1
|
Nanbakhsh K, Van Gompel M, Ritasalo R, Gollhardt A, Horváth D, Tóth K, Meszéna D, Ulbert I, Serdijn W, Giagka V. An In Vivo Biostability Evaluation of ALD and Parylene-ALD Multilayers as Micro-Packaging Solutions for Small Single-Chip Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410141. [PMID: 39846830 DOI: 10.1002/smll.202410141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used. Microchips are coated with either a ≈100 nm thick inorganic hafnium-based multilayer deposited via atomic layer deposition (ALD-ML), or a ≈6 µm thick hybrid organic-inorganic Parylene C and titanium-based ALD multilayer stack (ParC-ALD-ML). After 7 months of direct exposure to the body environment, the multilayer coatings are evaluated using optical and cross-sectional scanning electron microscopy. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is also used to evaluate the chemical stability and barrier performance of the layers after long-term exposure to body media. Results showed the excellent biostability of the 100 nm ALD-ML coating with no ionic penetration within the layer. For the ParC-ALD-ML, concurrent surface degradation and ion ingress are detected within the top ≈70 nm of the outer Parylene C layer. The results and evaluation techniques presented here can enable future material selection, packaging, and analysis, enhancing the functional stability of future chip-embedded neural implants.
Collapse
Affiliation(s)
- Kambiz Nanbakhsh
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands
| | | | - Riina Ritasalo
- Applied Materials, Finland, Masalantie 365, Masala, 02430, Finland
| | - Astrid Gollhardt
- Department of Environmental & Reliability Engineering, Fraunhofer Institute for Reliability and Microintegration IZM, 13355, Berlin, Germany
| | - Domonkos Horváth
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, 1117, Hungary
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, 1083, Hungary
| | - Kinga Tóth
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, 1117, Hungary
| | - Domokos Meszéna
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, 1117, Hungary
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, 1083, Hungary
| | - István Ulbert
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, 1117, Hungary
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, 1083, Hungary
- Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Amerikai út 57, Budapest, 1145, Hungary
| | - Wouter Serdijn
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands
- Department of Neuroscience Erasmus Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Vasiliki Giagka
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands
| |
Collapse
|
2
|
Wu Y, Zhang X, Ma Z, Hong W, You C, Zhu H, Zong Y, Hu Y, Xu B, Huang G, Di Z, Mei Y. Nanomembrane on Graphene: Delamination Dynamics and 3D Construction. ACS NANO 2025; 19:331-344. [PMID: 39748669 DOI: 10.1021/acsnano.4c07589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes. This fragile adhesion allows for precise delamination under stimulations, such as surface tension, thermal treatment, and mechanical bending. This strategy is compatible with various inorganic materials, including oxides, semiconductors, and metals, and allows for precise control of rolling and folding into 3D microstructures. Demonstrations include tubular microrobots with diverse locomotion and biodegradable nerve scaffolds based on facile delamination. Our nanomembrane-on-graphene strategy offers a versatile platform for the fabrication of functionalized microstructures.
Collapse
Affiliation(s)
- Yue Wu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Xinyuan Zhang
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Zhe Ma
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Weida Hong
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Chunyu You
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Hong Zhu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Yang Zong
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Yuhang Hu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Borui Xu
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
| | - Zengfeng Di
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Yongfeng Mei
- Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, People's Republic of China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
3
|
Liu J, Li Z, Sun M, Zhou L, Wu X, Lu Y, Shao Y, Liu C, Huang N, Hu B, Wu Z, You C, Li L, Wang M, Tao L, Di Z, Sheng X, Mei Y, Song E. Flexible bioelectronic systems with large-scale temperature sensor arrays for monitoring and treatments of localized wound inflammation. Proc Natl Acad Sci U S A 2024; 121:e2412423121. [PMID: 39589888 PMCID: PMC11626133 DOI: 10.1073/pnas.2412423121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Continuous monitoring and closed-loop therapy of soft wound tissues is of particular interest in biomedical research and clinical practices. An important focus is on the development of implantable bioelectronics that can measure time-dependent temperature distribution related to localized inflammation over large areas of wound and offer in situ treatment. Existing approaches such as thermometers/thermocouples provide limited spatial resolution, inapplicable to a wearable/implantable format. Here, we report a conformal, scalable device package that integrates a flexible amorphous silicon-based temperature sensor array and drug-loaded hydrogel for the healing process. This system can enable the spatial temperature mapping at submillimeter resolution and high sensitivity of 0.1 °C, for dynamically localizing the inflammation regions associated with temperature change, automatically followed with heat-triggered drug delivery from hydrogel triggered by wearable infrared light-emitting-diodes. We establish the operational principles experimentally and computationally and evaluate system functionalities with a wide range of targets including live animal models and human subjects. As an example of medical utility, this system can yield closed-loop monitoring/treatments by tracking of temperature distribution over wound areas of live rats, in designs that can be integrated with automated wireless control. These findings create broad utilities of these platforms for clinical diagnosis and advanced therapy for wound healthcare.
Collapse
Affiliation(s)
- Junhan Liu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Zhongzheng Li
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Mubai Sun
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun130033, China
| | - Lianjie Zhou
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Xiaojun Wu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
| | - Yifei Lu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai200065, China
| | - Chang Liu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Ningge Huang
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Bofan Hu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Zhongyuan Wu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Chunyu You
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Lizhu Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Ming Wang
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
| | - Ling Tao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai200030, China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing100084, China
- Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Yongfeng Mei
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Enming Song
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| |
Collapse
|
4
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
5
|
Ryu J, Qiang Y, Chen L, Li G, Han X, Woon E, Bai T, Qi Y, Zhang S, Liou JY, Seo KJ, Feng B, Fang H. Multifunctional Nanomesh Enables Cellular-Resolution, Elastic Neuroelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403141. [PMID: 39011796 PMCID: PMC11410539 DOI: 10.1002/adma.202403141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single-unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self-conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high-fidelity recording of single-unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single-cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics.
Collapse
Affiliation(s)
- Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xun Han
- Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, China
| | - Eric Woon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jyun-You Liou
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Science Corporation, 300 Wind River Way, Alameda, CA, 94501, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
6
|
Mariello M, Rosenthal JD, Cecchetti F, Gao M, Skrivervik AK, Leterrier Y, Lacour SP. Wireless, battery-free, and real-time monitoring of water permeation across thin-film encapsulation. Nat Commun 2024; 15:7443. [PMID: 39198382 PMCID: PMC11358307 DOI: 10.1038/s41467-024-51247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Long-term bioelectronic implants require stable, hermetic encapsulation. Water and ion ingress are challenging to quantify, especially in miniaturized microsystems and over time. We propose a wireless and battery-free flexible platform leveraging backscatter communication and magnesium (Mg)-based microsensors. Water permeation through the encapsulation induces corrosion of the Mg resistive sensor thereby shifting the oscillation frequency of the sensing circuit. Experimental in vitro and in-tissue characterization provides information on the operation of the platform and demonstrates the robustness and accuracy of this promising method, revealing its significance for in-situ real-time monitoring of implanted bioelectronics.
Collapse
Affiliation(s)
- Massimo Mariello
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - James Daniel Rosenthal
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | | | - Mingxiang Gao
- Microwaves and Antennas Group (MAG), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anja K Skrivervik
- Microwaves and Antennas Group (MAG), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
7
|
Wan Y, Wang C, Zhang B, Liu Y, Yang H, Liu F, Xu J, Xu S. Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:3799. [PMID: 38931581 PMCID: PMC11207811 DOI: 10.3390/s24123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Implantable bioelectronics hold tremendous potential in the field of healthcare, yet the performance of these systems heavily relies on the interfaces between artificial machines and living tissues. In this paper, we discuss the recent developments of tethered interfaces, as well as those of non-tethered interfaces. Among them, systems that study neural activity receive significant attention due to their innovative developments and high relevance in contemporary research, but other functional types of interface systems are also explored to provide a comprehensive overview of the field. We also analyze the key considerations, including perforation site selection, fixing strategies, long-term retention, and wireless communication, highlighting the challenges and opportunities with stable, effective, and biocompatible interfaces. Furthermore, we propose a primitive model of biocompatible electrical and optical interfaces for implantable systems, which simultaneously possesses biocompatibility, stability, and convenience. Finally, we point out the future directions of interfacing strategies.
Collapse
Affiliation(s)
- Yuxin Wan
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Caiyi Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yixuan Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Hailong Yang
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Fengyu Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Jingjing Xu
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Wu K, Mariello M, Leterrier Y, Lacour SP. Optical Monitoring of Water Side Permeation in Thin Film Encapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310201. [PMID: 38320746 DOI: 10.1002/adma.202310201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Indexed: 03/20/2024]
Abstract
The stability of long-term microfabricated implants is hindered by the presence of multiple water diffusion paths within artificially patterned thin-film encapsulations. Side permeation, defined as infiltration of molecules through the lateral surface of the thin structure, becomes increasingly critical with the trend of developing high-density and miniaturized neural electrodes. However, current permeability measurement methods do not account for side permeation accurately nor quantitatively. Here, a novel optical, magnesium (Mg)-based method is proposed to quantify the side water transmission rate (SWTR) through thin film encapsulation and validate the approach using micrometric polyimide (PI) and polyimide-silicon carbide (PI-SiC) multilayers. Through computed digital grayscale images collected with corroding Mg film microcells coated with the thin encapsulation, side and surface WTRs are quantified. A 4.5-fold ratio between side and surface permeation is observed, highlighting the crucial role of the PI-PI interface in lateral diffusion. Universal guidelines for the design of flexible, hermetic neural interfaces are proposed. Increasing encapsulation's width (interelectrode spacing), creating stronger interfacial interactions, and integrating high-barrier interlayers such as SiC significantly enhance the lateral hermeticity.
Collapse
Affiliation(s)
- Kangling Wu
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| | - Massimo Mariello
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
- Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces (LSBI), Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| |
Collapse
|
9
|
Cui Y, Sun M, Liu C, Deng Y. All-inorganic ultrathin high-sensitivity transparent temperature sensor based on a Mn-Co-Ni-O nanofilm. MICROSYSTEMS & NANOENGINEERING 2024; 10:70. [PMID: 38803351 PMCID: PMC11128445 DOI: 10.1038/s41378-024-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
The demand for optically transparent temperature sensors in intelligent devices is increasing. However, the performance of these sensors, particularly in terms of their sensitivity and resolution, must be further enhanced. This study introduces a novel transparent and highly sensitive temperature sensor characterized by its ultrathin, freestanding design based on a Mn-Co-Ni-O nanofilm. The Mn-Co-Ni-O-based sensor exhibits remarkable sensitivity, with a temperature coefficient of resistance of -4% °C-1, and can detect minuscule temperature fluctuations as small as 0.03 °C. Additionally, the freestanding sensor can be transferred onto any substrate for versatile application while maintaining robust structural stability and excellent resistance to interference, indicating its suitability for operation in challenging environments. Its practical utility in monitoring the surface temperature of optical devices is demonstrated through vertical integration of the sensor and a micro light-emitting diode on a polyimide substrate. Moreover, an experiment in which the sensor is implanted in rats confirms its favorable biocompatibility, highlighting the promising applications of the sensor in the biomedical domain.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| |
Collapse
|
10
|
Gutruf P. Monolithically Defined Wireless Fully Implantable Nervous System Interfaces. Acc Chem Res 2024; 57:1275-1286. [PMID: 38608256 DOI: 10.1021/acs.accounts.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Evolution of implantable neural interfaces is critical in addressing the challenges in understanding the fundamental working principles and therapeutic applications for central and peripheral nervous systems. Traditional approaches utilizing hermetically sealed, rigid electronics and detached electrodes face challenges in power supply, encapsulation, channel count, dispersed application location, and modality. Employing thin-film, wirelessly powered devices is promising to expand capabilities. Devices that forego bulky power supplies, favoring a configuration where electronics are integrated directly onto thin films, reduce displacement volumes for seamless, fully implantable interfaces with high energy availability and soft mechanics to conform to the neuronal target. We discuss 3 device architectures: (1) Highly miniaturized devices that merge electronics and neural interfaces into a single, injectable format; (2) Interfaces that consolidate power, computation, and neural connectivity on a thin sheet applied directly to the target area; (3) A spatially dislocated approach where power and computation are situated subdermally, connected via a thin interconnect to the neural interface.Each has advantages and constraints in terms of implantation invasiveness, power capturing efficiency, and directional sensitivity of power delivery. In powering these devices, near-field power delivery emerges as the most implemented technique. Key parameters are size and volume of primary and secondary antennas, which determine coupling efficiency and power delivery. Based on application requirements, ranging from small to large animal models, subjects require system level designs. Material strategies play a crucial role; monolithic designs, with materials like polyimide substrates, enable scalability with high performance. This contrasts with established hermetic encapsulation approaches that use a stainless steel or titanium box with passthroughs that result in large tissue displacements and prohibit intimate integration with target organ systems. Encapsulation, particularly with parylene, enables longevity and effectiveness; more research is needed to enable human lifetime operation. Implant-to-ambient device communication, focusing on strategies compatible with well-established standards and off-the-shelf electronics, is discussed with the goal of enabling seamless system integration, reliability, and scalability. The interface with the central nervous system is explored through various wireless, battery-free devices capable of both stimulation (electrical and optogenetic) and recording (photometric and electrochemical). These devices show advanced capabilities for chronic studies and insights into neural dynamics. In the peripheral nervous system, stimulation devices for applications, such as spinal and muscle stimulation, are discussed. The challenges lie in the mechanical and electrochemical durability. Examples that successfully navigate these challenges offer solutions for chronic studies in this domain. The potential of wireless, fully implantable nervous system interfaces using near field resonant power transfer is characterized by monolithically defined device architecture, providing a significant leap toward seamless access to the central and peripheral nervous systems. New avenues for research and therapeutic applications supporting a multimodal and multisite approach to neuromodulation with a high degree of connectivity and a holistic approach toward deciphering and supplementing the nervous system may enable recovery and treatment of injury and chronic disease.
Collapse
Affiliation(s)
- Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
11
|
Zhao H, Liu M, Guo Q. Silicon-based transient electronics: principles, devices and applications. NANOTECHNOLOGY 2024; 35:292002. [PMID: 38599177 DOI: 10.1088/1361-6528/ad3ce1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Recent advances in materials science, device designs and advanced fabrication technologies have enabled the rapid development of transient electronics, which represents a class of devices or systems that their functionalities and constitutions can be partially/completely degraded via chemical reaction or physical disintegration over a stable operation. Therefore, numerous potentials, including zero/reduced waste electronics, bioresorbable electronic implants, hardware security, and others, are expected. In particular, transient electronics with biocompatible and bioresorbable properties could completely eliminate the secondary retrieval surgical procedure after their in-body operation, thus offering significant potentials for biomedical applications. In terms of material strategies for the manufacturing of transient electronics, silicon nanomembranes (SiNMs) are of great interest because of their good physical/chemical properties, modest mechanical flexibility (depending on their dimensions), robust and outstanding device performances, and state-of-the-art manufacturing technologies. As a result, continuous efforts have been made to develop silicon-based transient electronics, mainly focusing on designing manufacturing strategies, fabricating various devices with different functionalities, investigating degradation or failure mechanisms, and exploring their applications. In this review, we will summarize the recent progresses of silicon-based transient electronics, with an emphasis on the manufacturing of SiNMs, devices, as well as their applications. After a brief introduction, strategies and basics for utilizing SiNMs for transient electronics will be discussed. Then, various silicon-based transient electronic devices with different functionalities are described. After that, several examples regarding on the applications, with an emphasis on the biomedical engineering, of silicon-based transient electronics are presented. Finally, summary and perspectives on transient electronics are exhibited.
Collapse
Affiliation(s)
- Haonan Zhao
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Min Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Qinglei Guo
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
12
|
Hu Z, Guo H, An D, Wu M, Kaura A, Oh H, Wang Y, Zhao M, Li S, Yang Q, Ji X, Li S, Wang B, Yoo D, Tran P, Ghoreishi-Haack N, Kozorovitskiy Y, Huang Y, Li R, Rogers JA. Bioresorbable Multilayer Organic-Inorganic Films for Bioelectronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309421. [PMID: 38339983 DOI: 10.1002/adma.202309421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure.
Collapse
Affiliation(s)
- Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Hexia Guo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dongqi An
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingzheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Anika Kaura
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hannah Oh
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengjia Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Quansan Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Bo Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Davin Yoo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Phuong Tran
- Developmental Therapeutics Core, Northwestern University, Evanston, IL, 60208, USA
| | | | | | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rui Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Department of Neurological Surgery, Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
13
|
Hu Z, Zhao J, Guo H, Li R, Wu M, Shen J, Wang Y, Qiao Z, Xu Y, Haugstad G, An D, Xie Z, Kandela I, Nandoliya KR, Chen Y, Yu Y, Yuan Q, Hou J, Deng Y, AlDubayan AH, Yang Q, Zeng L, Lu D, Koo J, Bai W, Song E, Yao S, Wolverton C, Huang Y, Rogers JA. Ultrathin, Transferred Layers of Silicon Oxynitrides as Tunable Biofluid Barriers for Bioresorbable Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307782. [PMID: 38303684 DOI: 10.1002/adma.202307782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma-enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer-scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light-emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements.
Collapse
Affiliation(s)
- Ziying Hu
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jie Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Hexia Guo
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rui Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingzheng Wu
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Wang
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zheng Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Xu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, 100 Union St. SE, Minneapolis, MN, 55455, USA
| | - Dongqi An
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
- Chemistry Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yu Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yi Yu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Qunyao Yuan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Junyu Hou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yujun Deng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdulaziz H AlDubayan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Quansan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Liangsong Zeng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Di Lu
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jahyun Koo
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Wubin Bai
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Enming Song
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Shenglian Yao
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Department of Neurological Surgery, and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
14
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Le Floch P, Zhao S, Liu R, Molinari N, Medina E, Shen H, Wang Z, Kim J, Sheng H, Partarrieu S, Wang W, Sessler C, Zhang G, Park H, Gong X, Spencer A, Lee J, Ye T, Tang X, Wang X, Bertoldi K, Lu N, Kozinsky B, Suo Z, Liu J. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. NATURE NANOTECHNOLOGY 2024; 19:319-329. [PMID: 38135719 DOI: 10.1038/s41565-023-01545-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/16/2023] [Indexed: 12/24/2023]
Abstract
Electronic devices for recording neural activity in the nervous system need to be scalable across large spatial and temporal scales while also providing millisecond and single-cell spatiotemporal resolution. However, existing high-resolution neural recording devices cannot achieve simultaneous scalability on both spatial and temporal levels due to a trade-off between sensor density and mechanical flexibility. Here we introduce a three-dimensional (3D) stacking implantable electronic platform, based on perfluorinated dielectric elastomers and tissue-level soft multilayer electrodes, that enables spatiotemporally scalable single-cell neural electrophysiology in the nervous system. Our elastomers exhibit stable dielectric performance for over a year in physiological solutions and are 10,000 times softer than conventional plastic dielectrics. By leveraging these unique characteristics we develop the packaging of lithographed nanometre-thick electrode arrays in a 3D configuration with a cross-sectional density of 7.6 electrodes per 100 µm2. The resulting 3D integrated multilayer soft electrode array retains tissue-level flexibility, reducing chronic immune responses in mouse neural tissues, and demonstrates the ability to reliably track electrical activity in the mouse brain or spinal cord over months without disrupting animal behaviour.
Collapse
Affiliation(s)
- Paul Le Floch
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Axoft, Inc., Cambridge, MA, USA
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Nicola Molinari
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Eder Medina
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Hao Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Junsoo Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Hao Sheng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Sebastian Partarrieu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Wenbo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Chanan Sessler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guogao Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | | | | | | | | | | | - Xin Tang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katia Bertoldi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Robert Bosch LLC Research and Technology Center, Watertown, MA, USA
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
16
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
17
|
Kang K, Ye S, Jeong C, Jeong J, Ye YS, Jeong JY, Kim YJ, Lim S, Kim TH, Kim KY, Kim JU, Kim GI, Chun DH, Kim K, Park J, Hong JH, Park B, Kim K, Jung S, Baek K, Cho D, Yoo J, Lee K, Cheng H, Min BW, Kim HJ, Jeon H, Yi H, Kim TI, Yu KJ, Jung Y. Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function. Nat Commun 2024; 15:10. [PMID: 38169465 PMCID: PMC10762199 DOI: 10.1038/s41467-023-44064-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.
Collapse
Affiliation(s)
- Kyowon Kang
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Seongryeol Ye
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jinmo Jeong
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yeong-Sinn Ye
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin-Young Jeong
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Jin Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Selin Lim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea
| | - Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Fusion Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Kyung Yeun Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Gwan In Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Do Hoon Chun
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kiho Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jaejin Park
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jung-Hoon Hong
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Byeonghak Park
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kyubeen Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sujin Jung
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyeongrim Baek
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Dongjun Cho
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jin Yoo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Byung-Wook Min
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyun Jae Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Materials Science and Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ki Jun Yu
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Zhao S, Zhao Y, Li C, Wang W, Liu HY, Cui L, Li X, Yang Z, Zhang A, Wang Y, Lin Y, Hao T, Yin J, Kang J, Zhu J. Aramid Nanodielectrics for Ultraconformal Transparent Electronic Skins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305479. [PMID: 37705254 DOI: 10.1002/adma.202305479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/09/2023] [Indexed: 09/15/2023]
Abstract
On-skin electronics require minimal thicknesses and decent transparency for conformal contact, imperceptible wearing, and visual aesthetics. It is challenging to search for advanced ultrathin dielectrics capable of supporting the active components while maintaining bending softness, easy handling, and wafer-scale processability. Here, self-delaminated aramid nanodielectrics (ANDs) are demonstrated, enabling any skin-like electronics easily exfoliated from the processing substrates after complicated nanofabrication. In addition, ANDs are mechanically strong, chemically and thermally stable, transparent and breathable, therefore are ideal substrates for soft electronics. As demonstrated, compliant epidermal electrodes comprising silver nanowires and ANDs can successfully record high-quality electromyogram signals with low motion artifacts and satisfying sweat and water resistance. Furthermore, ANDs can serve as both substrates and dielectrics in single-walled carbon nanotube field-effect transistors (FETs) with a merely 160-nm thickness, which can be operated within 4 V with on/off ratios of 1.4 ± 0.5 × 105 , mobilities of 39.9 ± 2.2 cm2 V-1 s-1 , and negligible hysteresis. The ultraconformal FETs can function properly when wrapped around human hair without any degradation in performance.
Collapse
Affiliation(s)
- Sanchuan Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yingtao Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Chenning Li
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Hai-Yang Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Xiang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Zhenhua Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Anni Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yurou Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Tailang Hao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
19
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Park J, Kim K, Kim Y, Kim TS, Min IS, Li B, Cho YU, Lee C, Lee JY, Gao Y, Kang K, Kim DH, Choi WJ, Shin HB, Kang HK, Song YM, Cheng H, Cho IJ, Yu KJ. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. SCIENCE ADVANCES 2023; 9:eadi8918. [PMID: 37756405 PMCID: PMC10530225 DOI: 10.1126/sciadv.adi8918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Numerous wireless optogenetic systems have been reported for practical tether-free optogenetics in freely moving animals. However, most devices rely on battery-powered or coil-powered systems requiring periodic battery replacement or bulky, high-cost charging equipment with delicate antenna design. This leads to spatiotemporal constraints, such as limited experimental duration due to battery life or animals' restricted movement within specific areas to maintain wireless power transmission. In this study, we present a wireless, solar-powered, flexible optoelectronic device for neuromodulation of the complete freely behaving subject. This device provides chronic operation without battery replacement or other external settings including impedance matching technique and radio frequency generators. Our device uses high-efficiency, thin InGaP/GaAs tandem flexible photovoltaics to harvest energy from various light sources, which powers Bluetooth system to facilitate long-term, on-demand use. Observation of sustained locomotion behaviors for a month in mice via secondary motor cortex area stimulation demonstrates the notable capabilities of our device, highlighting its potential for space-free neuromodulating applications.
Collapse
Affiliation(s)
- Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyubeen Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yujin Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Soo Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In Sik Min
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Bowen Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Young Uk Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chanwoo Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Young Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kyowon Kang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Do Hyeon Kim
- School of Electrical Engineering and Computer Science (EECS), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Won Jun Choi
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hyun-Beom Shin
- Korea Advanced Nano Fab Center (KANC), Suwon 443-270, Korea
| | - Ho Kwan Kang
- Korea Advanced Nano Fab Center (KANC), Suwon 443-270, Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science (EECS), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
21
|
Seo KJ, Hill M, Ryu J, Chiang CH, Rachinskiy I, Qiang Y, Jang D, Trumpis M, Wang C, Viventi J, Fang H. A Soft, High-Density Neuroelectronic Array. NPJ FLEXIBLE ELECTRONICS 2023; 7:40. [PMID: 37692908 PMCID: PMC10487278 DOI: 10.1038/s41528-023-00271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/23/2023] [Indexed: 09/12/2023]
Abstract
Techniques to study brain activities have evolved dramatically, yet tremendous challenges remain in acquiring high-throughput electrophysiological recordings minimally invasively. Here, we develop an integrated neuroelectronic array that is filamentary, high-density and flexible. Specifically, with a design of single-transistor multiplexing and current sensing, the total 256 neuroelectrodes achieve only a 2.3 × 0.3 mm2 area, unprecedentedly on a flexible substrate. A novel single-transistor multiplexing acquisition circuit further reduces noise from the electrodes, decreased the footprint of each pixel, and potentially increased the device lifetime. The filamentary neuroelectronic array also integrates with a rollable contact pad design, allowing the device to be injected through a syringe, enabling potential minimally invasive array delivery. Successful acute auditory experiments in rats validate the ability of the array to record neural signals with high tone decoding accuracy. Together, these results establish soft, high-density neuroelectronic arrays as promising devices for neuroscience research and clinical applications.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Mackenna Hill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Iakov Rachinskiy
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Dongyeol Jang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Charles Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 USA
| |
Collapse
|
22
|
Han WB, Ko GJ, Yang SM, Kang H, Lee JH, Shin JW, Jang TM, Han S, Kim DJ, Lim JH, Rajaram K, Bandodkar AJ, Hwang SW. Micropatterned Elastomeric Composites for Encapsulation of Transient Electronics. ACS NANO 2023. [PMID: 37497757 DOI: 10.1021/acsnano.3c03063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although biodegradable, transient electronic devices must dissolve or decompose via environmental factors, an effective waterproofing or encapsulation system is essential for reliable, durable operation for a desired period of time. Existing protection approaches use multiple or alternate layers of electrically inactive organic/inorganic elements combined with polymers; however, their high mechanical stiffness is not suitable for soft, time-dynamic biological tissues/skins/organs. Here, we introduce a stretchable, bioresorbable encapsulant using nanoparticle-incorporated elastomeric composites with modifications of surface morphology. Nature-inspired micropatterns reduce the diffusion area for water molecules, and embedded nanoparticles impede water permeation, which synergistically enhances the water-barrier performance. Empirical and theoretical evaluations validate the encapsulation mechanisms under strains. Demonstration of a soft, degradable shield with an optical component under a biological solution highlights the potential applicability of the proposed encapsulation strategy.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Amay Jairaj Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
23
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
24
|
Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023; 7:405-423. [PMID: 33686282 PMCID: PMC8423863 DOI: 10.1038/s41551-021-00683-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Tethered and battery-powered devices that interface with neural tissues can restrict natural motions and prevent social interactions in animal models, thereby limiting the utility of these devices in behavioural neuroscience research. In this Review Article, we discuss recent progress in the development of miniaturized and ultralightweight devices as neuroengineering platforms that are wireless, battery-free and fully implantable, with capabilities that match or exceed those of wired or battery-powered alternatives. Such classes of advanced neural interfaces with optical, electrical or fluidic functionality can also combine recording and stimulation modalities for closed-loop applications in basic studies or in the practical treatment of abnormal physiological processes.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Le Cai
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute and Neuroscience GIDP, University of Arizona, Tucson, AZ, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
25
|
Kashaninejad N, Nguyen NT. Microfluidic solutions for biofluids handling in on-skin wearable systems. LAB ON A CHIP 2023; 23:913-937. [PMID: 36628970 DOI: 10.1039/d2lc00993e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-skin wearable systems for biofluid sampling and biomarker sensing can revolutionize the current practices in healthcare monitoring and personalized medicine. However, there is still a long path toward complete market adoption and acceptance of this fascinating technology. Accordingly, microfluidic science and technology can provide excellent solutions for bridging the gap between basic research and clinical research. The research gap has led to the emerging field of epidermal microfluidics. Moreover, recent advances in the fabrication of highly flexible and stretchable microfluidic systems have revived the concept of micro elastofluidics, which can provide viable solutions for on-skin wearable biofluid handling. In this context, this review highlights the current state-of-the-art platforms in this field and discusses the potential technologies that can be used for on-skin wearable devices. Toward this aim, we first compare various microfluidic platforms that could be used for on-skin wearable devices. These platforms include semiconductor-based, polymer-based, liquid metal-based, paper-based, and textile-based microfluidics. Next, we discuss how these platforms can enhance the stretchability of on-skin wearable biosensors at the device level. Next, potential microfluidic solutions for collecting, transporting, and controlling the biofluids are discussed. The application of finger-powered micropumps as a viable solution for precise and on-demand biofluid pumping is highlighted. Finally, we present the future directions of this field by emphasizing the applications of droplet-based microfluidics, stretchable continuous-flow micro elastofluidics, stretchable superhydrophobic surfaces, liquid beads as a form of digital micro elastofluidics, and topological liquid diodes that received less attention but have enormous potential to be integrated into on-skin wearable devices.
Collapse
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
26
|
Khodagholy D, Ferrero JJ, Park J, Zhao Z, Gelinas JN. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci 2022; 45:968-983. [PMID: 36404457 PMCID: PMC10437206 DOI: 10.1016/j.tins.2022.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Cognitive functions are increasingly understood to involve coordinated activity patterns between multiple brain regions, and their disruption by neuropsychiatric disorders is similarly complex. Closed-loop neurostimulation can directly modulate neural signals with temporal and spatial precision. How to leverage such an approach to effectively identify and target distributed neural networks implicated in mediating cognition remains unclear. We review current conceptual and technical advances in this area, proposing that devices that enable large-scale acquisition, integrated processing, and multiregion, arbitrary waveform stimulation will be critical for mechanistically driven manipulation of cognitive processes in physiological and pathological brain networks.
Collapse
Affiliation(s)
- Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jaehyo Park
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA..
| |
Collapse
|
27
|
Wu J, Wang N, Xie YR, Liu H, Huang X, Cong X, Chen HY, Ma J, Liu F, Zhao H, Zhang J, Tan PH, Wang H. Polymer-like Inorganic Double Helical van der Waals Semiconductor. NANO LETTERS 2022; 22:9054-9061. [PMID: 36321634 DOI: 10.1021/acs.nanolett.2c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In high-performance flexible and stretchable electronic devices, conventional inorganic semiconductors made of rigid and brittle materials typically need to be configured into geometrically deformable formats and integrated with elastomeric substrates, which leads to challenges in scaling down device dimensions and complexities in device fabrication and integration. Here we report the extraordinary mechanical properties of the newly discovered inorganic double helical semiconductor tin indium phosphate. This spiral-shape double helical crystal shows the lowest Young's modulus (13.6 GPa) among all known stable inorganic materials. The large elastic (>27%) and plastic (>60%) bending strains are also observed and attributed to the easy slippage between neighboring double helices that are coupled through van der Waals interactions, leading to the high flexibility and deformability among known semiconducting materials. The results advance the fundamental understanding of the unique polymer-like mechanical properties and lay the foundation for their potential applications in flexible electronics and nanomechanics disciplines.
Collapse
Affiliation(s)
- Jiangbin Wu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California90089, United States
| | - Nan Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California90089, United States
| | - Ya-Ru Xie
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Hefei Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California90089, United States
| | - Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California90089, United States
| | - Xin Cong
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Hung-Yu Chen
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California90089, United States
| | - Jiahui Ma
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California90089, United States
| | - Fanxin Liu
- Collaborative Innovation Center for Information Technology in Biological and Medical Physics, and College of Science, Zhejiang University of Technology, Hangzhou310023, P. R. China
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California90089, United States
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Han Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California90089, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California90089, United States
| |
Collapse
|
28
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
29
|
Li Y, Wu G, Song G, Lu SH, Wang Z, Sun H, Zhang Y, Wang X. Soft, Pressure-Tolerant, Flexible Electronic Sensors for Sensing under Harsh Environments. ACS Sens 2022; 7:2400-2409. [PMID: 35952377 DOI: 10.1021/acssensors.2c01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Energy-efficient, miniaturized electronic ocean sensors for monitoring and recording various environmental parameters remain a challenge because conventional ocean sensors require high-pressure chambers and seals to survive the large hydrostatic pressure and harsh ocean environment, which usually entail a high-power supply and large size of the sensor system. Herein, we introduce soft, pressure-tolerant, flexible electronic sensors that can operate under large hydrostatic pressure and salinity environments, thereby eliminating the need for pressure chambers and reducing the power consumption and sensor size. Using resistive temperature and conductivity (salinity) sensors as an example for demonstration, the soft sensors are made of lithographically patterned metal thin films (100 nm) encapsulated with soft oil-infused elastomers and tested in a customized pressure vessel with well-controlled pressure and temperature conditions. The resistance of the temperature and pressure sensors increases linearly with a temperature range of 5-38 °C and salinity levels of 30-40 Practical Salinity Unit (PSU), respectively, relevant for this application. Pressure (up to 15 MPa) has shown a negligible effect on the performance of the temperature and salinity sensors, demonstrating their large pressure-tolerance capability. In addition, both temperature and salinity sensors have exhibited excellent cyclic loading behaviors with negligible hysteresis. Encapsulated with our developed soft oil-infused elastomer (PDMS, poly(dimethylsiloxane)), the sensor has shown excellent performance under a 35 PSU salinity water environment for more than 7 months. The soft, pressure-tolerant and noninvasive electronic sensors reported here are suitable for integration with many platforms including animal tags, profiling floats, diving equipment, and physiological monitoring.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Guangfu Wu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Gyuho Song
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shao-Hao Lu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zizheng Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - He Sun
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
30
|
Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator. Proc Natl Acad Sci U S A 2022; 119:e2203287119. [PMID: 35939711 PMCID: PMC9388084 DOI: 10.1073/pnas.2203287119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.
Collapse
|
31
|
Mariello M, Kim K, Wu K, Lacour SP, Leterrier Y. Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201129. [PMID: 35353928 DOI: 10.1002/adma.202201129] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronic implantable systems (BIS) targeting biomedical and clinical research should combine long-term performance and biointegration in vivo. Here, recent advances in novel encapsulations to protect flexible versions of such systems from the surrounding biological environment are reviewed, focusing on material strategies and synthesis techniques. Considerable effort is put on thin-film encapsulation (TFE), and specifically organic-inorganic multilayer architectures as a flexible and conformal alternative to conventional rigid cans. TFE is in direct contact with the biological medium and thus must exhibit not only biocompatibility, inertness, and hermeticity but also mechanical robustness, conformability, and compatibility with the manufacturing of microfabricated devices. Quantitative characterization methods of the barrier and mechanical performance of the TFE are reviewed with a particular emphasis on water-vapor transmission rate through electrical, optical, or electrochemical principles. The integrability and functionalization of TFE into functional bioelectronic interfaces are also discussed. TFE represents a must-have component for the next-generation bioelectronic implants with diagnostic or therapeutic functions in human healthcare and precision medicine.
Collapse
Affiliation(s)
- Massimo Mariello
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Kyungjin Kim
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Kangling Wu
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Electrical and MicroEngineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
32
|
Dong Y, Chen S, Liu TL, Li J. Materials and Interface Designs of Waterproof Field-Effect Transistor Arrays for Detection of Neurological Biomarkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106866. [PMID: 35023615 PMCID: PMC8930526 DOI: 10.1002/smll.202106866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The continuous, real-time, and concurrent detection of multiple biomarkers in bodily fluids is of high significance for advanced healthcare. While active, semiconductor-based biochemical sensing platforms provide levels of functionality exceeding those of their conventional passive counterparts, the stability of the active biosensors in the liquid environment for continuous operation remains a challenging topic. This work reports the development of a class of flexible and waterproof field-effect transistor arrays for multiplexed biochemical sensing. In this design, monolithic, ultrathin, dense, and low defect nanomembranes consisting of monocrystalline Si and thermally grown SiO2 simultaneously serve as high-performance backplane electronics for signal transduction and stable biofluid barriers with high structural integrity due to the high formation temperature. Coupling the waterproof transistors with various ion-selective membranes through the gate electrode allows for sensitive and selective detection of multiple ions as biomarkers for traumatic brain injury. The study also demonstrates a similar encapsulation structure which enables the design of waterproof amperometric sensors based on this materials strategy and integration scheme. Overall, key advantages in flexibility, stability, and multifunctionality highlight the potential of using such electronic sensing platforms for concurrent, continuous detection of various neurological biomarkers, proving a promising approach for early diagnosis and intervention of chronic diseases.
Collapse
Affiliation(s)
- Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, Chronic Brain Injury Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
33
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
34
|
Oldroyd P, Malliaras GG. Achieving long-term stability of thin-film electrodes for neurostimulation. Acta Biomater 2022; 139:65-81. [PMID: 34020055 DOI: 10.1016/j.actbio.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Implantable electrodes that can reliably measure brain activity and deliver an electrical stimulus to a target tissue are increasingly employed to treat various neurological diseases and neuropsychiatric disorders. Flexible thin-film electrodes have gained attention over the past few years to minimise invasiveness and damage upon implantation. Research has previously focused on optimising the electrode's electrical and mechanical properties; however, their chronic stability must be validated to translate electrodes from a research to a clinical application. Neurostimulation electrodes, which actively inject charge, have yet to reliably demonstrate continuous functionality for ten years or more in vivo, the accepted metric for clinical viability. Long-term stability can only be achieved if the focus switches to investigating how and why such devices fail. Unfortunately, there is a field-wide reluctance to investigate device stability and failures, which hinders device optimisation. This review surveys thin-film electrode designs with a focus on adhesion between electrode layers and the interactions with the surrounding environment. A comprehensive summary of the abiotic failure modes faced by such electrodes is presented, and to encourage investigation, systematic methods for analysing their origin are recommended. Finally, approaches to reducing the likelihood of device failure are offered. STATEMENT OF SIGNIFICANCE: Neural electrodes that can deliver an electrical stimulus to a target tissue are widely used to treat various neurological diseases. Essential to the function of these electrodes is the ability to safely stimulate the target tissue for extended periods (> 10 years); however, this has not yet been clinically achieved. The key to achieving long-term stability is an increased understanding of electrode interactions with the surrounding tissue and subsequent systematic analysis of their failure modes. This review highlights the need for a change in the approach to investigating electrode failure, and in doing so summarizes the common ways in which neural electrodes fail, methods for identifying them and approaches to preventing them.
Collapse
|
35
|
Chen S, Dong Y, Liu TL, Li J. Waterproof, flexible field-effect transistors with submicron monocrystalline Si nanomembrane derived encapsulation for continuous pH sensing. Biosens Bioelectron 2022; 195:113683. [PMID: 34619484 PMCID: PMC8568660 DOI: 10.1016/j.bios.2021.113683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
To understand the physio-pathological state of patients suffering from chronic diseases, scientists and clinicians need sensors to track chemical signals in real-time. However, the lack of stable, safe, and scalable biochemical sensing platforms capable of continuous operation in liquid environments imposes significant challenges in the timely diagnosis, intervention, and treatment of chronic conditions. This work reports a novel strategy for fabricating waterproof and flexible biochemical sensors with active electronic components, which feature a submicron encapsulation layer derived from monocrystalline Si nanomembranes with a high structural integrity due to the high formation temperature (>1000 °C). The ultrathin, yet dense and low-defect encapsulation enables continuous operation of field-effect transistors in biofluids for chemical sensing. The excellent stability in liquid environment and pH sensing performance of such transistors suggest their great potential as the foundation of waterproof and scalable biochemical sensors with active functionalities in the future. The understandings, knowledge base, and demonstrations for pH sensing reported here set the stage for the next generation long-term biosensing with a broad applicability in biomedical research, food science, and advanced healthcare.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Khalifa A, Lee S, Molnar AC, Cash S. Injectable wireless microdevices: challenges and opportunities. Bioelectron Med 2021; 7:19. [PMID: 34937565 PMCID: PMC8697496 DOI: 10.1186/s42234-021-00080-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
In the past three decades, we have witnessed unprecedented progress in wireless implantable medical devices that can monitor physiological parameters and interface with the nervous system. These devices are beginning to transform healthcare. To provide an even more stable, safe, effective, and distributed interface, a new class of implantable devices is being developed; injectable wireless microdevices. Thanks to recent advances in micro/nanofabrication techniques and powering/communication methodologies, some wireless implantable devices are now on the scale of dust (< 0.5 mm), enabling their full injection with minimal insertion damage. Here we review state-of-the-art fully injectable microdevices, discuss their injection techniques, and address the current challenges and opportunities for future developments.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sunwoo Lee
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | | | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Nawaz A, Liu Q, Leong WL, Fairfull-Smith KE, Sonar P. Organic Electrochemical Transistors for In Vivo Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101874. [PMID: 34606146 DOI: 10.1002/adma.202101874] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors (OECTs) are presently a focus of intense research and hold great potential in expanding the horizons of the bioelectronics industry. The notable characteristics of OECTs, including their electrolyte-gating, which offers intimate interfacing with biological environments, and aqueous stability, make them particularly suitable to be operated within a living organism (in vivo). Unlike the existing in vivo bioelectronic devices, mostly based on rigid metal electrodes, OECTs form a soft mechanical contact with the biological milieu and ensure a high signal-to-noise ratio because of their powerful amplification capability. Such features make OECTs particularly desirable for a wide range of in vivo applications, including electrophysiological recordings, neuron stimulation, and neurotransmitter detection, and regulation of plant processes in vivo. In this review, a systematic compilation of the in vivo applications is presented that are addressed by the OECT technology. First, the operating mechanisms, and the device design and materials design principles of OECTs are examined, and then multiple examples are provided from the literature while identifying the unique device properties that enable the application progress. Finally, one critically looks at the future of the OECT technology for in vivo bioelectronic applications.
Collapse
Affiliation(s)
- Ali Nawaz
- Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba, PR, 81531-990, Brazil
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Qian Liu
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
38
|
Cho Y, Park S, Lee J, Yu KJ. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005786. [PMID: 34050691 PMCID: PMC11468537 DOI: 10.1002/adma.202005786] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Neuroscience is an essential field of investigation that reveals the identity of human beings, with a comprehensive understanding of advanced mental activities, through the study of neurobiological structures and functions. Fully understanding the neurotransmission system that allows for connectivity among neuronal circuits has paved the way for the development of treatments for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and depression. The field of flexible implants has attracted increasing interest mainly to overcome the mechanical mismatch between rigid electrode materials and soft neural tissues, enabling precise measurements of neural signals from conformal contact. Here, the current issues of flexible neural implants (chronic device failure, non-bioresorbable electronics, low-density electrode arrays, among others are summarized) by presenting material candidates and designs to address each challenge. Furthermore, the latest investigations associated with the aforementioned issues are also introduced, including suggestions for ideal neural implants. In terms of the future direction of these advances, designing flexible devices would provide new opportunities for the study of brain-machine interfaces or brain-computer interfaces as part of locomotion through brain signals, and for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Younguk Cho
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Sanghoon Park
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Juyoung Lee
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Ki Jun Yu
- School of Electrical EngineeringYU‐KIST InstituteYonsei UniversitySeoul03722Korea
| |
Collapse
|
39
|
Kim K, Van Gompel M, Wu K, Schiavone G, Carron J, Bourgeois F, Lacour SP, Leterrier Y. Extended Barrier Lifetime of Partially Cracked Organic/Inorganic Multilayers for Compliant Implantable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103039. [PMID: 34477315 DOI: 10.1002/smll.202103039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Flexible and soft bioelectronics display conflicting demands on miniaturization, compliance, and reliability. Here, the authors investigate the design and performance of thin encapsulation multilayers against hermeticity and mechanical integrity. Partially cracked organic/inorganic multilayer coatings are demonstrated to display surprisingly year-long hermetic lifetime under demanding mechanical and environmental loading. The thin hermetic encapsulation is grown in a single process chamber as a continuous multilayer with dyads of atomic layer deposited (ALD) Al2 O3 -TiO2 and chemical vapor deposited Parylene C films with strong interlayer adhesion. Upon tensile loading, tortuous diffusion pathways defined along channel cracks in the ALD oxide films and through tough Parylene films efficiently postpone the hermeticity failure of the partially cracked coating. The authors assessed the coating performance against prolonged exposure to biomimetic physiological conditions using coated magnesium films, platinum interdigitated electrodes, and optoelectronic devices prepared on stretchable substrates. Designed extension of the lifetime preventing direct failures reduces from over 5 years yet tolerates the lifetime of 3 years even with the presence of critical damage, while others will directly fail less than two months at 37 °C. This strategy should accelerate progress on thin hermetic packaging for miniaturized and compliant implantable electronics.
Collapse
Affiliation(s)
- Kyungjin Kim
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland
- Laboratory for Processing of Advanced Composites, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | | | - Kangling Wu
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland
| | - Julien Carron
- Laboratory for Processing of Advanced Composites, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | | | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
40
|
Nyns ECA, Jin T, Fontes MS, van den Heuvel T, Portero V, Ramsey C, Bart CI, Zeppenfeld K, Schalij MJ, van Brakel TJ, Ramkisoensing AA, Qi Zhang G, Poelma RH, Ördög B, de Vries AAF, Pijnappels DA. Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model. Cardiovasc Res 2021; 118:2293-2303. [PMID: 34528100 PMCID: PMC9328286 DOI: 10.1093/cvr/cvab294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Ventricular tachyarrhythmias (VTs) are common in the pathologically remodelled heart. These arrhythmias can be lethal, necessitating acute treatment like electrical cardioversion to restore normal rhythm. Recently, it has been proposed that cardioversion may also be realized via optically controlled generation of bioelectricity by the arrhythmic heart itself through optogenetics and therefore without the need of traumatizing high-voltage shocks. However, crucial mechanistic and translational aspects of this strategy have remained largely unaddressed. Therefore, we investigated optogenetic termination of VTs 1) in the pathologically remodelled heart using a 2) implantable multi-LED device for 3) in vivo closed-chest, local illumination. METHODS AND RESULTS In order to mimic a clinically relevant sequence of events, transverse aortic constriction (TAC) was applied to adult male Wistar rats before optogenetic modification. This modification took place three weeks later by intravenous delivery of adeno-associated virus vectors encoding red-activatable channelrhodopsin (ReaChR) or Citrine for control experiments. At 8 to 10 weeks after TAC, VTs were induced ex vivo and in vivo, followed by programmed local illumination of the ventricular apex by a custom-made implanted multi-LED device. This resulted in effective and repetitive VT termination in the remodelled adult rat heart after optogenetic modification, leading to sustained restoration of sinus rhythm in the intact animal. Mechanistically, studies on the single cell and tissue level revealed collectively that, despite the cardiac remodelling, there were no significant differences in bioelectricity generation and subsequent transmembrane voltage responses between diseased and control animals, thereby providing insight into the observed robustness of optogenetic VT termination. CONCLUSION Our results show that implant-based optical cardioversion of VTs is feasible in the pathologically remodelled heart in vivo after local optogenetic targeting because of preserved optical control over bioelectricity generation. These findings add novel mechanistic and translational insight into optical ventricular cardioversion.
Collapse
Affiliation(s)
- Emile C A Nyns
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Tianyi Jin
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Magda S Fontes
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Titus van den Heuvel
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Catilin Ramsey
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Katja Zeppenfeld
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Arti A Ramkisoensing
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - René H Poelma
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Balazs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
41
|
Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021; 146:5474-5495. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute myocardial infarction (AMI) is the main cause of death from cardiovascular diseases. Thus, early diagnosis of AMI is essential for the treatment of irreversible damage from myocardial infarction. Traditional electrocardiograms (ECG) cannot meet the specific detection of AMI. Cardiac troponin I (cTnI) is the main biomarker for the diagnosis of myocardial infarction, and the detection of cTnI content has become particularly important. In this review, we introduced and compared the advantages and disadvantages of various cTnI detection methods. We focused on the analysis and comparison of the main indicators and limitations of various cTnI biosensors, including the detection range, detection limit, specificity, repeatability, and stability. In particular, we pay more attention to the application and development of electrochemical biosensors in the diagnosis of cardiovascular diseases based on different biological components. The application of electrochemical microfluidic chips for cTnI was also briefly introduced in this review. Finally, this review also briefly discusses the unresolved challenges of electrochemical detection and the expectations for improvement in the detection of cTnI biosensing in the future.
Collapse
Affiliation(s)
- Zhipeng Yuan
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Guosheng Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Pengbo Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | | |
Collapse
|
42
|
Kang K, Park J, Kim K, Yu KJ. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. NANO RESEARCH 2021; 14:3096-3111. [DOI: 10.1007/s12274-021-3490-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2025]
|
43
|
Seok S. Polymer-Based Biocompatible Packaging for Implantable Devices: Packaging Method, Materials, and Reliability Simulation. MICROMACHINES 2021; 12:mi12091020. [PMID: 34577664 PMCID: PMC8470363 DOI: 10.3390/mi12091020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
Polymer materials attract more and more interests for a biocompatible package of novel implantable medical devices. Medical implants need to be packaged in a biocompatible way to minimize FBR (Foreign Body Reaction) of the implant. One of the most advanced implantable devices is neural prosthesis device, which consists of polymeric neural electrode and silicon neural signal processing integrated circuit (IC). The overall neural interface system should be packaged in a biocompatible way to be implanted in a patient. The biocompatible packaging is being mainly achieved in two approaches; (1) polymer encapsulation of conventional package based on die attach, wire bond, solder bump, etc. (2) chip-level integrated interconnect, which integrates Si chip with metal thin film deposition through sacrificial release technique. The polymer encapsulation must cover different materials, creating a multitude of interface, which is of much importance in long-term reliability of the implanted biocompatible package. Another failure mode is bio-fluid penetration through the polymer encapsulation layer. To prevent bio-fluid leakage, a diffusion barrier is frequently added to the polymer packaging layer. Such a diffusion barrier is also used in polymer-based neural electrodes. This review paper presents the summary of biocompatible packaging techniques, packaging materials focusing on encapsulation polymer materials and diffusion barrier, and a FEM-based modeling and simulation to study the biocompatible package reliability.
Collapse
Affiliation(s)
- Seonho Seok
- Center for Nanoscience and Nanotechnology (C2N), University-Paris-Saclay, 91120 Palaiseau, France
| |
Collapse
|
44
|
Sun H, Li R, Li H, Weng Z, Wu G, Kerns P, Suib S, Wang X, Zhang Y. Bioinspired Oil-Infused Slippery Surfaces with Water and Ion Barrier Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33464-33476. [PMID: 34241991 DOI: 10.1021/acsami.1c06632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Encapsulation materials play an important role in many applications including wearable electronics, medical devices, underwater robotics, marine skin tagging system, food packaging, and energy conversation and storage devices. To date, all the encapsulation materials, including polymer layers and inorganic materials, are solid materials. These solid materials suffer from limited barrier lifetimes due to pinholes, cracks, and nanopores or from complicated fabrication processes and limited stretchability for interfacing with complex 3D surfaces. This paper reports a solution to this material challenge by demonstrating bioinspired oil-infused slippery surfaces with excellent waterproof property for the first time. A water vapor transmission test shows that locking a thin layer of oil on the silicone elastomer improves the water vapor barrier performance by three orders of magnitude. Accelerated lifetime tests suggest robust water barrier characteristics that approach 226 days at 37 °C even under severe mechanical damage. A combination of temperature- and thickness-dependent experimental measurements and reaction-diffusion modeling reveals the key waterproof property. In addition to serving as a barrier to water, the oil-infused surface demonstrates an attractive ion barrier property. All these exceptional properties suggest the potential applications of slippery surfaces as encapsulation materials for medical devices, underwater electronics, and many others.
Collapse
Affiliation(s)
- He Sun
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, P.R. China
| | - Huijie Li
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhengyan Weng
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Guangfu Wu
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Peter Kerns
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven Suib
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xueju Wang
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yi Zhang
- Department of Biomedical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
45
|
Datta-Chaudhuri T. Closed-loop neuromodulation will increase the utility of mouse models in Bioelectronic Medicine. Bioelectron Med 2021; 7:10. [PMID: 34193309 PMCID: PMC8244222 DOI: 10.1186/s42234-021-00071-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mouse models have been of tremendous benefit to medical science for the better part of a century, yet bioelectronic medicine research using mice has been limited to mostly acute studies because of a lack of tools for chronic stimulation and sensing. A wireless neuromodulation platform small enough for implantation in mice will significantly increase the utility of mouse models in bioelectronic medicine. This perspective examines the necessary functionality of such a system and the technical challenges needed to be overcome for its development. Recent progress is examined and the outlook for the future of implantable devices for mice is discussed.
Collapse
Affiliation(s)
- Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA.
| |
Collapse
|
46
|
Abstract
Bio-photonic devices that utilize the interaction between light and biological substances have been emerging as an important tool for clinical diagnosis and/or therapy. At the same time, implanted biodegradable photonic devices can be disintegrated and resorbed after a predefined operational period, thus avoiding the risk and cost associated with the secondary surgical extraction. In this paper, the recent progress on biodegradable photonics is reviewed, with a focus on material strategies, device architectures and their biomedical applications. We begin with a brief introduction of biodegradable photonics, followed by the material strategies for constructing biodegradable photonic devices. Then, various types of biodegradable photonic devices with different functionalities are described. After that, several demonstration examples for applications in intracranial pressure monitoring, biochemical sensing and drug delivery are presented, revealing the great potential of biodegradable photonics in the monitoring of human health status and the treatment of human diseases. We then conclude with the summary of this field, as well as current challenges and possible future directions.
Collapse
|
47
|
Chiang CH, Won SM, Orsborn AL, Yu KJ, Trumpis M, Bent B, Wang C, Xue Y, Min S, Woods V, Yu C, Kim BH, Kim SB, Huq R, Li J, Seo KJ, Vitale F, Richardson A, Fang H, Huang Y, Shepard K, Pesaran B, Rogers JA, Viventi J. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci Transl Med 2021; 12:12/538/eaay4682. [PMID: 32269166 DOI: 10.1126/scitranslmed.aay4682] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/28/2020] [Indexed: 12/25/2022]
Abstract
Long-lasting, high-resolution neural interfaces that are ultrathin and flexible are essential for precise brain mapping and high-performance neuroprosthetic systems. Scaling to sample thousands of sites across large brain regions requires integrating powered electronics to multiplex many electrodes to a few external wires. However, existing multiplexed electrode arrays rely on encapsulation strategies that have limited implant lifetimes. Here, we developed a flexible, multiplexed electrode array, called "Neural Matrix," that provides stable in vivo neural recordings in rodents and nonhuman primates. Neural Matrix lasts over a year and samples a centimeter-scale brain region using over a thousand channels. The long-lasting encapsulation (projected to last at least 6 years), scalable device design, and iterative in vivo optimization described here are essential components to overcoming current hurdles facing next-generation neural technologies.
Collapse
Affiliation(s)
- Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Amy L Orsborn
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ki Jun Yu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brinnae Bent
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Charles Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Virginia Woods
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chunxiu Yu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.,Department of Biological Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Bong Hoon Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea.,Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Sung Bong Kim
- Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rizwan Huq
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Jinghua Li
- Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Materials Science and Engineering, Center for Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Kyung Jin Seo
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Flavia Vitale
- Department of Neurology, Department of Bioengineering, Department of Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, PA 19104, USA.,Center of Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Andrew Richardson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Fang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.,Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Center for Bio-integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Kenneth Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.,Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003, USA. .,Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - John A Rogers
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.,Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Bio-integrated Electronics, Northwestern University, Evanston, IL 60208, USA.,Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA. .,Department of Neurobiology, Duke University, Durham, NC 27708, USA.,Department of Neurosurgery, Duke University, Durham, NC 27708, USA
| |
Collapse
|
48
|
Evaluation methods for long-term reliability of polymer-based implantable biomedical devices. Biomed Eng Lett 2021; 11:97-105. [PMID: 34150346 DOI: 10.1007/s13534-021-00188-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 01/04/2023] Open
Abstract
Long-term reliability of implantable biomedical devices is a critical issue for their practical usefulness and successful translation into clinical application. Reliability is particularly of great concern for recently demonstrated devices based on new materials typically relying on polymeric thin films and microfabrication process. While reliability testing protocol has been well-established for traditional metallic packages, common evaluation methods for polymer-based microdevices has yet to be agreed upon, even though various testing methods have been proposed. This article is aiming to summarize the evaluation methods on long-term reliability of emerging biomedical implants based on polymeric thin-films in terms of their theories and implementation with specific focus on difference from the traditional metallic packages.
Collapse
|
49
|
Abstract
The lifetime of neural implants is strongly dependent on packaging due to the aqueous and biochemically aggressive nature of the body. Over the last decade, there has been a drive towards neuromodulatory implants which are wireless and approaching millimeter-scales with increasing electrode count. A so-far unrealized goal for these new types of devices is an in-vivo lifetime comparable to a sizable fraction of a healthy patient's lifetime (>10-20 years). Existing, approved medical implants commonly encapsulate components in metal enclosures (e.g. titanium) with brazed ceramic inserts for electrode feedthrough. It is unclear how amenable the traditional approach is to the simultaneous goals of miniaturization, increased channel count, and wireless communication. Ceramic materials have also played a significant role in traditional medical implants due to their dielectric properties, corrosion resistance, biocompatibility, and high strength, but are not as commonly used for housing materials due to their brittleness and the difficulty they present in creating complex housing geometries. However, thin-film technology has opened new opportunities for ceramics processing. Thin films derived largely from the semiconductor industry can be deposited and patterned in new ways, have conductivities which can be altered during manufacturing to provide conductors as well as insulators, and can be used to fabricate flexible substrates. In this review, we give an overview of packaging for neural implants, with an emphasis on how ceramic materials have been utilized in medical device packaging, as well as how ceramic thin-film micromachining and processing may be further developed to create truly reliable, miniaturized, neural implants.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, United States of America
| | | |
Collapse
|
50
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|