubisco-linker aggregates, which enable the calculation of both dilute-phase titration curves and dimerization diagrams. By fitting the titration curves to surface plasmon resonance and single-molecule fluorescence microscopy data, we extract the molecular properties needed to predict dimerization diagrams. We use these to estimate typical concentrations for condensation, and successfully compare these to microscopy observations.
Collapse
Affiliation(s)
- Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
| | - Gaurav Kumar
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - James Barrett
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Laura K Gherman
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
- York Structural Biology Laboratory, The University of York; York, YO10 5DD, United Kingdom
| | - Michael Hodgkinson
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Michael Plevin
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
- York Structural Biology Laboratory, The University of York; York, YO10 5DD, United Kingdom
| | - Luke Mackinder
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Charley Schaefer
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
23
|
Nguyen ND, Pulsford SB, Förster B, Rottet S, Rourke L, Long BM, Price GD. A carboxysome-based CO 2 concentrating mechanism for C 3 crop chloroplasts: advances and the road ahead. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:940-952. [PMID: 38321620 DOI: 10.1111/tpj.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Collapse
Affiliation(s)
- Nghiem D Nguyen
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sacha B Pulsford
- Research School of Chemistry, Australian National University, 137 Sullivan's Ck Rd, Acton, Australian Capital Territory, 2601, Australia
| | - Britta Förster
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sarah Rottet
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Loraine Rourke
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Benedict M Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, ARC Centre of Excellence in Synthetic Biology, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - G Dean Price
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| |
Collapse
|
24
|
Long BM, Matsuda Y, Moroney JV. Algal chloroplast pyrenoids: Evidence for convergent evolution. Proc Natl Acad Sci U S A 2024; 121:e2402546121. [PMID: 38513078 PMCID: PMC10998615 DOI: 10.1073/pnas.2402546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Affiliation(s)
- Benedict Michael Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kansei Gakuin University, Sanda, Hyogo669-1330, Japan
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA70803
| |
Collapse
|
25
|
Moromizato R, Fukuda K, Suzuki S, Motomura T, Nagasato C, Hirakawa Y. Pyrenoid proteomics reveals independent evolution of the CO 2-concentrating organelle in chlorarachniophytes. Proc Natl Acad Sci U S A 2024; 121:e2318542121. [PMID: 38408230 PMCID: PMC10927497 DOI: 10.1073/pnas.2318542121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.
Collapse
Affiliation(s)
- Rena Moromizato
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba305-8572, Japan
| | - Kodai Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba305-8572, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba305-8506, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran051-0013, Japan
| | - Yoshihisa Hirakawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba305-8572, Japan
| |
Collapse
|
26
|
Liu D, Lopez-Paz C, Li Y, Zhuang X, Umen J. Subscaling of a cytosolic RNA binding protein governs cell size homeostasis in the multiple fission alga Chlamydomonas. PLoS Genet 2024; 20:e1010503. [PMID: 38498520 PMCID: PMC10977881 DOI: 10.1371/journal.pgen.1010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/28/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- University of Missouri—St. Louis, Cell and Molecular Biology Program, St. Louis. Missouri, United States of America
| | - Cristina Lopez-Paz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Yubing Li
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Xiaohong Zhuang
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
27
|
Atkinson N, Stringer R, Mitchell SR, Seung D, McCormick AJ. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts. Proc Natl Acad Sci U S A 2024; 121:e2311013121. [PMID: 38241434 PMCID: PMC10823261 DOI: 10.1073/pnas.2311013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
The pyrenoid is a chloroplastic microcompartment in which most algae and some terrestrial plants condense the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) as part of a CO2-concentrating mechanism that improves the efficiency of CO2 capture. Engineering a pyrenoid-based CO2-concentrating mechanism (pCCM) into C3 crop plants is a promising strategy to enhance yield capacities and resilience to the changing climate. Many pyrenoids are characterized by a sheath of starch plates that is proposed to act as a barrier to limit CO2 diffusion. Recently, we have reconstituted a phase-separated "proto-pyrenoid" Rubisco matrix in the model C3 plant Arabidopsis thaliana using proteins from the alga with the most well-studied pyrenoid, Chlamydomonas reinhardtii [N. Atkinson, Y. Mao, K. X. Chan, A. J. McCormick, Nat. Commun. 11, 6303 (2020)]. Here, we describe the impact of introducing the Chlamydomonas proteins StArch Granules Abnormal 1 (SAGA1) and SAGA2, which are associated with the regulation of pyrenoid starch biogenesis and morphology. We show that SAGA1 localizes to the proto-pyrenoid in engineered Arabidopsis plants, which results in the formation of atypical spherical starch granules enclosed within the proto-pyrenoid condensate and adjacent plate-like granules that partially cover the condensate, but without modifying the total amount of chloroplastic starch accrued. Additional expression of SAGA2 further increases the proportion of starch synthesized as adjacent plate-like granules that fully encircle the proto-pyrenoid. Our findings pave the way to assembling a diffusion barrier as part of a functional pCCM in vascular plants, while also advancing our understanding of the roles of SAGA1 and SAGA2 in starch sheath formation and broadening the avenues for engineering starch morphology.
Collapse
Affiliation(s)
- Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Rhea Stringer
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Stephen R. Mitchell
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - David Seung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Alistair J. McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| |
Collapse
|
28
|
Kafri M, Patena W, Martin L, Wang L, Gomer G, Ergun SL, Sirkejyan AK, Goh A, Wilson AT, Gavrilenko SE, Breker M, Roichman A, McWhite CD, Rabinowitz JD, Cross FR, Wühr M, Jonikas MC. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 2023; 186:5638-5655.e25. [PMID: 38065083 PMCID: PMC10760936 DOI: 10.1016/j.cell.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Collapse
Affiliation(s)
- Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lance Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gillian Gomer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Arthur K Sirkejyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia E Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Asael Roichman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
McNelly R, Vergara-Cruces Á, Lea-Smith D, Seung D, Webster M. Exploring the potential of plastid biology and biotechnology: Plastid Preview Meeting, Norwich, 1-2 September 2022. THE NEW PHYTOLOGIST 2023; 240:2187-2190. [PMID: 37787085 DOI: 10.1111/nph.19296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Affiliation(s)
- Rose McNelly
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - David Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Michael Webster
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
30
|
Launay H, Avilan L, Gérard C, Parsiegla G, Receveur-Brechot V, Gontero B, Carriere F. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS Lett 2023; 597:2853-2878. [PMID: 37827572 DOI: 10.1002/1873-3468.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Cassy Gérard
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | | | | | | | | |
Collapse
|
31
|
Blikstad C, Dugan EJ, Laughlin TG, Turnšek JB, Liu MD, Shoemaker SR, Vogiatzi N, Remis JP, Savage DF. Identification of a carbonic anhydrase-Rubisco complex within the alpha-carboxysome. Proc Natl Acad Sci U S A 2023; 120:e2308600120. [PMID: 37862384 PMCID: PMC10614612 DOI: 10.1073/pnas.2308600120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 10/22/2023] Open
Abstract
Carboxysomes are proteinaceous organelles that encapsulate key enzymes of CO2 fixation-Rubisco and carbonic anhydrase-and are the centerpiece of the bacterial CO2 concentrating mechanism (CCM). In the CCM, actively accumulated cytosolic bicarbonate diffuses into the carboxysome and is converted to CO2 by carbonic anhydrase, producing a high CO2 concentration near Rubisco and ensuring efficient carboxylation. Self-assembly of the α-carboxysome is orchestrated by the intrinsically disordered scaffolding protein, CsoS2, which interacts with both Rubisco and carboxysomal shell proteins, but it is unknown how the carbonic anhydrase, CsoSCA, is incorporated into the α-carboxysome. Here, we present the structural basis of carbonic anhydrase encapsulation into α-carboxysomes from Halothiobacillus neapolitanus. We find that CsoSCA interacts directly with Rubisco via an intrinsically disordered N-terminal domain. A 1.98 Å single-particle cryoelectron microscopy structure of Rubisco in complex with this peptide reveals that CsoSCA binding is predominantly mediated by a network of hydrogen bonds. CsoSCA's binding site overlaps with that of CsoS2, but the two proteins utilize substantially different motifs and modes of binding, revealing a plasticity of the Rubisco binding site. Our results advance the understanding of carboxysome biogenesis and highlight the importance of Rubisco, not only as an enzyme but also as a central hub for mediating assembly through protein interactions.
Collapse
Affiliation(s)
- Cecilia Blikstad
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala75120, Sweden
| | - Eli J. Dugan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Thomas G. Laughlin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Julia B. Turnšek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Mira D. Liu
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Sophie R. Shoemaker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Nikoleta Vogiatzi
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala75120, Sweden
| | - Jonathan P. Remis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - David F. Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| |
Collapse
|
32
|
Kumar G, Hazra JP, Sinha S. Disordered regions endow structural flexibility to shell proteins and function towards shell-enzyme interactions in 1,2-propanediol utilization microcompartment. J Biomol Struct Dyn 2023; 41:8891-8901. [PMID: 36318590 DOI: 10.1080/07391102.2022.2138552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Intrinsically disordered regions in proteins have been functionally linked to the protein-protein interactions and genesis of several membraneless organelles. Depending on their residual makeup, hydrophobicity or charge distribution they may remain in extended form or may assume certain conformations upon biding to a partner protein or peptide. The present work investigates the distribution and potential roles of disordered regions in the integral proteins of 1,2-propanediol utilization microcompartments. We use bioinformatics tools to identify the probable disordered regions in the shell proteins and enzyme of the 1,2-propanediol utilization microcompartment. Using a combination of computational modelling and biochemical techniques we elucidate the role of disordered terminal regions of a major shell protein and enzyme. Our findings throw light on the importance of disordered regions in the self-assembly, providing flexibility to shell protein and mediating its interaction with a native enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
33
|
He S, Crans VL, Jonikas MC. The pyrenoid: the eukaryotic CO2-concentrating organelle. THE PLANT CELL 2023; 35:3236-3259. [PMID: 37279536 PMCID: PMC10473226 DOI: 10.1093/plcell/koad157] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The pyrenoid is a phase-separated organelle that enhances photosynthetic carbon assimilation in most eukaryotic algae and the land plant hornwort lineage. Pyrenoids mediate approximately one-third of global CO2 fixation, and engineering a pyrenoid into C3 crops is predicted to boost CO2 uptake and increase yields. Pyrenoids enhance the activity of the CO2-fixing enzyme Rubisco by supplying it with concentrated CO2. All pyrenoids have a dense matrix of Rubisco associated with photosynthetic thylakoid membranes that are thought to supply concentrated CO2. Many pyrenoids are also surrounded by polysaccharide structures that may slow CO2 leakage. Phylogenetic analysis and pyrenoid morphological diversity support a convergent evolutionary origin for pyrenoids. Most of the molecular understanding of pyrenoids comes from the model green alga Chlamydomonas (Chlamydomonas reinhardtii). The Chlamydomonas pyrenoid exhibits multiple liquid-like behaviors, including internal mixing, division by fission, and dissolution and condensation in response to environmental cues and during the cell cycle. Pyrenoid assembly and function are induced by CO2 availability and light, and although transcriptional regulators have been identified, posttranslational regulation remains to be characterized. Here, we summarize the current knowledge of pyrenoid function, structure, components, and dynamic regulation in Chlamydomonas and extrapolate to pyrenoids in other species.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| | - Victoria L Crans
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
34
|
Lau CS, Dowle A, Thomas GH, Girr P, Mackinder LCM. A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii. THE PLANT CELL 2023; 35:3260-3279. [PMID: 37195994 PMCID: PMC10473203 DOI: 10.1093/plcell/koad131] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023]
Abstract
Phase separation underpins many biologically important cellular events such as RNA metabolism, signaling, and CO2 fixation. However, determining the composition of a phase-separated organelle is often challenging due to its sensitivity to environmental conditions, which limits the application of traditional proteomic techniques like organellar purification or affinity purification mass spectrometry to understand their composition. In Chlamydomonas reinhardtii, Rubisco is condensed into a crucial phase-separated organelle called the pyrenoid that improves photosynthetic performance by supplying Rubisco with elevated concentrations of CO2. Here, we developed a TurboID-based proximity labeling technique in which proximal proteins in Chlamydomonas chloroplasts are labeled by biotin radicals generated from the TurboID-tagged protein. By fusing 2 core pyrenoid components with the TurboID tag, we generated a high-confidence pyrenoid proxiome that contains most known pyrenoid proteins, in addition to new pyrenoid candidates. Fluorescence protein tagging of 7 previously uncharacterized TurboID-identified proteins showed that 6 localized to a range of subpyrenoid regions. The resulting proxiome also suggests new secondary functions for the pyrenoid in RNA-associated processes and redox-sensitive iron-sulfur cluster metabolism. This developed pipeline can be used to investigate a broad range of biological processes in Chlamydomonas, especially at a temporally resolved suborganellar resolution.
Collapse
Affiliation(s)
- Chun Sing Lau
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam Dowle
- Department of Biology, University of York, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
35
|
Ura T, Sakakibara N, Hirano Y, Tamada T, Takakusagi Y, Shiraki K, Mikawa T. Activation of oxidoreductases by the formation of enzyme assembly. Sci Rep 2023; 13:14381. [PMID: 37658129 PMCID: PMC10474089 DOI: 10.1038/s41598-023-41789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023] Open
Abstract
Biological properties of protein molecules depend on their interaction with other molecules, and enzymes are no exception. Enzyme activities are controlled by their interaction with other molecules in living cells. Enzyme activation and their catalytic properties in the presence of different types of polymers have been studied in vitro, although these studies are restricted to only a few enzymes. In this study, we show that addition of poly-l-lysine (PLL) can increase the enzymatic activity of multiple oxidoreductases through formation of enzyme assemblies. Oxidoreductases with an overall negative charge, such as l-lactate oxidase, d-lactate dehydrogenase, pyruvate oxidase, and acetaldehyde dehydrogenase, each formed assemblies with the positively charged PLL via electrostatic interactions. The enzyme activities of these oxidoreductases in the enzyme assemblies were several-folds higher than those of the enzyme in their natural dispersed state. In the presence of PLL, the turnover number (kcat) improved for all enzymes, whereas the decrease in Michaelis constant (KM) was enzyme dependent. This type of enzyme function regulation through the formation of assemblies via simple addition of polymers has potential for diverse applications, including various industrial and research purposes.
Collapse
Affiliation(s)
- Tomoto Ura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Nanako Sakakibara
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kentaro Shiraki
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Tsutomu Mikawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
36
|
Lin C, Zhang L, Zhang Z, Jiang Y, Li X. Locating cellular contents during cryoFIB milling using cellular secondary-electron imaging. J Struct Biol 2023; 215:108005. [PMID: 37495195 DOI: 10.1016/j.jsb.2023.108005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Cryo-electron tomography (cryoET) is a powerful technology that allows in-situ observation of the molecular structure of tissues and cells. Cryo-focused ion beam (cryoFIB) milling plays an important role in the preparation of high-quality thin lamellar samples for cryoET studies, thus, promoting the rapid development of cryoET in recent years. However, locating the regions of interest in a large cell or tissue during cryoFIB milling remains a major challenge limiting cryoET applications on arbitrary biological samples. Here, we report an on-the-fly localization method based on cellular secondary electron imaging (CSEI), which is derived from a basic imaging function of the cryoFIB instruments and enables high-contrast imaging of the cellular contents of frozen-hydrated biological samples. Moreover, CSEI does not require fluorescent labels and additional devices. The present study discusses the imaging principles and settings for optimizing CSEI. Tests on several commercially available cryoFIB instruments demonstrated that CSEI was feasible on mainstream instruments to observe all types of cellular contents and reliable under different milling conditions. We established a simple milling-localization workflow and tested it using the basal body of Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Chao Lin
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Beijing 100084, China; Advanced Innovation Center for Structural Biology, Beijing 100084, China
| | - Li Zhang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Beijing 100084, China; Advanced Innovation Center for Structural Biology, Beijing 100084, China
| | - Ziying Zhang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Beijing 100084, China; Advanced Innovation Center for Structural Biology, Beijing 100084, China
| | - Yifeng Jiang
- ZEISS Microscopy Customer Center, Beijing laboratory, Beijing 100088, China
| | - Xueming Li
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Beijing 100084, China; Advanced Innovation Center for Structural Biology, Beijing 100084, China.
| |
Collapse
|
37
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
38
|
An Y, Wang D, Du J, Wang X, Xiao J. Pyrenoid: Organelle with efficient CO 2-Concentrating mechanism in algae. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154044. [PMID: 37392525 DOI: 10.1016/j.jplph.2023.154044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
The carbon dioxide emitted by human accounts for only a small fraction of global photosynthesis consumption, half of which is due to microalgae. The high efficiency of algae photosynthesis is attributed to the pyrenoid-based CO2-concentrating mechanism (CCM). The formation of pyrenoid which has a variety of Rubisco-binding proteins mainly depends on liquid-liquid phase separation (LLPS) of Rubisco, a CO2 fixing enzyme. At present, our understanding of pyrenoid at the molecular level mainly stems from studies of the model algae Chlamydomonas reinhardtii. In this article, we summarize the current research on the structure, assembly and application of Chlamydomonas reinhardtii pyrenoids, providing new ideas for improving crop photosynthetic performance and yield.
Collapse
Affiliation(s)
- Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Dong Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jingxia Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinwei Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, China.
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
39
|
Findinier J, Grossman AR. Chlamydomonas: Fast tracking from genomics. JOURNAL OF PHYCOLOGY 2023; 59:644-652. [PMID: 37417760 DOI: 10.1111/jpy.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Elucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C. reinhardtii and how they have further fostered its development as a "flagship" algal system. We also explore the future promise of this alga in leveraging advances in the fields of genomics, proteomics, imaging, and synthetic biology for addressing critical future biological issues.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| | - Arthur R Grossman
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| |
Collapse
|
40
|
Arend M, Yuan Y, Ruiz-Sola MÁ, Omranian N, Nikoloski Z, Petroutsos D. Widening the landscape of transcriptional regulation of green algal photoprotection. Nat Commun 2023; 14:2687. [PMID: 37164999 PMCID: PMC10172295 DOI: 10.1038/s41467-023-38183-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
Availability of light and CO2, substrates of microalgae photosynthesis, is frequently far from optimal. Microalgae activate photoprotection under strong light, to prevent oxidative damage, and the CO2 Concentrating Mechanism (CCM) under low CO2, to raise intracellular CO2 levels. The two processes are interconnected; yet, the underlying transcriptional regulators remain largely unknown. Employing a large transcriptomic data compendium of Chlamydomonas reinhardtii's responses to different light and carbon supply, we reconstruct a consensus genome-scale gene regulatory network from complementary inference approaches and use it to elucidate transcriptional regulators of photoprotection. We show that the CCM regulator LCR1 also controls photoprotection, and that QER7, a Squamosa Binding Protein, suppresses photoprotection- and CCM-gene expression under the control of the blue light photoreceptor Phototropin. By demonstrating the existence of regulatory hubs that channel light- and CO2-mediated signals into a common response, our study provides an accessible resource to dissect gene expression regulation in this microalga.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Yizhong Yuan
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - M Águila Ruiz-Sola
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, 41092, Sevilla, Spain
| | - Nooshin Omranian
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Dimitris Petroutsos
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France.
| |
Collapse
|
41
|
Shimamura D, Yamano T, Niikawa Y, Hu D, Fukuzawa H. A pyrenoid-localized protein SAGA1 is necessary for Ca 2+-binding protein CAS-dependent expression of nuclear genes encoding inorganic carbon transporters in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2023; 156:181-192. [PMID: 36656499 DOI: 10.1007/s11120-022-00996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
Microalgae induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic affinity for dissolved inorganic carbon (Ci) under CO2-limiting conditions. In the model alga Chlamydomonas reinhardtii, the pyrenoid-localized Ca2+-binding protein CAS is required to express genes encoding the Ci-transporters, high-light activated 3 (HLA3), and low-CO2-inducible protein A (LCIA). To identify new factors related to the regulation or components of the CCM, we isolated CO2-requiring mutants KO-60 and KO-62. These mutants had insertions of a hygromycin-resistant cartridge in the StArch Granules Abnormal 1 (SAGA1) gene, which is necessary to maintain the number of pyrenoids and the structure of pyrenoid tubules in the chloroplast. In both KO-60 and the previously identified saga1 mutant, expression levels of 532 genes were significantly reduced. Among them, 10 CAS-dependent genes, including HLA3 and LCIA, were not expressed in the saga1 mutants. While CAS was expressed normally at the protein levels, the localization of CAS was dispersed through the chloroplast rather than in the pyrenoid, even under CO2-limiting conditions. These results suggest that SAGA1 is necessary not only for maintenance of the pyrenoid structure but also for regulation of the nuclear genes encoding Ci-transporters through CAS-dependent retrograde signaling under CO2-limiting stress.
Collapse
Affiliation(s)
- Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Donghui Hu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
42
|
Águila Ruiz-Sola M, Flori S, Yuan Y, Villain G, Sanz-Luque E, Redekop P, Tokutsu R, Küken A, Tsichla A, Kepesidis G, Allorent G, Arend M, Iacono F, Finazzi G, Hippler M, Nikoloski Z, Minagawa J, Grossman AR, Petroutsos D. Light-independent regulation of algal photoprotection by CO 2 availability. Nat Commun 2023; 14:1977. [PMID: 37031262 PMCID: PMC10082802 DOI: 10.1038/s41467-023-37800-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Collapse
Affiliation(s)
- M Águila Ruiz-Sola
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - Serena Flori
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Yizhong Yuan
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Gaelle Villain
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Emanuel Sanz-Luque
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- University of Cordoba, Department of Biochemistry and Molecular Biology, Cordoba, Spain
| | - Petra Redekop
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Ryutaro Tokutsu
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Anika Küken
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Angeliki Tsichla
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Georgios Kepesidis
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Guillaume Allorent
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Fabrizio Iacono
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universität, 48143, Münster, Germany
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Jun Minagawa
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Arthur R Grossman
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | |
Collapse
|
43
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
44
|
Frangedakis E, Marron AO, Waller M, Neubauer A, Tse SW, Yue Y, Ruaud S, Waser L, Sakakibara K, Szövényi P. What can hornworts teach us? FRONTIERS IN PLANT SCIENCE 2023; 14:1108027. [PMID: 36968370 PMCID: PMC10030945 DOI: 10.3389/fpls.2023.1108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.
Collapse
Affiliation(s)
| | - Alan O. Marron
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Yuling Yue
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Stephanie Ruaud
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Lucas Waser
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
45
|
Caspari OD, Garrido C, Law CO, Choquet Y, Wollman FA, Lafontaine I. Converting antimicrobial into targeting peptides reveals key features governing protein import into mitochondria and chloroplasts. PLANT COMMUNICATIONS 2023:100555. [PMID: 36733255 PMCID: PMC10363480 DOI: 10.1016/j.xplc.2023.100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We asked what peptide features govern targeting to the mitochondria versus the chloroplast, using antimicrobial peptides as a starting point. This approach was inspired by the endosymbiotic hypothesis that organelle-targeting peptides derive from antimicrobial amphipathic peptides delivered by the host cell, to which organelle progenitors became resistant. To explore the molecular changes required to convert antimicrobial into targeting peptides, we expressed a set of 13 antimicrobial peptides in Chlamydomonas reinhardtii. Peptides were systematically modified to test distinctive features of mitochondrion- and chloroplast-targeting peptides, and we assessed their targeting potential by following the intracellular localization and maturation of a Venus fluorescent reporter used as a cargo protein. Mitochondrial targeting can be achieved by some unmodified antimicrobial peptide sequences. Targeting to both organelles is improved by replacing lysines with arginines. Chloroplast targeting is enabled by the presence of flanking unstructured sequences, additional constraints consistent with chloroplast endosymbiosis having occurred in a cell that already contained mitochondria. If indeed targeting peptides evolved from antimicrobial peptides, then required modifications imply a temporal evolutionary scenario with an early exchange of cationic residues and a late acquisition of chloroplast-specific motifs.
Collapse
Affiliation(s)
- Oliver D Caspari
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| | - Clotilde Garrido
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chris O Law
- Centre for Microscopy and Cellular Imaging, Biology Department Loyola Campus of Concordia University, 7141 Sherbrooke W., Montréal, QC H4B 1R6, Canada
| | - Yves Choquet
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
46
|
Huffine CA, Zhao R, Tang YJ, Cameron JC. Role of carboxysomes in cyanobacterial CO 2 assimilation: CO 2 concentrating mechanisms and metabolon implications. Environ Microbiol 2023; 25:219-228. [PMID: 36367380 DOI: 10.1111/1462-2920.16283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Many carbon-fixing organisms have evolved CO2 concentrating mechanisms (CCMs) to enhance the delivery of CO2 to RuBisCO, while minimizing reactions with the competitive inhibitor, molecular O2 . These distinct types of CCMs have been extensively studied using genetics, biochemistry, cell imaging, mass spectrometry, and metabolic flux analysis. Highlighted in this paper, the cyanobacterial CCM features a bacterial microcompartment (BMC) called 'carboxysome' in which RuBisCO is co-encapsulated with the enzyme carbonic anhydrase (CA) within a semi-permeable protein shell. The cyanobacterial CCM is capable of increasing CO2 around RuBisCO, leading to one of the most efficient processes known for fixing ambient CO2 . The carboxysome life cycle is dynamic and creates a unique subcellular environment that promotes activity of the Calvin-Benson (CB) cycle. The carboxysome may function within a larger cellular metabolon, physical association of functionally coupled proteins, to enhance metabolite channelling and carbon flux. In light of CCMs, synthetic biology approaches have been used to improve enzyme complex for CO2 fixations. Research on CCM-associated metabolons has also inspired biologists to engineer multi-step pathways by providing anchoring points for enzyme cascades to channel intermediate metabolites towards valuable products.
Collapse
Affiliation(s)
- Clair A Huffine
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Runyu Zhao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
47
|
Ang WSL, How JA, How JB, Mueller-Cajar O. The stickers and spacers of Rubiscondensation: assembling the centrepiece of biophysical CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:612-626. [PMID: 35903998 DOI: 10.1093/jxb/erac321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aquatic autotrophs that fix carbon using ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) frequently expend metabolic energy to pump inorganic carbon towards the enzyme's active site. A central requirement of this strategy is the formation of highly concentrated Rubisco condensates (or Rubiscondensates) known as carboxysomes and pyrenoids, which have convergently evolved multiple times in prokaryotes and eukaryotes, respectively. Recent data indicate that these condensates form by the mechanism of liquid-liquid phase separation. This mechanism requires networks of weak multivalent interactions typically mediated by intrinsically disordered scaffold proteins. Here we comparatively review recent rapid developments that detail the determinants and precise interactions that underlie diverse Rubisco condensates. The burgeoning field of biomolecular condensates has few examples where liquid-liquid phase separation can be linked to clear phenotypic outcomes. When present, Rubisco condensates are essential for photosynthesis and growth, and they are thus emerging as powerful and tractable models to investigate the structure-function relationship of phase separation in biology.
Collapse
Affiliation(s)
- Warren Shou Leong Ang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jian Ann How
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jian Boon How
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
48
|
Mao Y, Catherall E, Díaz-Ramos A, Greiff GRL, Azinas S, Gunn L, McCormick AJ. The small subunit of Rubisco and its potential as an engineering target. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:543-561. [PMID: 35849331 PMCID: PMC9833052 DOI: 10.1093/jxb/erac309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Rubisco catalyses the first rate-limiting step in CO2 fixation and is responsible for the vast majority of organic carbon present in the biosphere. The function and regulation of Rubisco remain an important research topic and a longstanding engineering target to enhance the efficiency of photosynthesis for agriculture and green biotechnology. The most abundant form of Rubisco (Form I) consists of eight large and eight small subunits, and is found in all plants, algae, cyanobacteria, and most phototrophic and chemolithoautotrophic proteobacteria. Although the active sites of Rubisco are located on the large subunits, expression of the small subunit regulates the size of the Rubisco pool in plants and can influence the overall catalytic efficiency of the Rubisco complex. The small subunit is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. Here we review our current understanding of the role of the small subunit and our growing capacity to explore its potential to modulate Rubisco catalysis using engineering biology approaches.
Collapse
Affiliation(s)
- Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Ella Catherall
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stavros Azinas
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Laura Gunn
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| |
Collapse
|
49
|
Badger MR, Sharwood RE. Rubisco, the imperfect winner: it's all about the base. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:562-580. [PMID: 36412307 DOI: 10.1093/jxb/erac458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Rubisco catalysis is complex and includes an activation step through the formation of a carbamate at the conserved active site lysine residue and the formation of a highly reactive enediol that is the key to its catalytic reaction. The formation of this enediol is both the basis of its success and its Achilles' heel, creating imperfections to its catalytic efficiency. While Rubisco originally evolved in an atmosphere of high CO2, the earth's multiple oxidation events provided challenges to Rubisco through the fixation of O2 that competes with CO2 at the active site. Numerous catalytic screens across the Rubisco superfamily have identified significant variation in catalytic properties that have been linked to large and small subunit sequences. Despite this, we still have a rudimentary understanding of Rubisco's catalytic mechanism and how the evolution of kinetic properties has occurred. This review identifies the lysine base that functions both as an activator and a proton abstractor to create the enediol as a key to understanding how Rubisco may optimize its kinetic properties. The ways in which Rubisco and its partners have overcome catalytic and activation imperfections and thrived in a world of high O2, low CO2, and variable climatic regimes is remarkable.
Collapse
Affiliation(s)
- Murray R Badger
- Research School of Biology, Building 134 Linnaeus Way, Canberra ACT, 2601, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke St, Richmond, NSW, 2753, Australia
| |
Collapse
|
50
|
He G, GrandPre T, Wilson H, Zhang Y, Jonikas MC, Wingreen NS, Wang Q. Phase-separating pyrenoid proteins form complexes in the dilute phase. Commun Biol 2023; 6:19. [PMID: 36611062 PMCID: PMC9825591 DOI: 10.1038/s42003-022-04373-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
While most studies of biomolecular phase separation have focused on the condensed phase, relatively little is known about the dilute phase. Theory suggests that stable complexes form in the dilute phase of two-component phase-separating systems, impacting phase separation; however, these complexes have not been interrogated experimentally. We show that such complexes indeed exist, using an in vitro reconstitution system of a phase-separated organelle, the algal pyrenoid, consisting of purified proteins Rubisco and EPYC1. Applying fluorescence correlation spectroscopy (FCS) to measure diffusion coefficients, we found that complexes form in the dilute phase with or without condensates present. The majority of these complexes contain exactly one Rubisco molecule. Additionally, we developed a simple analytical model which recapitulates experimental findings and provides molecular insights into the dilute phase organization. Thus, our results demonstrate the existence of protein complexes in the dilute phase, which could play important roles in the stability, dynamics, and regulation of condensates.
Collapse
Affiliation(s)
- Guanhua He
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Trevor GrandPre
- grid.16750.350000 0001 2097 5006Department of Physics, Princeton University, Princeton, NJ 08544 USA ,grid.16750.350000 0001 2097 5006Center for the Physics of Biological Function, Princeton University, Princeton, NJ USA
| | - Hugh Wilson
- grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA
| | - Yaojun Zhang
- grid.16750.350000 0001 2097 5006Center for the Physics of Biological Function, Princeton University, Princeton, NJ USA ,grid.21107.350000 0001 2171 9311Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Biophysics, Johns Hopkins University, Baltimore, MD USA
| | - Martin C. Jonikas
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA ,grid.16750.350000 0001 2097 5006Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544 USA
| | - Ned S. Wingreen
- grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA
| | - Quan Wang
- grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA ,grid.419635.c0000 0001 2203 7304Present Address: Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA 20892 USA
| |
Collapse
|