1
|
Le Luherne E, Pawlowski L, Robert M. Northeast Atlantic species distribution shifts over the last two decades. GLOBAL CHANGE BIOLOGY 2024; 30:e17383. [PMID: 38932518 DOI: 10.1111/gcb.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Marine species are widely shifting their distributions in response to global changes and it is commonly expected they will move northward and to greater depths to reach cooler, less disturbed habitats. However, local manifestations of global changes, anthropogenic pressures, and species characteristics may lead to unanticipated and varied responses by individual species. In this regard, the Celtic-Biscay Shelf is a particularly interesting study system because it has historically been heavily fished and occurs at the interface between two distinct biogeographic provinces, its community thus comprised of species with diverse thermal preferenda. In the context of rapidly warming temperatures and intense fishery exploitation, we investigated the distribution shifts of 93 taxa (65 Actinopteri, 10 Elasmobranchii, 11 Cephalopoda, 5 Malacostraca, and 2 Bivalvia), which were sampled annually from 1997 to 2020 during a scientific bottom trawl survey. We used a set of 11 complementary spatial indices to quantify taxon distribution shifts over time. Then, we explored the relative effect of taxon abundance, fishing pressure, and climatic conditions on taxon's distribution shift when a significant shift was detected. We observed that 56% of the taxa significantly shifted. Not all taxa will necessarily shift northward and to deeper areas, as it is often expected. Two opposite patterns were identified: taxa either moving deeper and to the southeast, or moving closer to the surface and to the northwest. The main explanatory factors were climate change (short- and long-term temperatures) and taxon abundance. Fishing pressure was the third, but still significant, explanatory factor of taxa of greater commercial importance. Our research highlights that taxa are displaying complex distribution shifts in response to the combined anthropogenic disturbances and underscores the need to conduct regional studies to better understand these responses at the ecosystem scale to develop more suitable management plans and policies.
Collapse
Affiliation(s)
- Emilie Le Luherne
- DECOD (Dynamique et durabilité Des écosystèmes: de la Source à l'océan), Institut Agro, IFREMER, INRAE, Lorient, France
| | - Lionel Pawlowski
- DECOD (Dynamique et durabilité Des écosystèmes: de la Source à l'océan), Institut Agro, IFREMER, INRAE, Lorient, France
| | - Marianne Robert
- DECOD (Dynamique et durabilité Des écosystèmes: de la Source à l'océan), Institut Agro, IFREMER, INRAE, Lorient, France
| |
Collapse
|
2
|
Beaudry-Sylvestre M, Benoît HP, Hutchings JA. Coherent long-term body-size responses across all Northwest Atlantic herring populations to warming and environmental change despite contrasting harvest and ecological factors. GLOBAL CHANGE BIOLOGY 2024; 30:e17187. [PMID: 38456203 DOI: 10.1111/gcb.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
Body size is a key component of individual fitness and an important factor in the structure and functioning of populations and ecosystems. Disentangling the effects of environmental change, harvest and intra- and inter-specific trophic effects on body size remains challenging for populations in the wild. Herring in the Northwest Atlantic provide a strong basis for evaluating hypotheses related to these drivers given that they have experienced significant warming and harvest over the past century, while also having been exposed to a wide range of other selective constraints across their range. Using data on mean length-at-age 4 for the sixteen principal populations over a period of 53 cohorts (1962-2014), we fitted a series of empirical models for temporal and between-population variation in the response to changes in sea surface temperature. We find evidence for a unified cross-population response in the form of a parabolic function according to which populations in naturally warmer environments have responded more negatively to increasing temperature compared with those in colder locations. Temporal variation in residuals from this function was highly coherent among populations, further suggesting a common response to a large-scale environmental driver. The synchrony observed in this study system, despite strong differences in harvest and ecological histories among populations and over time, clearly indicates a dominant role of environmental change on size-at-age in wild populations, in contrast to commonly reported effects of fishing. This finding has important implications for the management of fisheries as it indicates that a key trait associated with population productivity may be under considerably less short-term management control than currently assumed. Our study, overall, illustrates the need for a comparative approach within species for inferences concerning the many possible effects on body size of natural and anthropogenic drivers in the wild.
Collapse
Affiliation(s)
- Manuelle Beaudry-Sylvestre
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont Joli, Quebec, Canada
| | - Hugues P Benoît
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont Joli, Quebec, Canada
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, Bergen, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| |
Collapse
|
3
|
Frank KT, Fisher JA, Leggett WC. The dynamics of exploited marine fish populations and Humpty Dumpty: similarities and differences. Restor Ecol 2022. [DOI: 10.1111/rec.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kenneth T. Frank
- Department of Fisheries and Oceans, Ocean Sciences Division Bedford Institute of Oceanography Dartmouth Nova Scotia Canada B2Y 4A2
- Department of Biology Queen's University Kingston Ontario K7L 3N6 Canada
| | - Jonathan A.D. Fisher
- Centre for Fisheries Ecosystems Research Fisheries and Marine Institute of Memorial University of Newfoundland St. John's Newfoundland A1C 5R3 Canada
| | - William C. Leggett
- Department of Biology Queen's University Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
4
|
Goto D, Filin AA, Howell D, Bogstad B, Kovalev Y, Gjøsaeter H. Tradeoffs of managing cod as a sustainable resource in fluctuating environments. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2498. [PMID: 34787943 DOI: 10.1002/eap.2498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Sustainable human exploitation of living marine resources stems from a delicate balance between yield stability and population persistence to achieve socioeconomic and conservation goals. But our imperfect knowledge of how oceanic oscillations regulate temporal variation in an exploited species can obscure the risk of missing management targets. We illustrate how applying a management policy to suppress fluctuations in fishery yield in variable environments (prey density and regional climate) can present unintended outcomes in harvested predators and the sustainability of harvesting. Using Atlantic cod (Gadus morhua, an apex predatory fish) in the Barents Sea as a case study we simulate age-structured population and harvest dynamics through time-varying, density-dependent and density-independent processes with a stochastic, process-based model informed by 27-year monitoring data. In this model, capelin (Mallotus villosus, a pelagic forage fish), a primary prey of cod, fluctuations modulate the strength of density-dependent regulation primarily through cannibalistic pressure on juvenile cod survival; sea temperature fluctuations modulate thermal regulation of cod feeding, growth, maturation, and reproduction. We first explore how capelin and temperature fluctuations filtered through cod intrinsic dynamics modify catch stability and then evaluate how management to suppress short-term variability in catch targets alters overharvest risk. Analyses revealed that suppressing year-to-year catch variability impedes management responses to adjust fishing pressure, which becomes progressively out of sync with variations in cod abundance. This asynchrony becomes amplified in fluctuating environments, magnifying the amplitudes of both fishing pressure and cod abundance and then intensifying the density-dependent regulation of juvenile survival through cannibalism. Although these transient dynamics theoretically give higher average catches, emergent, quasicyclic behaviors of the population would increase long-term yield variability and elevate overharvest risk. Management strategies that overlook the interplay of extrinsic (fishing and environment) and intrinsic (life history and demography) fluctuations thus can inadvertently destabilize fish stocks, thereby jeopardizing the sustainability of harvesting. These policy implications underscore the value of ecosystem approaches to designing management measures to sustainably harvest ecologically connected resources while achieving socioeconomic security.
Collapse
Affiliation(s)
- Daisuke Goto
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Anatoly A Filin
- Polar Branch of the Federal State Budget Scientific Institution, Russian Federal Research Institute of Fisheries and Oceanography ("PINRO" named after N.M. Knipovich), Akademik Knipovich Street 6, Murmansk, 183038, Russia
| | - Daniel Howell
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Bjarte Bogstad
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Yury Kovalev
- Polar Branch of the Federal State Budget Scientific Institution, Russian Federal Research Institute of Fisheries and Oceanography ("PINRO" named after N.M. Knipovich), Akademik Knipovich Street 6, Murmansk, 183038, Russia
| | - Harald Gjøsaeter
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| |
Collapse
|
5
|
Ong JJL, Walter JA, Jensen OP, Pinsky ML. Global hotspots of coherent marine fishery catches. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02321. [PMID: 33655574 PMCID: PMC8365744 DOI: 10.1002/eap.2321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Although different fisheries can be tightly linked to each other by human and ecosystem processes, they are often managed independently. Synchronous fluctuations among fish populations or fishery catches can destabilize ecosystems and economies, respectively, but the degree of synchrony around the world remains unclear. We analyzed 1,092 marine fisheries catch time series over 60 yr to test for the presence of coherence, a form of synchrony that allows for phase-lagged relationships. We found that nearly every fishery was coherent with at least one other fishery catch time series globally and that coherence was strongest in the northeast Atlantic, western central Pacific, and eastern Indian Ocean. Analysis of fish biomass and fishing mortality time series from these hotspots revealed that coherence in biomass or fishing mortality were both possible, though biomass coherence was more common. Most of these relationships were synchronous with no time lags, and across catches in all regions, synchrony was a better predictor of regional catch portfolio effects than catch diversity. Regions with higher synchrony had lower stability in aggregate fishery catches, which can have negative consequences for food security and economic wealth.
Collapse
Affiliation(s)
- Joyce J. L. Ong
- Department of Ecology, Evolution and Natural ResourcesRutgers University14 College Farm RoadNew BrunswickNew Jersey08901USA
- Present address:
Asian School of the EnvironmentNanyang Technological University50 Nanyang Avenue639798Singapore
| | - Jonathan A. Walter
- Department of Environmental SciencesUniversity of Virginia291 McCormick RoadCharlottesvilleVirginia22903USA
| | - Olaf P. Jensen
- Department of Marine and Coastal SciencesRutgers University71 Dudley RoadNew BrunswickNew Jersey08901USA
- Center for LimnologyUniversity of Wisconsin‐Madison680 N Park StreetMadisonWisconsin53706USA
| | - Malin L. Pinsky
- Department of Ecology, Evolution and Natural ResourcesRutgers University14 College Farm RoadNew BrunswickNew Jersey08901USA
| |
Collapse
|
6
|
Carrington VG, Papa Y, Beese CM, Hall J, Covain R, Horn P, Ladds MA, Rogers A. How functionally diverse are fish in the deep? A comparison of fish communities in deep and shallow‐water systems. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | - Yvan Papa
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| | - Chelsey M. Beese
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| | - Jessica Hall
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| | | | - Peter Horn
- National Institute of Water and Atmospheric Research, Greta Point Wellington New Zealand
| | - Monique A. Ladds
- Marine Ecosystems Team Department of Conservation Wellington New Zealand
| | - Alice Rogers
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| |
Collapse
|
7
|
Morrongiello JR, Horn PL, Ó Maolagáin C, Sutton PJH. Synergistic effects of harvest and climate drive synchronous somatic growth within key New Zealand fisheries. GLOBAL CHANGE BIOLOGY 2021; 27:1470-1484. [PMID: 33502819 DOI: 10.1111/gcb.15490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Fisheries harvest has pervasive impacts on wild fish populations, including the truncation of size and age structures, altered population dynamics and density, and modified habitat and assemblage composition. Understanding the degree to which harvest-induced impacts increase the sensitivity of individuals, populations and ultimately species to environmental change is essential to ensuring sustainable fisheries management in a rapidly changing world. Here we generated multiple long-term (44-62 years), annually resolved, somatic growth chronologies of four commercially important fishes from New Zealand's coastal and shelf waters. We used these novel data to investigate how regional- and basin-scale environmental variability, in concert with fishing activity, affected individual somatic growth rates and the magnitude of spatial synchrony among stocks. Changes in somatic growth can affect individual fitness and a range of population and fishery metrics such as recruitment success, maturation schedules and stock biomass. Across all species, individual growth benefited from a fishing-induced release of density controls. For nearshore snapper and tarakihi, regional-scale wind and temperature also additively affected growth, indicating that future climate change-induced warming and potentially strengthened winds will initially promote the productivity of more poleward populations. Fishing increased the sensitivity of deep-water hoki and ling growth to the Interdecadal Pacific Oscillation (IPO). A forecast shift to a positive IPO phase, in concert with current harvest strategies, will likely promote individual hoki and ling growth. At the species level, historical fishing practices and IPO synergized to strengthen spatial synchrony in average growth between stocks separated by 400-600 nm of ocean. Increased spatial synchrony can, however, increase the vulnerability of stocks to deleterious stochastic events. Together, our individual- and species-level results show how fishing and environmental factors can conflate to initially promote individual growth but then possibly heighten the sensitivity of stocks to environmental change.
Collapse
Affiliation(s)
| | - Peter L Horn
- National Institute of Water and Atmospheric Research (NIWA, Christchurch, New Zealand
| | | | - Philip J H Sutton
- National Institute of Water and Atmospheric Research (NIWA, Christchurch, New Zealand
| |
Collapse
|
8
|
Desai RM, Shambaugh GE. Measuring the global impact of destructive and illegal fishing on maritime piracy: A spatial analysis. PLoS One 2021; 16:e0246835. [PMID: 33626091 PMCID: PMC7904167 DOI: 10.1371/journal.pone.0246835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Maritime piracy constitutes a major threat to global shipping and international trade. We argue that fishers turn to piracy to smooth expected income losses and to deter illegal foreign fishing fleets. Previous investigations have generally focused on cross-national determinants of the incidence of piracy in territorial waters. These investigations neglect piracy in international waters and ignore its spatial dependence, whereby pirate attacks cluster in certain locations due to neighborhood and spillover effects. We conduct a geographically disaggregated analysis using geo-referenced data of piracy and its covariates between 2005 and 2014. We demonstrate that the incidence of piracy in a particular location is associated with higher catch volumes from high-bycatch and habitat-destroying fishing, even when controlling for conditions in proximate coastal areas. We find, additionally, that illegal, unreported, and unregulated fishing exerts an especially pronounced effect on piracy. These findings highlight the need for anti-piracy solutions beyond enforcement to include the policing of fishing practices that are illegal or are perceived by local fishers in vulnerable coastal areas to be harmful to small-scale fishing economies.
Collapse
Affiliation(s)
- Raj M. Desai
- Edmund A. Walsh School of Foreign Service, Georgetown University, Washington, District of Columbia, United States of America
- Department of Government, Georgetown University, Washington, District of Columbia, United States of America
- The Brookings Institution, Washington, District of Columbia, United States of America
- * E-mail:
| | - George E. Shambaugh
- Edmund A. Walsh School of Foreign Service, Georgetown University, Washington, District of Columbia, United States of America
- Department of Government, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|
9
|
Firkowski CR, Schwantes AM, Fortin MJ, Gonzalez A. Monitoring social–ecological networks for biodiversity and ecosystem services in human-dominated landscapes. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The demand the human population is placing on the environment has triggered accelerated rates of biodiversity change and created trade-offs among the ecosystem services we depend upon. Decisions designed to reverse these trends require the best possible information obtained by monitoring ecological and social dimensions of change. Here, we conceptualize a network framework to monitor change in social–ecological systems. We contextualize our framework within Ostrom’s social–ecological system framework and use it to discuss the challenges of monitoring biodiversity and ecosystem services across spatial and temporal scales. We propose that spatially explicit multilayer and multiscale monitoring can help estimate the range of variability seen in social–ecological systems with varying levels of human modification across the landscape. We illustrate our framework using a conceptual case study on the ecosystem service of maple syrup production. We argue for the use of analytical tools capable of integrating qualitative and quantitative knowledge of social–ecological systems to provide a causal understanding of change across a network. Altogether, our conceptual framework provides a foundation for establishing monitoring systems. Operationalizing our framework will allow for the detection of ecosystem service change and assessment of its drivers across several scales, informing the long-term sustainability of biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Carina Rauen Firkowski
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Amanda M. Schwantes
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
10
|
|
11
|
Tanner SE, Giacomello E, Menezes GM, Mirasole A, Neves J, Sequeira V, Vasconcelos RP, Vieira AR, Morrongiello JR. Marine regime shifts impact synchrony of deep‐sea fish growth in the northeast Atlantic. OIKOS 2020. [DOI: 10.1111/oik.07332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susanne E. Tanner
- MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Univ. de Lisboa Lisboa Portugal
- Depto de Biologia Animal, Faculdade de Ciências, Univ. de Lisboa Lisboa Portugal
| | - Eva Giacomello
- IMAR – Inst. do Mar and Centro I&D Okeanos – Univ. dos Açores Horta Portugal
| | - Gui M. Menezes
- IMAR – Inst. do Mar and Centro I&D Okeanos – Univ. dos Açores Horta Portugal
- Univ. dos Açores, Depto de Oceanografia e Pescas Horta Portugal
| | - Alice Mirasole
- Stazione Zoologica Anton Dohrn, Villa Dohrn‐Benthic Ecology Center Ischia Italy
| | - João Neves
- IMAR – Inst. do Mar and Centro I&D Okeanos – Univ. dos Açores Horta Portugal
| | - Vera Sequeira
- MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Univ. de Lisboa Lisboa Portugal
- Depto de Biologia Animal, Faculdade de Ciências, Univ. de Lisboa Lisboa Portugal
| | | | - Ana Rita Vieira
- MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Univ. de Lisboa Lisboa Portugal
- Depto de Biologia Animal, Faculdade de Ciências, Univ. de Lisboa Lisboa Portugal
| | | |
Collapse
|
12
|
Sguotti C, Otto SA, Frelat R, Langbehn TJ, Ryberg MP, Lindegren M, Durant JM, Chr Stenseth N, Möllmann C. Catastrophic dynamics limit Atlantic cod recovery. Proc Biol Sci 2020; 286:20182877. [PMID: 30862289 PMCID: PMC6458326 DOI: 10.1098/rspb.2018.2877] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod (Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here, we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks, ocean warming could induce a nonlinear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will probably limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change.
Collapse
Affiliation(s)
- Camilla Sguotti
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| | - Saskia A Otto
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| | - Romain Frelat
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| | - Tom J Langbehn
- 2 Department of Biological Sciences, University of Bergen , 5006 Bergen , Norway
| | - Marie Plambech Ryberg
- 3 National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua) , 2800 Kgs Lyngby , Denmark
| | - Martin Lindegren
- 3 National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua) , 2800 Kgs Lyngby , Denmark
| | - Joël M Durant
- 4 Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo , 0316 Oslo , Norway
| | - Nils Chr Stenseth
- 4 Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo , 0316 Oslo , Norway
| | - Christian Möllmann
- 1 Institute for Marine Ecosystem and Fisheries Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , 22767 Hamburg , Germany
| |
Collapse
|
13
|
Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M. Scaling-up biodiversity-ecosystem functioning research. Ecol Lett 2020; 23:757-776. [PMID: 31997566 PMCID: PMC7497049 DOI: 10.1111/ele.13456] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022]
Abstract
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Rachel M Germain
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Elise Filotas
- Center for Forest Research, Département Science et Technologie, Université du Québec, 5800 Saint-Denis, Téluq, Montreal, H2S 3L5, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, J1K 2R1, Canada
| | - Patrick L Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Jose Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Yuval R Zelnik
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|
14
|
Marquez JF, Lee AM, Aanes S, Engen S, Herfindal I, Salthaug A, Sæther B. Spatial scaling of population synchrony in marine fish depends on their life history. Ecol Lett 2019; 22:1787-1796. [DOI: 10.1111/ele.13360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/29/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Jonatan F. Marquez
- Department of Biology, Centre for Biodiversity Dynamics Norwegian University of Science and Technology 7491 Trondheim Norway
| | - Aline Magdalena Lee
- Department of Biology, Centre for Biodiversity Dynamics Norwegian University of Science and Technology 7491 Trondheim Norway
| | | | - Steinar Engen
- Department of Mathematical Sciences Centre for Biodiversity Dynamics Norwegian University of Science and Technology 7491 Trondheim Norway
| | - Ivar Herfindal
- Department of Biology, Centre for Biodiversity Dynamics Norwegian University of Science and Technology 7491 Trondheim Norway
| | - Are Salthaug
- Institute of Marine Research Post box 1870 Nordnes 5817 Bergen Norway
| | - Bernt‐Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics Norwegian University of Science and Technology 7491 Trondheim Norway
| |
Collapse
|
15
|
Gamelon M, Sandercock BK, Sæther B. Does harvesting amplify environmentally induced population fluctuations over time in marine and terrestrial species? J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marlène Gamelon
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Brett K. Sandercock
- Department of Terrestrial Ecology Norwegian Institute for Nature Research Trondheim Norway
| | - Bernt‐Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
16
|
Rocha JC, Peterson G, Bodin Ö, Levin S. Cascading regime shifts within and across scales. Science 2018; 362:1379-1383. [DOI: 10.1126/science.aat7850] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
Regime shifts are large, abrupt, and persistent critical transitions in the function and structure of ecosystems. Yet, it is unknown how these transitions will interact, whether the occurrence of one will increase the likelihood of another or simply correlate at distant places. We explored two types of cascading effects: Domino effects create one-way dependencies, whereas hidden feedbacks produce two-way interactions. We compare them with the control case of driver sharing, which can induce correlations. Using 30 regime shifts described as networks, we show that 45% of regime shift pairwise combinations present at least one plausible structural interdependence. The likelihood of cascading effects depends on cross-scale interactions but differs for each type. Management of regime shifts should account for potential connections.
Collapse
Affiliation(s)
- Juan C. Rocha
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
- Beijer Institute, Swedish Royal Academy of Sciences, Lilla Frescativägen 4A, 104 05 Stockholm, Sweden
| | - Garry Peterson
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
| | - Örjan Bodin
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
| | - Simon Levin
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
- Beijer Institute, Swedish Royal Academy of Sciences, Lilla Frescativägen 4A, 104 05 Stockholm, Sweden
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544-1003, USA
- Resources for the Future, Washington, DC 20036, USA
| |
Collapse
|
17
|
Jarillo J, Saether BE, Engen S, Cao FJ. Spatial scales of population synchrony of two competing species: effects of harvesting and strength of competition. OIKOS 2018. [DOI: 10.1111/oik.05069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javier Jarillo
- Depto de Estructura de la Materia; Física Térmica y Electrónica, Univ. Complutense de Madrid; Plaza de Ciencias 1 ES-28040 Madrid Spain
| | - Bernt-Erik Saether
- Dept of Biology; Centre for Biodiversity Dynamics, Norwegian Univ. of Science and Technology; Trondheim Norway
| | - Steinar Engen
- Dept of Mathematical Sciences; Centre for Biodiversity Dynamics, Norwegian Univ. of Science and Technology; Trondheim Norway
| | - Francisco J. Cao
- Depto de Estructura de la Materia; Física Térmica y Electrónica, Univ. Complutense de Madrid; Plaza de Ciencias 1 ES-28040 Madrid Spain
- Inst. Madrileño de Estudios Avanzados en Nanociencia; IMDEA Nanociencia; Madrid Spain
| |
Collapse
|
18
|
Miloslavich P, Bax NJ, Simmons SE, Klein E, Appeltans W, Aburto-Oropeza O, Andersen Garcia M, Batten SD, Benedetti-Cecchi L, Checkley DM, Chiba S, Duffy JE, Dunn DC, Fischer A, Gunn J, Kudela R, Marsac F, Muller-Karger FE, Obura D, Shin YJ. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. GLOBAL CHANGE BIOLOGY 2018; 24:2416-2433. [PMID: 29623683 DOI: 10.1111/gcb.14108] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/21/2023]
Abstract
Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.
Collapse
Affiliation(s)
- Patricia Miloslavich
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela
- Australian Institute of Marine Science, Townsville, Qld, Australia
- Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Nicholas J Bax
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- CSIRO, Oceans and Atmosphere, Hobart, Tas., Australia
| | | | - Eduardo Klein
- Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, IOC Project Office for IODE, Oostende, Belgium
| | - Octavio Aburto-Oropeza
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Melissa Andersen Garcia
- National Oceanic and Atmospheric Administration (NOAA), Office of International Affairs, Washington, DC, USA
| | - Sonia D Batten
- Sir Alister Hardy Foundation for Ocean Science (SAHFOS), Nanaimo, BC, Canada
| | | | | | - Sanae Chiba
- UN Environment-World Conservation Monitoring Centre, Cambridge, UK
- Research and Development Center for Global Change (RCGC), JAMSTEC, Yokohama, Japan
| | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA
| | - Daniel C Dunn
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Albert Fischer
- Intergovermental Oceanographic Commission IOC/UNESCO, Paris, France
| | - John Gunn
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Raphael Kudela
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Francis Marsac
- Institut de Recherche pour le Développement (IRD), UMR MARBEC 248, Université Montpellier, Montpellier, France
- Department of Oceanography, University of Cape Town, Rondebosch, South Africa
| | - Frank E Muller-Karger
- Institute for Marine Remote Sensing/IMaRS, College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Yunne-Jai Shin
- Institut de Recherche pour le Développement (IRD), UMR MARBEC 248, Université Montpellier, Montpellier, France
- Department of Biological Sciences, Ma-Re Institute, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
19
|
Ong JJL, Rountrey AN, Black BA, Nguyen HM, Coulson PG, Newman SJ, Wakefield CB, Meeuwig JJ, Meekan MG. A boundary current drives synchronous growth of marine fishes across tropical and temperate latitudes. GLOBAL CHANGE BIOLOGY 2018; 24:1894-1903. [PMID: 29411925 DOI: 10.1111/gcb.14083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events.
Collapse
Affiliation(s)
- Joyce J L Ong
- School of Biological Sciences and the Centre for Marine Futures, University of Western Australia, Crawley, WA, Australia
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA, Australia
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Adam N Rountrey
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
| | - Bryan A Black
- Marine Science Institute, University of Texas, Port Aransas, TX, USA
| | - Hoang Minh Nguyen
- Marine Science Institute, University of Texas, Port Aransas, TX, USA
| | - Peter G Coulson
- Center for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, Australia
| | - Corey B Wakefield
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, Australia
| | - Jessica J Meeuwig
- School of Biological Sciences and the Centre for Marine Futures, University of Western Australia, Crawley, WA, Australia
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
20
|
Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks. PLoS One 2018; 13:e0196583. [PMID: 29698454 PMCID: PMC5919506 DOI: 10.1371/journal.pone.0196583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/16/2018] [Indexed: 11/26/2022] Open
Abstract
The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963–2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts.
Collapse
|
21
|
Engen S, Lee AM, Sæther BE. Spatial distribution and optimal harvesting of an age-structured population in a fluctuating environment. Math Biosci 2017; 296:36-44. [PMID: 29241761 DOI: 10.1016/j.mbs.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/20/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
We analyze a spatial age-structured model with density regulation, age specific dispersal, stochasticity in vital rates and proportional harvesting. We include two age classes, juveniles and adults, where juveniles are subject to logistic density dependence. There are environmental stochastic effects with arbitrary spatial scales on all birth and death rates, and individuals of both age classes are subject to density independent dispersal with given rates and specified distributions of dispersal distances. We show how to simulate the joint density fields of the age classes and derive results for the spatial scales of all spatial autocovariance functions for densities. A general result is that the squared scale has an additive term equal to the squared scale of the environmental noise, corresponding to the Moran effect, as well as additive terms proportional to the dispersal rate and variance of dispersal distance for the age classes and approximately inversely proportional to the strength of density regulation. We show that the optimal harvesting strategy in the deterministic case is to harvest only juveniles when their relative value (e.g. financial) is large, and otherwise only adults. With increasing environmental stochasticity there is an interval of increasing length of values of juveniles relative to adults where both age classes should be harvested. Harvesting generally tends to increase all spatial scales of the autocovariances of densities.
Collapse
Affiliation(s)
- Steinar Engen
- Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim N-7491, Norway.
| | - Aline Magdalena Lee
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway.
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway.
| |
Collapse
|
22
|
Gonzalez A, Thompson P, Loreau M. Spatial ecological networks: planning for sustainability in the long-term. CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY 2017; 29:187-197. [PMID: 29696070 PMCID: PMC5912508 DOI: 10.1016/j.cosust.2018.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Humans are producing complex and often undesirable social and ecological outcomes in many landscapes around the world. To sustain biodiversity and ecosystem services in fragmented landscapes conservation planning has turned to the identification and protection of large-scale spatial ecological networks (SEN). Now widely adopted, this approach typically focuses on static connectivity, and ignores the feedbacks between changes to the network's topology and the eco-evolutionary dynamics on the network. We review theory showing that diversity, stability, ecosystem functioning and evolutionary adaptation all vary nonlinearly with connectivity. Measuring and modelling an SEN's long-term dynamics is immensely challenging but necessary if our goal is sustainability. We show an example where the robustness of an SEN's ecological properties to node and link loss depends on the centrality of the nodes targeted. The design and protection of sustainable SENs requires scenarios of how landscape change affects network structure and the feedback this will have on dynamics. Once established, SEN must be monitored if their design is to be adapted to keep their dynamics within a safe and socially just operating space. When SEN are co-designed with a broad array of stakeholders and actors they can be a powerful means of creating a more positive relationship between people and nature.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Patrick Thompson
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200 Moulis, France
| |
Collapse
|
23
|
Environmental structuring of marine plankton phenology. Nat Ecol Evol 2017; 1:1484-1494. [PMID: 29185511 DOI: 10.1038/s41559-017-0287-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022]
Abstract
Seasonal cycles of primary production (phenology) critically influence biogeochemical cycles, ecosystem structure and climate. In the oceans, primary production is dominated by microbial phytoplankton that drift with currents, and show rapid turnover and chaotic dynamics, factors that have hindered understanding of their phenology. We used all available observations of upper-ocean phytoplankton concentration (1995-2015) to describe global patterns of phytoplankton phenology, the environmental factors that structure them, and their relationships to terrestrial patterns. Phytoplankton phenologies varied strongly by latitude and productivity regime: those in high-production regimes were governed by insolation, whereas those in low-production regimes were constrained by vertical mixing. In eight of ten ocean regions, our findings contradict the hypothesis that phytoplankton phenologies are coherent at basin scales. Lastly, the spatial organization of phenological patterns in the oceans was broadly similar to those on land, suggesting an overarching effect of insolation on the phenology of primary producers globally.
Collapse
|
24
|
Engen S. Spatial synchrony and harvesting in fluctuating populations:Relaxing the small noise assumption. Theor Popul Biol 2017. [PMID: 28624421 DOI: 10.1016/j.tpb.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steinar Engen
- Department of Mathematical Sciences, Centre for Biodiversity dynamics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|