1
|
Khamari R, Degand C, Fovez Q, Trinh A, Chomy A, Laine W, Dekiouk S, Ghesquiere B, Quesnel B, Marchetti P, Manier S, Kluza J. Key role of glutamine metabolism in persistence of leukemic cells upon exposition to FLT3 tyrosine kinase inhibitors. Exp Hematol 2024; 137:104253. [PMID: 38879112 DOI: 10.1016/j.exphem.2024.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Acute myeloid leukemias are a group of hematological malignancies characterized by a poor prognosis for survival. The discovery of oncogenic mutations in the FMS-like tyrosine kinase 3 (FLT3) gene has led to the development of tyrosine kinase inhibitors such as quizartinib. However, achieving complete remission in patients remains challenging because these new tyrosine kinase inhibitors (TKIs) are unable to completely eradicate all leukemic cells. Residual leukemic cells persist during quizartinib treatment, leading to the rapid emergence of drug-resistant leukemia. Given that mitochondrial oxidative metabolism promotes the survival of leukemic cells after exposure to multiple anticancer drugs, we characterized the metabolism of leukemic cells that persisted during quizartinib treatment and developed metabolic strategies to eradicate them. In our study, employing biochemical and metabolomics approaches, we confirmed that the survival of leukemic cells treated with FLT3 inhibitors critically depends on maintaining mitochondrial metabolism, specifically through glutamine oxidation. We uncovered a synergistic interaction between the FLT3 inhibitor quizartinib and L-asparaginase, operating through antimetabolic mechanisms. Utilizing various models of persistent leukemia, we demonstrated that leukemic cells resistant to quizartinib are susceptible to L-asparaginase. This combined therapeutic strategy shows promise in reducing the development of resistance to FLT3 inhibitors, offering a potential strategy to enhance treatment outcomes.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Humans
- Glutamine/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Mitochondria/metabolism
- Mitochondria/drug effects
- Benzothiazoles/pharmacology
- Cell Line, Tumor
- Animals
- Mice
- Tyrosine Kinase Inhibitors
Collapse
Affiliation(s)
- Raeeka Khamari
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Claire Degand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Quentin Fovez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Anne Trinh
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Axel Chomy
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - William Laine
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Salim Dekiouk
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Centre de Bio-Pathologie, Banque de Tissus, CHU of Lille, Lille, France
| | - Bart Ghesquiere
- Department of Oncology, Metabolomics Core Facility, Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Hematology Department, CHU of Lille, Lille, France
| | - Philippe Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Centre de Bio-Pathologie, Banque de Tissus, CHU of Lille, Lille, France
| | - Salomon Manier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Hematology Department, CHU of Lille, Lille, France
| | - J Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
2
|
Li X, Yang C, Wu H, Chen H, Gao X, Zhou S, Zhang TC, Ma W. DSB-induced oxidative stress: Uncovering crosstalk between DNA damage response and cellular metabolism. DNA Repair (Amst) 2024; 141:103730. [PMID: 39018963 DOI: 10.1016/j.dnarep.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes participating in the initiation of the resection step of homologous recombination (HR), like the MRX complex, resulted in stimulation of ROS. In contrast, deleting genes acting downstream of HR resection suppressed ROS levels. Additionally, blocking non-homologous end joining (NHEJ) also suppressed ROS. Further analysis identified Rad53 as a key player that relays DNA damage signals to alter redox metabolism in an HR-specific manner. These results suggest both HR and NHEJ can drive metabolism changes and oxidative stress, with NHEJ playing a more prominent role in ROS stimulation. Further analysis revealed a correlation between DSB-induced ROS increase and enhanced activity of NADPH oxidase Yno1 and various antioxidant enzymes. Deleting the antioxidant gene SOD1 induced synthetic lethality in HR-deficient mutants like mre11Δ and rad51Δ upon DSB induction. These findings uncover a significant interplay between DNA repair mechanisms and cellular metabolism, providing insights into understanding the side effects of genotoxic therapies and potentially aiding development of more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Xinyu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Caini Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hengyu Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hongran Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Gao
- Qilu Institute of Technology, Shandong, China
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Tong-Cun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Qilu Institute of Technology, Shandong, China.
| |
Collapse
|
3
|
Wang Z, Liu M, Yang Q. Glutamine and leukemia research: progress and clinical prospects. Discov Oncol 2024; 15:391. [PMID: 39215845 PMCID: PMC11365919 DOI: 10.1007/s12672-024-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "conditionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides new directions and hints at potential roles for future clinical treatments and studies.
Collapse
Affiliation(s)
- Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| | - Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| |
Collapse
|
4
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Anthony J, Varalakshmi S, Sekar AK, Devarajan N, Janakiraman B, Peramaiyan R. Glutaminase - A potential target for cancer treatment. Biomedicine (Taipei) 2024; 14:29-37. [PMID: 38939098 PMCID: PMC11204126 DOI: 10.37796/2211-8039.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 06/29/2024] Open
Abstract
The overexpression of glutaminase is reported to influence cancer growth and metastasis through glutaminolysis. Upregulation of glutamine catabolism is recently recognized as a critical feature of cancer, and cancer cells are observed to reprogram glutamine metabolism to maintain its survival and proliferation. Special focus is given on the glutaminase isoform, GLS1 (kidney type glutaminase), as the other isoform GLS2 (Liver type glutaminase) acts as a tumour suppressor in some conditions. Glutaminolysis linked with autophagy, which is mediated via mTORC1, also serves as a promising target for cancer therapy. Glutamine also plays a vital role in maintaining redox homeostasis. Inhibition of glutaminase aggravates oxidative stress by reducing glutathione level, thus leading to apoptotic-mediated cell death in cancer cells Therefore, inhibiting the glutaminase activity using glutaminase inhibitors such as BPTES, DON, JHU-083, CB-839, compound 968, etc. may answer many intriguing questions behind the uncontrolled proliferation of cancer cells and serve as a prophylactic treatment for cancer. Earlier reports neither discuss nor provide perspectives on exact signaling gene or pathway. Hence, the present review highlights the plausible role of glutaminase in cancer and the current therapeutic approaches and clinical trials to target and inhibit glutaminase enzymes for better cancer treatment.
Collapse
Affiliation(s)
- Josephine Anthony
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER-Deemed to be University), Chennai 600 078, Tamil Nadu,
India
| | - Sureka Varalakshmi
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER-Deemed to be University), Chennai 600 078, Tamil Nadu,
India
| | - Ashok Kumar Sekar
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu,
India
| | - Nalini Devarajan
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER-Deemed to be University), Chennai 600 078, Tamil Nadu,
India
| | - Balamurugan Janakiraman
- SRM College of Physiotherapy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203,
India
| | - Rajendran Peramaiyan
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Kingdom of
Saudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospital, Saveetha University, Chennai 600 077, Tamil Nadu,
India
| |
Collapse
|
6
|
Khorashad JS, Rizzo S, Tonks A. Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:5. [PMID: 38434766 PMCID: PMC10905166 DOI: 10.20517/cdr.2023.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.
Collapse
Affiliation(s)
- Jamshid Sorouri Khorashad
- Department of Immunology and inflammation, Imperial College London, London, W12 0NN, UK
- Department of Molecular Pathology, Institute of Cancer Research, Sutton, SM2 5PT, UK
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sian Rizzo
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
7
|
De Mel S, Lee AR, Tan JHI, Tan RZY, Poon LM, Chan E, Lee J, Chee YL, Lakshminarasappa SR, Jaynes PW, Jeyasekharan AD. Targeting the DNA damage response in hematological malignancies. Front Oncol 2024; 14:1307839. [PMID: 38347838 PMCID: PMC10859481 DOI: 10.3389/fonc.2024.1307839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Deregulation of the DNA damage response (DDR) plays a critical role in the pathogenesis and progression of many cancers. The dependency of certain cancers on DDR pathways has enabled exploitation of such through synthetically lethal relationships e.g., Poly ADP-Ribose Polymerase (PARP) inhibitors for BRCA deficient ovarian cancers. Though lagging behind that of solid cancers, DDR inhibitors (DDRi) are being clinically developed for haematological cancers. Furthermore, a high proliferative index characterize many such cancers, suggesting a rationale for combinatorial strategies targeting DDR and replicative stress. In this review, we summarize pre-clinical and clinical data on DDR inhibition in haematological malignancies and highlight distinct haematological cancer subtypes with activity of DDR agents as single agents or in combination with chemotherapeutics and targeted agents. We aim to provide a framework to guide the design of future clinical trials involving haematological cancers for this important class of drugs.
Collapse
Affiliation(s)
- Sanjay De Mel
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Ainsley Ryan Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joelle Hwee Inn Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Zi Yi Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Mei Poon
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Satish R. Lakshminarasappa
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
9
|
Ke P, Xie J, Xu T, Chen M, Guo Y, Wang Y, Qiu H, Wu D, Zeng Z, Chen S, Bao X. Identification of a venetoclax-resistance prognostic signature base on 6-senescence genes and its clinical significance for acute myeloid leukemia. Front Oncol 2023; 13:1302356. [PMID: 38098504 PMCID: PMC10720639 DOI: 10.3389/fonc.2023.1302356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Satisfactory responses can be obtained for acute myeloid leukemia (AML) treated by Venetoclax (VEN)-based therapy. However, there are still quite a few AML patients (AMLs) resistant to VEN, and it is critical to understand whether VEN-resistance is regulated by senescence. Methods Here, we established and validated a signature for predicting AML prognosis based on VEN resistance-related senescence genes (VRSGs). In this study, 51 senescence genes were identified with VEN-resistance in AML. Using LASSO algorithms and multiple AML cohorts, a VEN-resistance senescence prognostic model (VRSP-M) was developed and validated based on 6-senescence genes. Results According to the median score of the signature, AMLs were classified into two subtypes. A worse prognosis and more adverse features occurred in the high-risk subtype, including older patients, non-de novo AML, poor cytogenetics, adverse risk of European LeukemiaNet (ELN) 2017 recommendation, and TP53 mutation. Patients in the high-risk subtype were mainly involved in monocyte differentiation, senescence, NADPH oxidases, and PD1 signaling pathway. The model's risk score was significantly associated with VEN-resistance, immune features, and immunotherapy response in AML. In vitro, the IC50 values of ABT-199 (VEN) rose progressively with increasing expression of G6PD and BAG3 in AML cell lines. Conclusions The 6-senescence genes prognostic model has significant meaning for the prediction of VEN-resistance, guiding personalized molecularly targeted therapies, and improving AML prognosis.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jundan Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ting Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meiyu Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yusha Guo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Ge Z, Xu M, Ge Y, Huang G, Chen D, Ye X, Xiao Y, Zhu H, Yin R, Shen H, Ma G, Qi L, Wei G, Li D, Wei S, Zhu M, Ma H, Shi Z, Wang X, Ge X, Qian X. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Rep 2023; 42:113417. [PMID: 37950872 DOI: 10.1016/j.celrep.2023.113417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023] Open
Abstract
EGFRT790M mutation causes resistance to the first-generation tyrosine kinase inhibitors (TKIs) in patients with non-small cell lung cancer (NSCLC). However, the therapeutic options for sensitizing first TKIs and delaying the emergence of EGFRT790M mutant are limited. In this study, we show that quercetin directly binds with glucose-6-phosphate dehydrogenase (G6PD) and inhibits its enzymatic activity through competitively abrogating NADP+ binding in the catalytic domain. This inhibition subsequently reduces intracellular NADPH levels, resulting in insufficient substrate for methionine reductase A (MsrA) to reduce M790 oxidization of EGFRT790M and inducing the degradation of EGFRT790M. Quercetin synergistically enhances the therapeutic effect of gefitinib on EGFRT790M-harboring NSCLCs and delays the acquisition of the EGFRT790M mutation. Notably, high levels of G6PD expression are correlated with poor prognosis and the emerging time of EGFRT790M mutation in patients with NSCLC. These findings highlight the potential implication of quercetin in overcoming EGFRT790M-driven TKI resistance by directly targeting G6PD.
Collapse
Affiliation(s)
- Zehe Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Miao Xu
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuqian Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Guang Huang
- Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiuquan Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyu Zhu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 21009, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 21009, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Gaoxiang Ma
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Lianwen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Guining Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, China
| | - Dongmei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiuxing Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 21009, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Rezaei M, Ghanadian M, Ghezelbash B, Shokouhi A, Bazhin AV, Zamyatnin AA, Ganjalikhani-Hakemi M. TIM-3/Gal-9 interaction affects glucose and lipid metabolism in acute myeloid leukemia cell lines. Front Immunol 2023; 14:1267578. [PMID: 38022614 PMCID: PMC10667689 DOI: 10.3389/fimmu.2023.1267578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction T-cell immunoglobulin and mucin domain-3 (TIM-3) is a transmembrane molecule first identified as an immunoregulator. This molecule is also expressed on leukemic cells in acute myeloid leukemia and master cell survival and proliferation. In this study, we aimed to explore the effect of TIM-3 interaction with its ligand galectin-9 (Gal-9) on glucose and lipid metabolism in AML cell lines. Methods HL-60 and THP-1 cell lines, representing M3 and M5 AML subtypes, respectively, were cultured under appropriate conditions. The expression of TIM-3 on the cell surface was ascertained by flow cytometric assay. We used real-time PCR to examine the mRNA expression of GLUT-1, HK-2, PFKFB-3, G6PD, ACC-1, ATGL, and CPT-1A; colorimetric assays to measure the concentration of glucose, lactate, GSH, and the enzymatic activity of G6PD; MTT assay to determine cellular proliferation; and gas chromatography-mass spectrometry (GC-MS) to designate FFAs. Results We observed the significant upregulated expression of GLUT-1, HK-2, PFKFB-3, ACC-1, CPT-1A, and G6PD and the enzymatic activity of G6PD in a time-dependent manner in the presence of Gal-9 compared to the PMA and control groups in both HL-60 and THP-1 cell lines (p > 0.05). Moreover, the elevation of extracellular free fatty acids, glucose consumption, lactate release, the concentration of cellular glutathione (GSH) and cell proliferation were significantly higher in the presence of Gal-9 compared to the PMA and control groups in both cell lines (p < 0.05). Conclusion TIM-3/Gal-9 ligation on AML cell lines results in aerobic glycolysis and altered lipid metabolism and also protects cells from oxidative stress, all in favor of leukemic cell survival and proliferation.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolfazl Shokouhi
- Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig Maximilians University of Munich, Munich, Germany
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
12
|
Terlizzi C, De Rosa V, Iommelli F, Pezone A, Altobelli GG, Maddalena M, Dimitrov J, De Rosa C, Della Corte CM, Avvedimento VE, Del Vecchio S. ATM inhibition blocks glucose metabolism and amplifies the sensitivity of resistant lung cancer cell lines to oncogene driver inhibitors. Cancer Metab 2023; 11:20. [PMID: 37932830 PMCID: PMC10629204 DOI: 10.1186/s40170-023-00320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND ATM is a multifunctional serine/threonine kinase that in addition to its well-established role in DNA repair mechanisms is involved in a number of signaling pathways including regulation of oxidative stress response and metabolic diversion of glucose through the pentose phosphate pathway. Oncogene-driven tumorigenesis often implies the metabolic switch from oxidative phosphorylation to glycolysis which provides metabolic intermediates to sustain cell proliferation. The aim of our study is to elucidate the role of ATM in the regulation of glucose metabolism in oncogene-driven cancer cells and to test whether ATM may be a suitable target for anticancer therapy. METHODS Two oncogene-driven NSCLC cell lines, namely H1975 and H1993 cells, were treated with ATM inhibitor, KU55933, alone or in combination with oncogene driver inhibitors, WZ4002 or crizotinib. Key glycolytic enzymes, mitochondrial complex subunits (OXPHOS), cyclin D1, and apoptotic markers were analyzed by Western blotting. Drug-induced toxicity was assessed by MTS assay using stand-alone or combined treatment with KU55933 and driver inhibitors. Glucose consumption, pyruvate, citrate, and succinate levels were also analyzed in response to KU55933 treatment. Both cell lines were transfected with ATM-targeted siRNA or non-targeting siRNA and then exposed to treatment with driver inhibitors. RESULTS ATM inhibition deregulates and inhibits glucose metabolism by reducing HKII, p-PKM2Tyr105, p-PKM2Ser37, E1α subunit of pyruvate dehydrogenase complex, and all subunits of mitochondrial complexes except ATP synthase. Accordingly, glucose uptake and pyruvate concentrations were reduced in response to ATM inhibition, whereas citrate and succinate levels were increased in both cell lines indicating the supply of alternative metabolic substrates. Silencing of ATM resulted in similar changes in glycolytic cascade and OXPHOS levels. Furthermore, the driver inhibitors amplified the effects of ATM downregulation on glucose metabolism, and the combined treatment with ATM inhibitors enhanced the cytotoxic effect of driver inhibitors alone by increasing the apoptotic response. CONCLUSIONS Inhibition of ATM reduced both glycolytic enzymes and OXPHOS levels in oncogene-driven cancer cells and enhanced apoptosis induced by driver inhibitors thus highlighting the possibility to use ATM and the driver inhibitors in combined regimens of anticancer therapy in vivo.
Collapse
Affiliation(s)
- Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University "Federico II", Naples, Italy
| | - Giovanna G Altobelli
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Maurizio Maddalena
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Jelena Dimitrov
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy.
| |
Collapse
|
13
|
Abdel-Aziz AK, Dokla EME, Saadeldin MK. FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review. Crit Rev Oncol Hematol 2023; 191:104139. [PMID: 37717880 DOI: 10.1016/j.critrevonc.2023.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mona Kamal Saadeldin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Maffeo B, Panuzzo C, Moraca A, Cilloni D. A Leukemic Target with a Thousand Faces: The Mitochondria. Int J Mol Sci 2023; 24:13069. [PMID: 37685874 PMCID: PMC10487524 DOI: 10.3390/ijms241713069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
In the era of personalized medicine greatly improved by molecular diagnosis and tailor-made therapies, the survival rate of acute myeloid leukemia (AML) at 5 years remains unfortunately low. Indeed, the high heterogeneity of AML clones with distinct metabolic and molecular profiles allows them to survive the chemotherapy-induced changes, thus leading to resistance, clonal evolution, and relapse. Moreover, leukemic stem cells (LSCs), the quiescent reservoir of residual disease, can persist for a long time and activate the recurrence of disease, supported by significant metabolic differences compared to AML blasts. All these points highlight the relevance to develop combination therapies, including metabolism inhibitors to improve treatment efficacy. In this review, we summarized the metabolic differences in AML blasts and LSCs, the molecular pathways related to mitochondria and metabolism are druggable and targeted in leukemia therapies, with a distinct interest for Venetoclax, which has revolutionized the therapeutic paradigms of several leukemia subtype, unfit for intensive treatment regimens.
Collapse
Affiliation(s)
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (B.M.); (A.M.); (D.C.)
| | | | | |
Collapse
|
15
|
Sabatier M, Birsen R, Lauture L, Mouche S, Angelino P, Dehairs J, Goupille L, Boussaid I, Heiblig M, Boet E, Sahal A, Saland E, Santos JC, Armengol M, Fernández-Serrano M, Farge T, Cognet G, Simonetta F, Pignon C, Graffeuil A, Mazzotti C, Avet-Loiseau H, Delos O, Bertrand-Michel J, Chedru A, Dembitz V, Gallipoli P, Anstee NS, Loo S, Wei AH, Carroll M, Goubard A, Castellano R, Collette Y, Vergez F, Mansat-De Mas V, Bertoli S, Tavitian S, Picard M, Récher C, Bourges-Abella N, Granat F, Kosmider O, Sujobert P, Colsch B, Joffre C, Stuani L, Swinnen JV, Guillou H, Roué G, Hakim N, Dejean AS, Tsantoulis P, Larrue C, Bouscary D, Tamburini J, Sarry JE. C/EBPα Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia. Cancer Discov 2023; 13:1720-1747. [PMID: 37012202 DOI: 10.1158/2159-8290.cd-22-0411] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Rudy Birsen
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Laura Lauture
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Sarah Mouche
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Paolo Angelino
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Léa Goupille
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ismael Boussaid
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Juliana C Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marc Armengol
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Federico Simonetta
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Corentin Pignon
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Antoine Graffeuil
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Céline Mazzotti
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Océane Delos
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, University Paul Sabatier, Toulouse, France
| | - Amélie Chedru
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Natasha S Anstee
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sun Loo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Armelle Goubard
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Rémy Castellano
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Yves Collette
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Véronique Mansat-De Mas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Sarah Bertoli
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Suzanne Tavitian
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | - Muriel Picard
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service de Réanimation, Toulouse, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France
| | | | - Fanny Granat
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Olivier Kosmider
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
- CIRI, Inserm U1111 CNRS 5308, Université Lyon 1, Lyon, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, University Paul Sabatier, Toulouse, France
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Inserm UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France
| | - Petros Tsantoulis
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Clément Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Jerome Tamburini
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, Paris, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- LabEx Toucan, Toulouse, France
- Équipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
16
|
Chen Y, Zou Z, Găman MA, Xu L, Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discov 2023; 9:208. [PMID: 37391442 DOI: 10.1038/s41420-023-01528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The internal tandem duplication of the juxtamembrane domain of the FMS-like tyrosine kinase 3 (FLT3-ITD) is the most common genetic change in acute myeloid leukemia (AML), and about 30% of all AMLs harbor a FLT3-ITD mutation. Even though FLT3 inhibitors have displayed encouraging effects in FLT3-ITD-mutated AML, the extent of the clinical response to these compounds is cut short due to the rapid development of drug resistance. Evidence has shown that FLT3-ITD triggered activation of oxidative stress signaling may exert a pivotal role in drug resistance. The downstream pathways of FLT3-ITD, including STAT5, PI3K/AKT, and RAS/MAPK, are considered to be major oxidative stress signaling pathways. These downstream pathways can inhibit apoptosis and promote proliferation and survival by regulating apoptosis-related genes and promoting the generation of reactive oxygen species (ROS) through NADPH oxidase (NOX) or other mechanisms. Appropriate levels of ROS may promote proliferation, but high levels of ROS can lead to oxidative damage to the DNA and increase genomic instability. In addition, post-translational modifications of FLT3-ITD and changes in its subcellular localization can affect downstream signaling which may also be one of the mechanisms leading to drug resistance. In this review, we summarized the research progress on NOX mediated oxidative stress signaling and its relationship with drug resistance in FLT3-ITD AML, and discuss the possible new targets in FLT3-ITD signal blocking to reverse drug resistance in FLT3-ITD-mutated AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Zhenyou Zou
- Institute of Psychosis Prevention, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 542005, China.
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
17
|
Wang H, Luo G, Hu X, Xu G, Wang T, Liu M, Qiu X, Li J, Fu J, Feng B, Tu Y, Kan W, Wang C, Xu R, Zhou Y, Yang J, Li J. Targeting C/EBPα overcomes primary resistance and improves the efficacy of FLT3 inhibitors in acute myeloid leukaemia. Nat Commun 2023; 14:1882. [PMID: 37019911 PMCID: PMC10076519 DOI: 10.1038/s41467-023-37381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
The outcomes of FLT3-ITD acute myeloid leukaemia (AML) have been improved since the approval of FLT3 inhibitors (FLT3i). However, approximately 30-50% of patients exhibit primary resistance (PR) to FLT3i with poorly defined mechanisms, posing a pressing clinical unmet need. Here, we identify C/EBPα activation as a top PR feature by analyzing data from primary AML patient samples in Vizome. C/EBPα activation limit FLT3i efficacy, while its inactivation synergistically enhances FLT3i action in cellular and female animal models. We then perform an in silico screen and identify that guanfacine, an antihypertensive medication, mimics C/EBPα inactivation. Furthermore, guanfacine exerts a synergistic effect with FLT3i in vitro and in vivo. Finally, we ascertain the role of C/EBPα activation in PR in an independent cohort of FLT3-ITD patients. These findings highlight C/EBPα activation as a targetable PR mechanism and support clinical studies aimed at testing the combination of guanfacine with FLT3i in overcoming PR and enhancing the efficacy of FLT3i therapy.
Collapse
Affiliation(s)
- Hanlin Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Pharmacy, Fudan University, Shanghai, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghao Luo
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Xiaobei Hu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Gaoya Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Wang
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minmin Liu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Xiaohui Qiu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Jianan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingfeng Fu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Feng
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Yutong Tu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weijuan Kan
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ran Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yubo Zhou
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Jia Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- College of Pharmacy, Fudan University, Shanghai, 210023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
18
|
Identification of Ultrasound-Sensitive Prognostic Markers of LAML and Construction of Prognostic Risk Model Based on WGCNA. JOURNAL OF ONCOLOGY 2023; 2023:2353249. [PMID: 36816364 PMCID: PMC9937759 DOI: 10.1155/2023/2353249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 11/25/2022] [Indexed: 02/12/2023]
Abstract
Background Acute myeloid leukemia (LAML) is the most widely known acute leukemia in adults. Chemotherapy is the main treatment method, but eventually many individuals who have achieved remission relapse, the disease will ultimately transform into refractory leukemia. Therefore, for the improvement of the clinical outcome of patients, it is crucial to identify novel prognostic markers. Methods The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were utilized to retrieve RNA-Seq information and clinical follow-up details for patients with acute myeloid leukemia, respectively, whereas samples that received or did not receive ultrasound treatment were analyzed using differential expression analysis. For consistent clustering analysis, the ConsensusClusterPlus package was utilized, while by utilizing weighted correlation network analysis (WGCNA), important modules were found and the generation of the coexpression network of hub gene was generated using Cytoscape. CIBERSORT, ESTIMATE, and xCell algorithms of the "IOBR" R package were employed for the calculation of the relative quantity of immune infiltrating cells, whereas the mutation frequency of cells was estimated by means of the "maftools" R package. The pathway enrichment score was calculated using the single sample Gene Set Enrichment Analysis (ssGSEA) algorithm of the "Gene Set Variation Analysis (GSVA)" R package. The IC50 value of the drug was predicted by utilizing the "pRRophetic." The indications linked with prognosis were selected by means of the least absolute shrinkage and selection operator (Lasso) Cox analysis. Results Two categories of samples were created as follows: Cluster 1 and Cluster 2 depending on the differential gene consistent clustering of ultrasound treatment. The prognosis of patients in Cluster 2 was better than that in Cluster 1, and a considerable variation was observed in the immune microenvironment of Cluster 1 and Cluster 2. Lasso analysis finally obtained an 8-gene risk model (GASK1A, LPO, LTK, PRRT4, UGT3A2, BLOCK1S1, G6PD, and UNC93B1). The model acted as an independent risk factor for the patients' prognosis, and it showed good robustness in different datasets. Considerable variations were observed in the abundance of immune cell infiltration, genome mutation, pathway enrichment score, and chemotherapeutic drug resistance between the low and high-risk groups in accordance with the risk score (RS). Additionally, model-based RSs in the immunotherapy cohort were significantly different between complete remission (CR) and other response groups. Conclusion The prognosis of people with LAML can be predicted using the 8-gene signature.
Collapse
|
19
|
CRISPR metabolic screen identifies ATM and KEAP1 as targetable genetic vulnerabilities in solid tumors. Proc Natl Acad Sci U S A 2023; 120:e2212072120. [PMID: 36724254 PMCID: PMC9963842 DOI: 10.1073/pnas.2212072120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cancer treatments targeting DNA repair deficiencies often encounter drug resistance, possibly due to alternative metabolic pathways that counteract the most damaging effects. To identify such alternative pathways, we screened for metabolic pathways exhibiting synthetic lethality with inhibition of the DNA damage response kinase Ataxia-telangiectasia-mutated (ATM) using a metabolism-centered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 library. Our data revealed Kelch-like ECH-associated protein 1 (KEAP1) as a key factor involved in desensitizing cancer cells to ATM inhibition both in vitro and in vivo. Cells depleted of KEAP1 exhibited an aberrant overexpression of the cystine transporter SLC7A11, robustly accumulated cystine inducing disulfide stress, and became hypersensitive to ATM inhibition. These hallmarks were reversed in a reducing cellular environment indicating that disulfide stress was a crucial factor. In The Cancer Genome Atlas (TCGA) pan-cancer datasets, we found that ATM levels negatively correlated with KEAP1 levels across multiple solid malignancies. Together, our results unveil ATM and KEAP1 as new targetable vulnerabilities in solid tumors.
Collapse
|
20
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
21
|
Luce A, Lombardi A, Ferri C, Zappavigna S, Tathode MS, Miles AK, Boocock DJ, Vadakekolathu J, Bocchetti M, Alfano R, Sperlongano R, Ragone A, Sapio L, Desiderio V, Naviglio S, Regad T, Caraglia M. A Proteomic Approach Reveals That miR-423-5p Modulates Glucidic and Amino Acid Metabolism in Prostate Cancer Cells. Int J Mol Sci 2022; 24:ijms24010617. [PMID: 36614061 PMCID: PMC9820599 DOI: 10.3390/ijms24010617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.
Collapse
Affiliation(s)
- Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Carmela Ferri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Medicina Futura Group, Coleman S.p.A, Via Alcide De Gasperi 107/109/111, Acerra, 80011 Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - David J. Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | | | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, Via S. M. di Costantinopoli 104, 80138 Naples, Italy
| | - Rossella Sperlongano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angela Ragone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Luigi Sapio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-081-5667517
| | - Tarik Regad
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| |
Collapse
|
22
|
Zhou H, Wang F, Niu T. Prediction of prognosis and immunotherapy response of amino acid metabolism genes in acute myeloid leukemia. Front Nutr 2022; 9:1056648. [PMID: 36618700 PMCID: PMC9815546 DOI: 10.3389/fnut.2022.1056648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Amino acid (AA) metabolism plays a crucial role in cancer. However, its role in acute myeloid leukemia (AML) is still unavailable. We screened out AA metabolic genes, which related to prognosis, and analyzed their correlation with tumor immune microenvironment in AML. Methods We evaluated 472 amino acid metabolism-related genes in 132 AML patients. The predictive risk model was developed according to differentially expressed genes, univariate Cox and LASSO analyses. We validated the risk signature by survival analysis and independence tests. Single-sample gene set enrichment analysis (ssGSEA), tumor immune microenvironment (TME), tumor mutation burden (TMB), functional enrichment, and the IC50 of drugs were assessed to explore the correlations among the risk model, immunity, and drug sensitivity of AML. Results Six amino acid metabolism-related genes were confirmed to develop the risk model, including TRH, HNMT, TFEB, SDSL, SLC43A2, and SFXN3. The high-risk subgroup had an immune "hot" phenotype and was related to a poor prognosis. The high-risk group was also associated with more activity of immune cells, such as Tregs, had higher expression of some immune checkpoints, including PD1 and CTLA4, and might be more susceptible to immunotherapy. Xenobiotic metabolism, the reactive oxygen species (ROS) pathway, fatty acid metabolism, JAK/STAT3, and the inflammatory response were active in the high-risk subgroup. Furthermore, the high-risk subgroup was sensitive to sorafenib, selumetinib, and entospletinib. ssGSEA discovered that the processes of glutamine, arginine, tryptophan, cysteine, histidine, L-serine, isoleucine, threonine, tyrosine, and L-phenylalanine metabolism were more active in the high-risk subgroup. Conclusion This study revealed that AA metabolism-related genes were correlated with the immune microenvironment of AML patients and could predict the prognosis and immunotherapy response of AML patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengjuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Niu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Ting Niu,
| |
Collapse
|
23
|
Park HJ, Gregory MA, Zaberezhnyy V, Goodspeed A, Jordan CT, Kieft JS, DeGregori J. Therapeutic resistance in acute myeloid leukemia cells is mediated by a novel ATM/mTOR pathway regulating oxidative phosphorylation. eLife 2022; 11:e79940. [PMID: 36259537 PMCID: PMC9645811 DOI: 10.7554/elife.79940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
While leukemic cells are susceptible to various therapeutic insults, residence in the bone marrow microenvironment typically confers protection from a wide range of drugs. Thus, understanding the unique molecular changes elicited by the marrow is of critical importance toward improving therapeutic outcomes. In this study, we demonstrate that aberrant activation of oxidative phosphorylation serves to induce therapeutic resistance in FLT3 mutant human AML cells challenged with FLT3 inhibitor drugs. Importantly, our findings show that AML cells are protected from apoptosis following FLT3 inhibition due to marrow-mediated activation of ATM, which in turn upregulates oxidative phosphorylation via mTOR signaling. mTOR is required for the bone marrow stroma-dependent maintenance of protein translation, with selective polysome enrichment of oxidative phosphorylation transcripts, despite FLT3 inhibition. To investigate the therapeutic significance of this finding, we tested the mTOR inhibitor everolimus in combination with the FLT3 inhibitor quizartinib in primary human AML xenograft models. While marrow resident AML cells were highly resistant to quizartinib alone, the addition of everolimus induced profound reduction in tumor burden and prevented relapse. Taken together, these data provide a novel mechanistic understanding of marrow-based therapeutic resistance and a promising strategy for improved treatment of FLT3 mutant AML patients.
Collapse
Affiliation(s)
- Hae J Park
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Mark A Gregory
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Craig T Jordan
- Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
24
|
Gong T, Zheng C, Ou X, Zheng J, Yu J, Chen S, Duan Y, Liu W. Glutamine metabolism in cancers: Targeting the oxidative homeostasis. Front Oncol 2022; 12:994672. [PMID: 36324588 PMCID: PMC9621616 DOI: 10.3389/fonc.2022.994672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamine is the most abundant amino acid in blood and tissues, and the most important nutrient except for glucose in cancer cells. Over the past years, most studies have focused on the role of Gln metabolism in supporting energy metabolism rather than maintaining oxidative homeostasis. In fact, Gln is an important factor in maintaining oxidative homeostasis of cancer cells, especially in “Glutamine addicted” cancer cells. Here, this paper will review the recent scientific literature about the link between Gln metabolism and oxidative homeostasis, with an emphasis on the potential role of Gln metabolism in different cancers. Given that oxidative homeostasis is of critical importance in cancer, understanding the impacts of a Gln metabolism on oxidative homeostasis, gaining great insights into underlying molecular mechanisms, and developing effective therapeutic strategies are of great importance.
Collapse
Affiliation(s)
- Tengfang Gong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Changbing Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xidan Ou
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyu Chen
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yehui Duan, ; Wei Liu,
| | - Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- *Correspondence: Yehui Duan, ; Wei Liu,
| |
Collapse
|
25
|
Stubbins RJ, Korotev S, Godley LA. Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies. Curr Hematol Malig Rep 2022; 17:94-104. [PMID: 35674998 DOI: 10.1007/s11899-022-00663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW An intact DNA damage response is crucial to preventing cancer development, including in myeloid and lymphoid malignancies. Deficiencies in the homologous recombination (HR) pathway can lead to defective DNA damage responses, and this can occur through inherited germline mutations in HR pathway genes, such as CHEK2 and ATM. We now understand that germline mutations can be identified frequently (~ 5-10%) in patients with myeloid and lymphoid malignancies, and among the most common of these are CHEK2 and ATM. We review the role that deleterious germline CHEK2 and ATM variants play in the development of hematopoietic malignancies, and how this influences clinical practice, including cancer screening, hematopoietic stem cell transplantation, and therapy choice. RECENT FINDINGS In recent large cohorts of patients diagnosed with myeloid or lymphoid malignancies, deleterious germline loss of function variants in CHEK2 and ATM are among the most common identified. Germline CHEK2 variants predispose to a range of myeloid malignancies, most prominently myeloproliferative neoplasms and myelodysplastic syndromes (odds ratio range: 2.1-12.3), and chronic lymphocytic leukemia (odds ratio 14.83). Deleterious germline ATM variants have been shown to predispose to chronic lymphocytic leukemia (odds ratio range: 1.7-10.1), although additional studies are needed to demonstrate the risk they confer for myeloid malignancies. Early studies suggest there may also be associations between deleterious germline CHEK2 and ATM variants and development of clonal hematopoiesis. Identifying CHEK2 and ATM variants is crucial for the optimal management of patients and families affected by hematopoietic malignancies. OPENING CLINICAL CASE: "A 45 year-old woman presents to your clinic with a history of triple-negative breast cancer diagnosed five years ago, treated with surgery, radiation, and chemotherapy. About six months ago, she developed cervical lymphadenopathy, and a biopsy demonstrated small lymphocytic leukemia. Peripheral blood shows a small population of lymphocytes with a chronic lymphocytic leukemia immunophenotype, and FISH demonstrates a complex karyotype: gain of one to two copies of IGH and FGFR3; gain of two copies of CDKN2C at 1p32.3; gain of two copies of CKS1B at 1q21; tetrasomy for chromosome 3; trisomy and tetrasomy for chromosome 7; tetrasomy for chromosome 9; tetrasomy for chromosome 12; gain of one to two copies of ATM at 11q22.3; deletion of chromosome 13 deletion positive; gain of one to two copies of TP53 at 17p13.1). Given her history of two cancers, you arrange for germline genetic testing using DNA from cultured skin fibroblasts, which demonstrates pathogenic variants in ATM [c.1898 + 2 T > G] and CHEK2 [p.T367Metfs]. Her family history is significant for multiple cancers. (Fig. 1)." Fig. 1 Representative pedigree from a patient with germline pathogenic ATM and CHEK2 variants who was affected by early onset breast cancer and chronic lymphocytic leukemia. Arrow indicates proband. Colors indicate cancer type/disease: purple, breast cancer; blue, lymphoma; brown, melanoma; yellow, colon cancer; and green, autoimmune disease.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.,Leukemia/BMT Program of BC, BC Cancer, Vancouver, BC, Canada
| | - Sophia Korotev
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Liao P, Chang N, Xu B, Qiu Y, Wang S, Zhou L, He Y, Xie X, Li Y. Amino acid metabolism: challenges and opportunities for the therapeutic treatment of leukemia and lymphoma. Immunol Cell Biol 2022; 100:507-528. [PMID: 35578380 DOI: 10.1111/imcb.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/23/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
Leukemia and lymphoma-the most common hematological malignant diseases-are often accompanied by complications such as drug resistance, refractory diseases and relapse. Amino acids (AAs) are important energy sources for malignant cells. Tumor-mediated AA metabolism is associated with the immunosuppressive properties of the tumor microenvironment, thereby assisting malignant cells to evade immune surveillance. Targeting abnormal AA metabolism in the tumor microenvironment may be an effective therapeutic approach to address the therapeutic challenges of leukemia and lymphoma. Here, we review the effects of glutamine, arginine and tryptophan metabolism on tumorigenesis and immunomodulation, and define the differences between tumor cells and immune effector cells. We also comment on treatments targeting these AA metabolism pathways in lymphoma and leukemia and discuss how these treatments have profound adverse effects on tumor cells, but leave the immune cells unaffected or mildly affected.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ning Chang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
27
|
Romo-González M, Ijurko C, Hernández-Hernández Á. Reactive Oxygen Species and Metabolism in Leukemia: A Dangerous Liaison. Front Immunol 2022; 13:889875. [PMID: 35757686 PMCID: PMC9218220 DOI: 10.3389/fimmu.2022.889875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS), previously considered toxic by-products of aerobic metabolism, are increasingly recognized as regulators of cellular signaling. Keeping ROS levels low is essential to safeguard the self-renewal capacity of hematopoietic stem cells (HSC). HSC reside in a hypoxic environment and have been shown to be highly dependent on the glycolytic pathway to meet their energy requirements. However, when the differentiation machinery is activated, there is an essential enhancement of ROS together with a metabolic shift toward oxidative metabolism. Initiating and sustaining leukemia depend on the activity of leukemic stem cells (LSC). LSC also show low ROS levels, but unlike HSC, LSC rely on oxygen to meet their metabolic energetic requirements through mitochondrial respiration. In contrast, leukemic blasts show high ROS levels and great metabolic plasticity, both of which seem to sustain their invasiveness. Oxidative stress and metabolism rewiring are recognized as hallmarks of cancer that are intimately intermingled. Here we present a detailed overview of these two features, sustained at different levels, that support a two-way relationship in leukemia. Modifying ROS levels and targeting metabolism are interesting therapeutic approaches. Therefore, we provide the most recent evidence on the modulation of oxidative stress and metabolism as a suitable anti-leukemic approach.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
28
|
Patel SB, Nemkov T, D'Alessandro A, Welner RS. Deciphering Metabolic Adaptability of Leukemic Stem Cells. Front Oncol 2022; 12:846149. [PMID: 35756656 PMCID: PMC9213881 DOI: 10.3389/fonc.2022.846149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic targeting of leukemic stem cells is widely studied to control leukemia. An emerging approach gaining popularity is altering metabolism as a potential therapeutic opportunity. Studies have been carried out on hematopoietic and leukemic stem cells to identify vulnerable pathways without impacting the non-transformed, healthy counterparts. While many metabolic studies have been conducted using stem cells, most have been carried out in vitro or on a larger population of progenitor cells due to challenges imposed by the low frequency of stem cells found in vivo. This creates artifacts in the studies carried out, making it difficult to interpret and correlate the findings to stem cells directly. This review discusses the metabolic difference seen between hematopoietic stem cells and leukemic stem cells across different leukemic models. Moreover, we also shed light on the advancements of metabolic techniques and current limitations and areas for additional research of the field to study stem cell metabolism.
Collapse
Affiliation(s)
- Sweta B Patel
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States.,Divison of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States
| |
Collapse
|
29
|
Peng M, Huang Y, Zhang L, Zhao X, Hou Y. Targeting Mitochondrial Oxidative Phosphorylation Eradicates Acute Myeloid Leukemic Stem Cells. Front Oncol 2022; 12:899502. [PMID: 35574326 PMCID: PMC9100571 DOI: 10.3389/fonc.2022.899502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by multiple cytogenetic and molecular abnormalities, with a very poor prognosis. Current treatments for AML often fail to eliminate leukemic stem cells (LSCs), which perpetuate the disease. LSCs exhibit a unique metabolic profile, especially dependent on oxidative phosphorylation (OXPHOS) for energy production. Whereas, normal hematopoietic stem cells (HSCs) and leukemic blasts rely on glycolysis for adenosine triphosphate (ATP) production. Thus, understanding the regulation of OXPHOS in LSCs may offer effective targets for developing clinical therapies in AML. This review summarizes these studies with a focus on the regulation of the electron transport chain (ETC) and tricarboxylic acid (TCA) cycle in OXPHOS and discusses potential therapies for eliminating LSCs.
Collapse
Affiliation(s)
- Meixi Peng
- Biology Science Institutes, Chongqing Medical University, Chongqing, China
| | - Yongxiu Huang
- Clinical Hematology, Third Military Medical University (Army Medical University), Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xueya Zhao
- Biology Science Institutes, Chongqing Medical University, Chongqing, China
| | - Yu Hou
- Biology Science Institutes, Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Dou X, Sun X, Huang H, Jiang L, Jin Z, Liu Y, Zou Y, Li Z, Zhu G, Jin H, Jiao N, Zhang L, Liu Z, Zhang L. Discovery of novel ataxia telangiectasia mutated (ATM) kinase modulators: Computational simulation, biological evaluation and cancer combinational chemotherapy study. Eur J Med Chem 2022; 233:114196. [DOI: 10.1016/j.ejmech.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
|
31
|
Mesbahi Y, Trahair TN, Lock RB, Connerty P. Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells. Front Oncol 2022; 12:807266. [PMID: 35223487 PMCID: PMC8867093 DOI: 10.3389/fonc.2022.807266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite intensive chemotherapy regimens, up to 60% of adults with acute myeloid leukaemia (AML) will relapse and eventually succumb to their disease. Recent studies suggest that leukaemic stem cells (LSCs) drive AML relapse by residing in the bone marrow niche and adapting their metabolic profile. Metabolic adaptation and LSC plasticity are novel hallmarks of leukemogenesis that provide important biological processes required for tumour initiation, progression and therapeutic responses. These findings highlight the importance of targeting metabolic pathways in leukaemia biology which might serve as the Achilles' heel for the treatment of AML relapse. In this review, we highlight the metabolic differences between normal haematopoietic cells, bulk AML cells and LSCs. Specifically, we focus on four major metabolic pathways dysregulated in AML; (i) glycolysis; (ii) mitochondrial metabolism; (iii) amino acid metabolism; and (iv) lipid metabolism. We then outline established and emerging drug interventions that exploit metabolic dependencies of leukaemic cells in the treatment of AML. The metabolic signature of AML cells alters during different biological conditions such as chemotherapy and quiescence. Therefore, targeting the metabolic vulnerabilities of these cells might selectively eradicate them and improve the overall survival of patients with AML.
Collapse
Affiliation(s)
- Yashar Mesbahi
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
32
|
Circulating primitive murine erythroblasts undergo complex proteomic and metabolomic changes during terminal maturation. Blood Adv 2022; 6:3072-3089. [PMID: 35139174 PMCID: PMC9131905 DOI: 10.1182/bloodadvances.2021005975] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Terminal maturation of primary murine primitive erythroid precursors is characterized by loss of organelles and anabolic components. Metabolic reprogramming includes depression of mitochondrial metabolism and upregulation of the pentose phosphate pathway and redox metabolism.
Primitive erythropoiesis is a critical component of the fetal cardiovascular network and is essential for the growth and survival of the mammalian embryo. The need to rapidly establish a functional cardiovascular system is met, in part, by the intravascular circulation of primitive erythroid precursors that mature as a single semisynchronous cohort. To better understand the processes that regulate erythroid precursor maturation, we analyzed the proteome, metabolome, and lipidome of primitive erythroblasts isolated from embryonic day (E) 10.5 and E12.5 of mouse gestation, representing their transition from basophilic erythroblast to orthochromatic erythroblast (OrthoE) stages of maturation. Previous transcriptional and biomechanical characterizations of these precursors have highlighted a transition toward the expression of protein elements characteristic of mature red blood cell structure and function. Our analysis confirmed a loss of organelle-specific protein components involved in messenger RNA processing, proteostasis, and metabolism. In parallel, we observed metabolic rewiring toward the pentose phosphate pathway, glycolysis, and the Rapoport-Luebering shunt. Activation of the pentose phosphate pathway in particular may have stemmed from increased expression of hemoglobin chains and band 3, which together control oxygen-dependent metabolic modulation. Increased expression of several antioxidant enzymes also indicated modification to redox homeostasis. In addition, accumulation of oxylipins and cholesteryl esters in primitive OrthoE cells was paralleled by increased transcript levels of the p53-regulated cholesterol transporter (ABCA1) and decreased transcript levels of cholesterol synthetic enzymes. The present study characterizes the extensive metabolic rewiring that occurs in primary embryonic erythroid precursors as they prepare to enucleate and continue circulating without internal organelles.
Collapse
|
33
|
Soltani M, Zhao Y, Xia Z, Ganjalikhani Hakemi M, Bazhin AV. The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies. Front Oncol 2021; 11:767026. [PMID: 34868994 PMCID: PMC8636012 DOI: 10.3389/fonc.2021.767026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
Despite recent advancements in the treatment of hematologic malignancies and the emergence of newer and more sophisticated therapeutic approaches such as immunotherapy, long-term overall survival remains unsatisfactory. Metabolic alteration, as an important hallmark of cancer cells, not only contributes to the malignant transformation of cells, but also promotes tumor progression and metastasis. As an immune-escape mechanism, the metabolic adaptation of the bone marrow microenvironment and leukemic cells is a major player in the suppression of anti-leukemia immune responses. Therefore, metabolic rewiring in leukemia would provide promising opportunities for newer therapeutic interventions. Several therapeutic agents which affect essential bioenergetic pathways in cancer cells including glycolysis, β-oxidation of fatty acids and Krebs cycle, or anabolic pathways such as lipid biosynthesis and pentose phosphate pathway, are being tested in various types of cancers. So far, numerous preclinical or clinical trial studies using such metabolic agents alone or in combination with other remedies such as immunotherapy are in progress and have demonstrated promising outcomes. In this review, we aim to argue the importance of metabolic alterations and bioenergetic pathways in different types of leukemia and their vital roles in disease development. Designing treatments based on targeting leukemic cells vulnerabilities, particularly in nonresponsive leukemia patients, should be warranted.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yue Zhao
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
34
|
Trinh A, Khamari R, Fovez Q, Mahon FX, Turcq B, Bouscary D, Maboudou P, Joncquel M, Coiteux V, Germain N, Laine W, Dekiouk S, Jean-Pierre S, Maguer-Satta V, Ghesquiere B, Idziorek T, Quesnel B, Kluza J, Marchetti P. Antimetabolic cooperativity with the clinically approved l-asparaginase and tyrosine kinase inhibitors to eradicate CML stem cells. Mol Metab 2021; 55:101410. [PMID: 34863941 PMCID: PMC8732793 DOI: 10.1016/j.molmet.2021.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Long-term treatment with tyrosine kinase inhibitors (TKI) represents an effective cure for chronic myeloid leukemia (CML) patients and discontinuation of TKI therapy is now proposed to patient with deep molecular responses. However, evidence demonstrating that TKI are unable to fully eradicate dormant leukemic stem cells (LSC) indicate that new therapeutic strategies are needed to control LSC and to prevent relapse. In this study we investigated the metabolic pathways responsible for CML surviving to imatinib exposure and its potential therapeutic utility to improve the efficacy of TKI against stem-like CML cells. Methods Using complementary cell-based techniques, metabolism was characterized in a large panel of BCR-ABL+ cell lines as well as primary CD34+ stem-like cells from CML patients exposed to TKI and L-Asparaginases. Colony forming cell (CFC) assay and flow cytometry were used to identify CML progenitor and stem like-cells. Preclinical models of leukemia dormancy were used to test the effect of treatments. Results Although TKI suppressed glycolysis, compensatory glutamine-dependent mitochondrial oxidation supported ATP synthesis and CML cell survival. Glutamine metabolism was inhibited by L-asparaginases such as Kidrolase or Erwinase without inducing predominant CML cell death. However, clinically relevant concentrations of TKI render CML cells susceptible to Kidrolase. The combination of TKI with Lasparaginase reactivates the intinsic apoptotic pathway leading to efficient CML cell death. Conclusion Targeting glutamine metabolism with the FDA-approved drug, Kidrolase in combination with TKI that suppress glycolysis represents an effective and widely applicable therapeutic strategy for eradicating stem-like CML cells.
Collapse
Affiliation(s)
- Anne Trinh
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Raeeka Khamari
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Quentin Fovez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - François-Xavier Mahon
- Institut Bergonié, Université de Bordeaux, CNRS SNC5010, Inserm, U1218 ACTION, F - 33076, Bordeaux, France
| | - Béatrice Turcq
- Institut Bergonié, Université de Bordeaux, CNRS SNC5010, Inserm, U1218 ACTION, F - 33076, Bordeaux, France
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France; Assistance Publique-Hôpitaux de Paris. Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| | | | - Marie Joncquel
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, France
| | - Valérie Coiteux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Nicolas Germain
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - William Laine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Salim Dekiouk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Sandrine Jean-Pierre
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, 69008, Lyon, France
| | | | | | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Jerome Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| | - Philippe Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France; Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, France.
| |
Collapse
|
35
|
Hatfield KJ, Grønningsaeter IS, Reikvam H. Future perspective: metabolism as a therapeutic target in acute myeloid leukemia - from Warburg to precision medicine. Curr Med Res Opin 2021; 37:2107-2111. [PMID: 34498983 DOI: 10.1080/03007995.2021.1978960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acute myeloid leukemia (AML) is a highly malignant blood cancer disease, with dismal prognosis. The theory that cancer cells utilize metabolism to their growth advantage was postulated almost hundred years ago. However, only recently have been able to take advantage of this Achilles heel of malignant cell growth. Current observations suggest a crucial role for various metabolic pathways in AML, and special in leukemia stem cells, believed to be responsible for re-initiation of the leukemic clone, and hence relapse of this devastating disease. In the present article we discuss the features for metabolism in AML based on recent research, and special emphasizing the potential of pharmacological inhibiting metabolism as new treatment approaches.
Collapse
Affiliation(s)
- Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ida Sofie Grønningsaeter
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Akershus University Hospital, Oslo, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
36
|
Cheng C, Yuan F, Chen XP, Zhang W, Zhao XL, Jiang ZP, Zhou HH, Zhou G, Cao S. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed Pharmacother 2021; 142:111652. [PMID: 34112534 DOI: 10.1016/j.biopha.2021.111652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy resistance remains to be the primary barrier to acute myeloid leukemia (AML) treatment failure. Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been well established as a truly pleiotropic transcription factor. Inhibition of Nrf2 function increases the sensitivity of various chemotherapeutics and overcomes chemoresistance effectively. Brusatol (Bru) has been reported to decrease Nrf2 protein expression specifically by ubiquitin degradation of Nrf2. However, it remains elusive whether combination of Brusatol and Cytarabine (Ara-C) elicits a synergistic antitumor effect in AML. Our results demonstrated that combination of Ara-C and Brusatol synergistically exerted remarkable pro-apoptosis effect in HL-60 and THP-1 cells. Mechanistically, synergistic anti-tumor effect of Ara-C/Brusatol in AML cells is mediated by attenuating Nrf2 expression. To our surprise, Nrf2 inhibition by Brusatol causes downregulation of the expression of glycolysis-related proteins and decreased glucose consumption and lactate production, whereas the level of ROS production was unaffected. The activation of Nrf2 by Sulforaphane (SFP) could reverse the chemotherapeutic effect and changes of glycolysis of concomitant of Ara-C with Brusatol in AML cell lines. Additionally, Ara-C/Brusatol co-treatment decreased Glucose-6-phosphate dehydrogenase (G6PD) protein expression and increased the sensitivity of Ara-C. Moreover, the mouse xenograft in vivo experiment confirmed that combining Ara-C with Brusatol exerted stronger antileukemia than Ara-C alone. The efficacy, together with the mechanistic observations, reveals the potential of simultaneously giving these two drugs and provides a rational basis for targeting glucose catabolism in future clinical therapeutic approach.
Collapse
Affiliation(s)
- Cong Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Fang Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Zhi-Ping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
37
|
Lu X, Han L, Busquets J, Collins M, Lodi A, Marszalek JR, Konopleva M, Tiziani S. The Combined Treatment With the FLT3-Inhibitor AC220 and the Complex I Inhibitor IACS-010759 Synergistically Depletes Wt- and FLT3-Mutated Acute Myeloid Leukemia Cells. Front Oncol 2021; 11:686765. [PMID: 34490088 PMCID: PMC8417744 DOI: 10.3389/fonc.2021.686765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a high mortality rate and relapse risk. Although progress on the genetic and molecular understanding of this disease has been made, the standard of care has changed minimally for the past 40 years and the five-year survival rate remains poor, warranting new treatment strategies. Here, we applied a two-step screening platform consisting of a primary cell viability screening and a secondary metabolomics-based phenotypic screening to find synergistic drug combinations to treat AML. A novel synergy between the oxidative phosphorylation inhibitor IACS-010759 and the FMS-like tyrosine kinase 3 (FLT3) inhibitor AC220 (quizartinib) was discovered in AML and then validated by ATP bioluminescence and apoptosis assays. In-depth stable isotope tracer metabolic flux analysis revealed that IACS-010759 and AC220 synergistically reduced glucose and glutamine enrichment in glycolysis and the TCA cycle, leading to impaired energy production and de novo nucleotide biosynthesis. In summary, we identified a novel drug combination, AC220 and IACS-010759, which synergistically inhibits cell growth in AML cells due to a major disruption of cell metabolism, regardless of FLT3 mutation status.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan Busquets
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Meghan Collins
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Joseph R. Marszalek
- TRACTION - Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
38
|
Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, Kaempf A, Gosline SJC, Wang YT, Hansen JR, Gritsenko MA, Hutchinson C, Weitz KK, Moon J, Cendali F, Fillmore TL, Tsai CF, Schepmoes AA, Shi T, Arshad OA, McDermott JE, Babur O, Watanabe-Smith K, Demir E, D'Alessandro A, Liu T, Tognon CE, Tyner JW, McWeeney SK, Rodland KD, Druker BJ, Traer E. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell 2021; 39:999-1014.e8. [PMID: 34171263 PMCID: PMC8686208 DOI: 10.1016/j.ccell.2021.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Aurora Kinase B/genetics
- Aurora Kinase B/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Drug Resistance, Neoplasm
- Exome
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Metabolome
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Pyrazines/pharmacology
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Paul D Piehowski
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janét Pittsenbarger
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua R Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chelsea Hutchinson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas L Fillmore
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, MA, USA
| | - Kevin Watanabe-Smith
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
39
|
Dembitz V, Gallipoli P. The Role of Metabolism in the Development of Personalized Therapies in Acute Myeloid Leukemia. Front Oncol 2021; 11:665291. [PMID: 34094959 PMCID: PMC8170311 DOI: 10.3389/fonc.2021.665291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite significant recent advances in our understanding of the biology and genetics of acute myeloid leukemia (AML), current AML therapies are mostly based on a backbone of standard chemotherapy which has remained mostly unchanged for over 20 years. Several novel therapies, mostly targeting neomorphic/activating recurrent mutations found in AML patients, have only recently been approved following encouraging results, thus providing the first evidence of a more precise and personalized approach to AML therapy. Rewired metabolism has been described as a hallmark of cancer and substantial evidence of its role in AML establishment and maintenance has been recently accrued in preclinical models. Interestingly, unique metabolic changes are generated by specific AML recurrent mutations or in response to diverse AML therapies, thus creating actionable metabolic vulnerabilities in specific patient groups. In this review we will discuss the current evidence supporting a role for rewired metabolism in AML pathogenesis and how these metabolic changes can be leveraged to develop novel personalized therapies.
Collapse
Affiliation(s)
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
40
|
Luo Z, Du D, Liu Y, Lu T, Liu L, Jiang H, Chen K, Shan C, Luo C. Discovery and characterization of a novel glucose-6-phosphate dehydrogenase (G6PD) inhibitor via high-throughput screening. Bioorg Med Chem Lett 2021; 40:127905. [PMID: 33689874 DOI: 10.1016/j.bmcl.2021.127905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
Altered glucose-6-phosphate dehydrogenase (G6PD) status is influential in many cellular pathophysiological processes and diseases, making G6PD a potential target for cancer therapy. However, the available G6PD inhibitors are very limited and restricted. Here we developed a reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH) absorption photometry assay based on enzyme kinetics to characterize G6PD activity. In this way, we performed a high-throughput screening (HTS) to an in house library. And then we identified compound named Wedelolactone inhibiting G6PD strongly in a non-competitive, reversible way. In addition, we did the surface Plasmon Resonance (SPR) assay and indicated the KD between Wedelolactone and G6PD protein was 3.64 μM. Furthermore, our basic colony formation assay showed the inhibitory effect of Wedelolactone on the proliferation of ovarian cancer cells (IC50 ~ 10 µM). Thus, we provided a high-throughput screening assay to quickly and efficiently discover G6PD inhibitors, and identified Wedelolactone as a G6PD inhibitor, implying that Wedelolactone suppresses ovarian cancer partly through targeting G6PD.
Collapse
Affiliation(s)
- Zhongyuan Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Daohai Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yanjun Liu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Tian Lu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Liping Liu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
41
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
42
|
Sobanski T, Rose M, Suraweera A, O’Byrne K, Richard DJ, Bolderson E. Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy. Front Cell Dev Biol 2021; 9:633305. [PMID: 33834022 PMCID: PMC8021863 DOI: 10.3389/fcell.2021.633305] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
DNA repair and metabolic pathways are vital to maintain cellular homeostasis in normal human cells. Both of these pathways, however, undergo extensive changes during tumorigenesis, including modifications that promote rapid growth, genetic heterogeneity, and survival. While these two areas of research have remained relatively distinct, there is growing evidence that the pathways are interdependent and intrinsically linked. Therapeutic interventions that target metabolism or DNA repair systems have entered clinical practice in recent years, highlighting the potential of targeting these pathways in cancer. Further exploration of the links between metabolic and DNA repair pathways may open new therapeutic avenues in the future. Here, we discuss the dependence of DNA repair processes upon cellular metabolism; including the production of nucleotides required for repair, the necessity of metabolic pathways for the chromatin remodeling required for DNA repair, and the ways in which metabolism itself can induce and prevent DNA damage. We will also discuss the roles of metabolic proteins in DNA repair and, conversely, how DNA repair proteins can impact upon cell metabolism. Finally, we will discuss how further research may open therapeutic avenues in the treatment of cancer.
Collapse
Affiliation(s)
- Thais Sobanski
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Zhang H, Peng D, Shu Y, Zhu D, Hu W, Yu C, Zhang J, Liu S, Wan K, Yuan Z, Liu H, Wang D, Jiang T, Yu J, Zhang P, Zou L. Integrative identification of the pathogenic role of a novel G6PD missense mutation c.697G>C. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:194. [PMID: 33708821 PMCID: PMC7940930 DOI: 10.21037/atm-20-3941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a hereditary disease caused by pathogenic mutations of G6PD. While most of the pathogenic variants of G6PD have been annotated, hemolysis of unknown etiology but analogous to that in G6PD deficiency persists, implying the existence of undocumented pathogenic variants. In our previous study, we reported four novel G6PD variants in China, for which the pathogenicity remains to be verified. Methods The variants were verified by exogenous expression in HEK-293 cells, and their functions were predicted by PolyPhen-2 and SIFT. The CRISPR/Cas9 system was exploited to edit the G6PD c.697G>C variant in HEK-293 cells and K562 cells. The expression of G6PD was detected by quantitative PCR (qPCR) and western blotting. The cell growth capacity was detected by the CCK-8 assay and crystal violet staining. The G6PD enzyme activity was reflected by the G6P/6PG ratio test. The apoptosis of cells was detected by Annexin V-APC/7-AAD staining. The secondary and crystallographic structures were denoted according to the literature and PyMOL software. The G6PD protein was purified from lysis of transformed Escherichia coli (E. coli) cell with Ni-charged Resin Column. The enzymatic activity was detected at different temperatures. Results The G6PD activity of exogenous G6PD c.697G>C in HEK-293 cells was significantly lower than that of wild type (WT) G6PD, a finding that was consistent with the observation in clinical samples. The functional predictions conducted by different algorithms indicated the damage role of the G6PD c.697G>C variant in its enzymatic activity. We recapitulated the G6PD c.697G>C variant both in HEK-293 cells and K562 cells by adapting the CRISPR/Cas9 strategy. Using distinct cell lines expressing the G6PD c.697G>C variant endogenously, we confirmed the deteriorative role of the G6PD c.697G>C variant in its enzymatic activity. Regarding the secondary and crystallographic structure, we found a mutated amino acid approaching the structural NADP+ binding site. Finally, we demonstrated the c.697G>C variant compromised the thermal stability of G6PD protein. Conclusions Our data delineated the pathogenic role of G6PD c.697G>C variant for G6PD deficiency, implying the wide usage of CRISPR/Cas9 for genetic disease research.
Collapse
Affiliation(s)
- Hongyang Zhang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Danyi Peng
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Dan Zhu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Weiwei Hu
- Department of respiratory and critical care medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaowen Yu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Juan Zhang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Shan Liu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Kexing Wan
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhaojian Yuan
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Hao Liu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Dongjuan Wang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Tingting Jiang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Jie Yu
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Penghui Zhang
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Center of Clinical Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Zou
- Center of Clinical Molecular Medicine & Newborn Screening Center, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| |
Collapse
|
44
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Retinoic acid synergizes with the unfolded protein response and oxidative stress to induce cell death in FLT3-ITD+ AML. Blood Adv 2020; 3:4155-4160. [PMID: 31834935 DOI: 10.1182/bloodadvances.2019000540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is often characterized by the expression of fusion or mutant proteins that cause impaired differentiation and enhanced proliferation and survival. The presence of mutant proteins prone to misfolding can render the cells sensitive to endoplasmic reticulum (ER) stress and oxidative stress that could otherwise be overcome. Here, we show that the triple combination of the differentiating agent retinoic acid (RA), the ER stress-inducing drug tunicamycin (Tm), and arsenic trioxide (ATO), able to generate oxidative stress, leads to the death of AML cell lines expressing fusion proteins involving the gene MLL and the internal tandem duplication (ITD) in the FLT3 tyrosine kinase receptor. Importantly, the combination of RA, Tm, and ATO decreased the colony-forming capacity of primary leukemic blasts bearing the FLT-ITD mutation without affecting healthy hematopoietic progenitor cells. We demonstrate in cell lines that combination of these drugs generates ER and oxidative stresses and impairs maturation and causes accumulation of FLT3 protein in the ER. Our data provide a proof of concept that low amounts of drugs that generate ER and oxidative stresses combined with RA could be an effective targeted therapy to hit AML cells characterized by MLL fusion proteins and FLT3-ITD mutation.
Collapse
|
46
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
47
|
Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, Jiang JK, Wilson KM, Zhang X, Sutter P, Wang A, Xu X, Choi K, Tawa G, Lorimer D, Abendroth J, O'Brien E, Hoyt SB, Berman E, Famulare CA, Mulloy JC, Levine RL, Perentesis JP, Thomas CJ, Starczynowski DT. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med 2020; 11:11/508/eaaw8828. [PMID: 31484791 DOI: 10.1126/scitranslmed.aaw8828] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Targeted inhibitors to oncogenic kinases demonstrate encouraging clinical responses early in the treatment course; however, most patients will relapse because of target-dependent mechanisms that mitigate enzyme-inhibitor binding or through target-independent mechanisms, such as alternate activation of survival and proliferation pathways, known as adaptive resistance. Here, we describe mechanisms of adaptive resistance in FMS-like receptor tyrosine kinase (FLT3)-mutant acute myeloid leukemia (AML) by examining integrative in-cell kinase and gene regulatory network responses after oncogenic signaling blockade by FLT3 inhibitors (FLT3i). We identified activation of innate immune stress response pathways after treatment of FLT3-mutant AML cells with FLT3i and showed that innate immune pathway activation via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) complex contributes to adaptive resistance in FLT3-mutant AML cells. To overcome this adaptive resistance mechanism, we developed a small molecule that simultaneously inhibits FLT3 and IRAK1/4 kinases. The multikinase FLT3-IRAK1/4 inhibitor eliminated adaptively resistant FLT3-mutant AML cells in vitro and in vivo and displayed superior efficacy as compared to current targeted FLT3 therapies. These findings uncover a polypharmacologic strategy for overcoming adaptive resistance to therapy in AML by targeting immune stress response pathways.
Collapse
Affiliation(s)
- Katelyn Melgar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan M Walker
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick Sutter
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gregory Tawa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott B Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellin Berman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher A Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA. .,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. .,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
48
|
Liu Q, Garcia M, Wang S, Chen CW. Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells 2020; 9:cells9081888. [PMID: 32806592 PMCID: PMC7465943 DOI: 10.3390/cells9081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The development of high-throughput gene manipulating tools such as short hairpin RNA (shRNA) and CRISPR/Cas9 libraries has enabled robust characterization of novel functional genes contributing to the pathological states of the diseases. In acute myeloid leukemia (AML), these genetic screen approaches have been used to identify effector genes with previously unknown roles in AML. These AML-related genes centralize alongside the cellular pathways mediating epigenetics, signaling transduction, transcriptional regulation, and energy metabolism. The shRNA/CRISPR genetic screens also realized an array of candidate genes amenable to pharmaceutical targeting. This review aims to summarize genes, mechanisms, and potential therapeutic strategies found via high-throughput genetic screens in AML. We also discuss the potential of these findings to instruct novel AML therapies for combating drug resistance in this genetically heterogeneous disease.
Collapse
Affiliation(s)
- Qiao Liu
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Michelle Garcia
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Pomona College, Claremont, CA 91711, USA
| | - Shaoyuan Wang
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
49
|
Yang HC, Stern A, Chiu DTY. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J 2020; 44:285-292. [PMID: 33097441 PMCID: PMC8358196 DOI: 10.1016/j.bj.2020.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic hubs play a major role in the initiation and development of cancer. Oncogenic signaling pathways drive metabolic reprogramming and alter redox homeostasis. G6PD has potential oncogenic activity and it plays a pivotal role in cell proliferation, survival and stress responses. Aberrant activation of G6PD via metabolic reprogramming alters NADPH levels, leading to an antioxidant or a pro-oxidant environment which can either enhance DNA oxidative damage and genomic instability or initiate oncogenic signaling. Nutrient deprivation can rewire metabolism, which leads to mutations that determine a cancer cell's fate. Deregulated G6PD status and oxidative stress form a vicious cycle, which paves the way for cancer progression. This review aims to update and focus the potential role of G6PD in metabolic reprogramming and redox signaling in cancer.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA
| | - Daniel Tsun-Yee Chiu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Pediatric Hematology/Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
50
|
Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines 2020; 8:biomedicines8080245. [PMID: 32722298 PMCID: PMC7459983 DOI: 10.3390/biomedicines8080245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
FLT3-ITD and FLT3-TKD mutations were observed in approximately 20 and 10% of acute myeloid leukemia (AML) cases, respectively. FLT3 inhibitors such as midostaurin, gilteritinib and quizartinib show excellent response rates in patients with FLT3-mutated AML, but its duration of response may not be sufficient yet. The majority of cases gain secondary resistance either by on-target and off-target abnormalities. On-target mutations (i.e., FLT3-TKD) such as D835Y keep the TK domain in its active form, abrogating pharmacodynamics of type II FLT3 inhibitors (e.g., midostaurin and quizartinib). Second generation type I inhibitors such as gilteritinib are consistently active against FLT3-TKD as well as FLT3-ITD. However, a “gatekeeper” mutation F691L shows universal resistance to all currently available FLT3 inhibitors. Off-target abnormalities are consisted with a variety of somatic mutations such as NRAS, AXL and PIM1 that bypass or reinforce FLT3 signaling. Off-target mutations can occur just in the primary FLT3-mutated clone or be gained by the evolution of other clones. A small number of cases show primary resistance by an FL-dependent, FGF2-dependent, and stromal CYP3A4-mediated manner. To overcome these mechanisms, the development of novel agents such as covalently-coupling FLT3 inhibitor FF-10101 and the investigation of combination therapy with different class agents are now ongoing. Along with novel agents, gene sequencing may improve clinical approaches by detecting additional targetable mutations and determining individual patterns of clonal evolution.
Collapse
Affiliation(s)
- Motoki Eguchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Ayumi Kuzume
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| |
Collapse
|