1
|
Wang LQ, Ma Y, Zhang MY, Yuan HY, Li XN, Xia W, Zhao K, Huang X, Chen J, Li D, Zou L, Wang Z, Le W, Liu C, Liang Y. Amyloid fibril structures and ferroptosis activation induced by ALS-causing SOD1 mutations. SCIENCE ADVANCES 2024; 10:eado8499. [PMID: 39475611 PMCID: PMC11524188 DOI: 10.1126/sciadv.ado8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
Over 200 genetic mutations in copper-zinc superoxide dismutase (SOD1) have been linked to amyotrophic lateral sclerosis (ALS). Among these, two ALS-causing mutants, histidine-46→arginine (H46R) and glycine-85→arginine (G85R), exhibit a decreased capacity to bind metal ions. Here, we report two cryo-electron microscopy structures of amyloid fibrils formed by H46R and G85R. These mutations lead to the formation of amyloid fibrils with unique structures distinct from those of the native fibril. The core of these fibrils features a serpentine arrangement with seven or eight β strands, secured by a hydrophobic cavity and a salt bridge between arginine-85 and aspartic acid-101 in the G85R fibril. We demonstrate that these mutant fibrils are notably more toxic and capable of promoting the aggregation of wild-type SOD1 more effectively, causing mitochondrial impairment and activating ferroptosis in cell cultures, compared to wild-type SOD1 fibrils. Our study provides insights into the structural mechanisms by which SOD1 mutants aggregate and induce cytotoxicity in ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Weidong Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Ahmed R, Liang M, Hudson RP, Rangadurai AK, Huang SK, Forman-Kay JD, Kay LE. Atomic resolution map of the solvent interactions driving SOD1 unfolding in CAPRIN1 condensates. Proc Natl Acad Sci U S A 2024; 121:e2408554121. [PMID: 39172789 PMCID: PMC11363255 DOI: 10.1073/pnas.2408554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Biomolecules can be sequestered into membrane-less compartments, referred to as biomolecular condensates. Experimental and computational methods have helped define the physical-chemical properties of condensates. Less is known about how the high macromolecule concentrations in condensed phases contribute "solvent" interactions that can remodel the free-energy landscape of other condensate-resident proteins, altering thermally accessible conformations and, in turn, modulating function. Here, we use solution NMR spectroscopy to obtain atomic resolution insights into the interactions between the immature form of superoxide dismutase 1 (SOD1), which can mislocalize and aggregate in stress granules, and the RNA-binding protein CAPRIN1, a component of stress granules. NMR studies of CAPRIN1:SOD1 interactions, focused on both unfolded and folded SOD1 states in mixed phase and demixed CAPRIN1-based condensates, establish that CAPRIN1 shifts the SOD1 folding equilibrium toward the unfolded state through preferential interactions with the unfolded ensemble, with little change to the structure of the folded conformation. Key contacts between CAPRIN1 and the H80-H120 region of unfolded SOD1 are identified, as well as SOD1 interaction sites near both the arginine-rich and aromatic-rich regions of CAPRIN1. Unfolding of immature SOD1 in the CAPRIN1 condensed phase is shown to be coupled to aggregation, while a more stable zinc-bound, dimeric form of SOD1 is less susceptible to unfolding when solvated by CAPRIN1. Our work underscores the impact of the condensate solvent environment on the conformational states of resident proteins and supports the hypothesis that ALS mutations that decrease metal binding or dimerization function as drivers of aggregation in condensates.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Mingyang Liang
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Rhea P. Hudson
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Atul K. Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Shuya Kate Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
3
|
Tokuda E, Sakashita Y, Tokoro N, Date A, Kosuge Y, Miyasaka T. MS785-MS27 Reactive Misfolded/Non-Native Zn-Deficient SOD1 Species Exhibit Cytotoxicity and Adopt Heterozygous Conformations in Motor Neurons. Int J Mol Sci 2024; 25:5603. [PMID: 38891791 PMCID: PMC11171496 DOI: 10.3390/ijms25115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term "misfolding" refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yume Sakashita
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Naoya Tokoro
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Ayano Date
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| | - Tomohiro Miyasaka
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| |
Collapse
|
4
|
Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Mazza T, Ruocco G, Milanetti E, Dobson RJB, Al-Chalabi A, Iacoangeli A. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J 2023; 21:5296-5308. [PMID: 37954145 PMCID: PMC10637862 DOI: 10.1016/j.csbj.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.
Collapse
Affiliation(s)
- Munishikha Kalia
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Deborah Ness
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | | | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Richard JB Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Clinical Neurosciences, King’s College Hospital, Denmark Hill, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Nordström U, Lang L, Ekhtiari Bidhendi E, Zetterström P, Oliveberg M, Danielsson J, Andersen PM, Marklund SL. Mutant SOD1 aggregates formed in vitro and in cultured cells are polymorphic and differ from those arising in the CNS. J Neurochem 2023; 164:77-93. [PMID: 36326589 PMCID: PMC10099669 DOI: 10.1111/jnc.15718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Mutations in the human Superoxide dismutase 1 (hSOD1) gene are well-established cause of the motor neuron disease ALS. Patients and transgenic (Tg) ALS model mice carrying mutant variants develop hSOD1 aggregates in the CNS. We have identified two hSOD1 aggregate strains, which both transmit spreading template-directed aggregation and premature fatal paralysis when inoculated into adult transgenic mice. This prion-like spread of aggregation could be a primary disease mechanism in SOD1-induced ALS. Human SOD1 aggregation has been studied extensively both in cultured cells and under various conditions in vitro. To determine how the structure of aggregates formed in these model systems related to disease-associated aggregates in the CNS, we used a binary epitope-mapping assay to examine aggregates of hSOD1 variants G93A, G85R, A4V, D90A, and G127X formed in vitro, in four different cell lines and in the CNS of Tg mice. We found considerable variability between replicate sets of in vitro-generated aggregates. In contrast, there was a high similarity between replicates of a given hSOD1 mutant in a given cell line, but pronounced variations between different hSOD1 mutants and different cell lines in both structures and amounts of aggregates formed. The aggregates formed in vitro or in cultured cells did not replicate the aggregate strains that arise in the CNS. Our findings suggest that the distinct aggregate morphologies in the CNS could result from a micro-environment with stringent quality control combined with second-order selection by spreading ability. Explorations of pathogenesis and development of therapeutics should be conducted in models that replicate aggregate structures forming in the CNS.
Collapse
Affiliation(s)
- Ulrika Nordström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Lisa Lang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Elaheh Ekhtiari Bidhendi
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.,Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Tarasca MV, Naser D, Schaefer A, Soule TG, Meiering EM. Quenched hydrogen-deuterium amide exchange optimization for high-resolution structural analysis of cellular protein aggregates. Anal Biochem 2022; 652:114675. [PMID: 35390328 DOI: 10.1016/j.ab.2022.114675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Inclusion bodies (IBs) are large, insoluble aggregates that often form during the overexpression of proteins in bacteria. These aggregates are of broad fundamental and practical significance, for recombinant protein preparation and due to their relevance to aggregation-related medical conditions and their recent emergence as promising functional nanomaterials. Despite their significance, high resolution knowledge of IB structure remains very limited. Such knowledge will advance understanding and control of IB formation and properties in myriad practical applications. Here, we report a detailed quenched hydrogen-deuterium amide exchange (qHDX) method with NMR readout to define the structure of IBs at the level of individual residues throughout the protein. Applying proper control of experimental conditions, such as sample pH, water content, temperature, and intrinsic rate of amide exchange, yields in depth results for these cellular protein aggregates. qHDX results illustrated for Cu, Zn superoxide dismutase 1 (SOD1) and Adnectins show their IBs include native-like structure and some but not all mutations alter IB structure.
Collapse
Affiliation(s)
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Tyler Gb Soule
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
7
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High-Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022; 61:e202112645. [PMID: 35316563 DOI: 10.1002/anie.202112645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/16/2023]
Abstract
Protein aggregation is central to aging, disease and biotechnology. While there has been recent progress in defining structural features of cellular protein aggregates, many aspects remain unclear due to heterogeneity of aggregates presenting obstacles to characterization. Here we report high-resolution analysis of cellular inclusion bodies (IBs) of immature human superoxide dismutase (SOD1) mutants using NMR quenched amide hydrogen/deuterium exchange (qHDX), FTIR and Congo red binding. The extent of aggregation is correlated with mutant global stability and, notably, the free energy of native dimer dissociation, indicating contributions of native-like monomer associations to IB formation. This is further manifested by a common pattern of extensive protection against H/D exchange throughout nine mutant SOD1s despite their diverse characteristics. These results reveal multiple aggregation-prone regions in SOD1 and illuminate how aggregation may occur via an ensemble of pathways.
Collapse
Affiliation(s)
- Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bruna Siebeneichler
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Harmeen K Deol
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tyler G B Soule
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Johnathan Almey
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Susan Kelso
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Gyana G Mishra
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hilary Simon
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
8
|
Deol HK, Broom HR, Sienbeneichler B, Lee B, Leonenko Z, Meiering EM. Immature ALS-associated mutant superoxide dismutases form variable aggregate structures through distinct oligomerization processes. Biophys Chem 2022; 288:106844. [DOI: 10.1016/j.bpc.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
9
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High‐Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dalia Naser
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Michael V. Tarasca
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | | - Anna Schaefer
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Harmeen K. Deol
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Tyler G. B. Soule
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Clinical Neurosciences University of Calgary Calgary, AB T2N 1N4 Canada
| | - Johnathan Almey
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Susan Kelso
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Molecular Genetics University of Toronto Toronto, ON M5S 1A1 Canada
| | - Gyana G. Mishra
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Biology University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Hilary Simon
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | |
Collapse
|
10
|
Tugarinov V, Ceccon A, Clore GM. NMR methods for exploring 'dark' states in ligand binding and protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:1-24. [PMID: 35282867 PMCID: PMC8921508 DOI: 10.1016/j.pnmrs.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
A survey, primarily based on work in the authors' laboratory during the last 10 years, is provided of recent developments in NMR studies of exchange processes involving protein-ligand and protein-protein interactions. We start with a brief overview of the theoretical background of Dark state Exchange Saturation Transfer (DEST) and lifetime line-broadening (ΔR2) NMR methodology. Some limitations of the DEST/ΔR2 methodology in applications to molecular systems with intermediate molecular weights are discussed, along with the means of overcoming these limitations with the help of closely related exchange NMR techniques, such as the measurements of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, exchange-induced chemical shifts or rapidly-relaxing components of relaxation decays. Some theoretical underpinnings of the quantitative description of global dynamics of proteins on the surface of very high molecular weight particles (nanoparticles) are discussed. Subsequently, several applications of DEST/ΔR2 methodology are described from a methodological perspective with an emphasis on providing examples of how kinetic and relaxation parameters for exchanging systems can be reliably extracted from NMR data for each particular model of exchange. Among exchanging systems that are not associated with high molecular weight species, we describe several exchange NMR-based studies that focus on kinetic modelling of transient pre-nucleation oligomerization of huntingtin peptides that precedes aggregation and fibril formation.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | - Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
11
|
Timr S, Sterpone F. Computational Insights into the Unfolding of a Destabilized Superoxide Dismutase 1 Mutant. BIOLOGY 2021; 10:1240. [PMID: 34943155 PMCID: PMC8698278 DOI: 10.3390/biology10121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
In this work, we investigate the β-barrel of superoxide dismutase 1 (SOD1) in a mutated form, the isoleucine 35 to alanine (I35A) mutant, commonly used as a model system to decipher the role of the full-length apoSOD1 protein in amyotrophic lateral sclerosis (ALS). It is known from experiments that the mutation reduces the stability of the SOD1 barrel and makes it largely unfolded in the cell at 37 degrees Celsius. We deploy state-of-the-art computational machinery to examine the thermal destabilization of the I35A mutant by comparing two widely used force fields, Amber a99SB-disp and CHARMM36m. We find that only the latter force field, when combined with the Replica Exchange with Solute Scaling (REST2) approach, reproduces semi-quantitatively the experimentally observed shift in the melting between the original and the mutated SOD1 barrel. In addition, we analyze the unfolding process and the conformational landscape of the mutant, finding these largely similar to those of the wildtype. Nevertheless, we detect an increased presence of partially misfolded states at ambient temperatures. These states, featuring conformational changes in the region of the β-strands β4-β6, might provide a pathway for nonnative aggregation.
Collapse
Affiliation(s)
- Stepan Timr
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 18223 Prague 8, Czech Republic
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
12
|
Jaladeep A, Varghese CN, Sekhar A. Measuring radiofrequency fields in NMR spectroscopy using offset-dependent nutation profiles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 330:107032. [PMID: 34311422 PMCID: PMC7612739 DOI: 10.1016/j.jmr.2021.107032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The application of NMR spectroscopy for studying molecular and reaction dynamics relies crucially on the measurement of the magnitude of radiofrequency (RF) fields that are used to nutate or lock the nuclear magnetization. Here, we report a method for measuring RF field amplitudes that leverages the intrinsic modulations observed in offset-dependent NMR nutation profiles of small molecules. Such nutation profiles are exquisitely sensitive to the magnitude of the RF field, and B1 values ranging from 1 to 2000 Hz, as well the inhomogeneity in B1 distributions, can be determined with high accuracy and precision using this approach. In order to measure B1 fields associated with NMR experiments carried out on protein or nucleic acids, where these modulations are obscured by the large transverse relaxation rate constants of the analyte, our approach can be used in conjunction with a suitable external small molecule standard, expanding the scope of the method for large biomolecules.
Collapse
Affiliation(s)
- Ahallya Jaladeep
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Claris Niya Varghese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
13
|
Wells NGM, Tillinghast GA, O'Neil AL, Smith CA. Free energy calculations of ALS-causing SOD1 mutants reveal common perturbations to stability and dynamics along the maturation pathway. Protein Sci 2021; 30:1804-1817. [PMID: 34076319 DOI: 10.1002/pro.4132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/25/2023]
Abstract
With over 150 heritable mutations identified as disease-causative, superoxide dismutase 1 (SOD1) has been a main target of amyotrophic lateral sclerosis (ALS) research and therapeutic efforts. However, recent evidence has suggested that neither loss of function nor protein aggregation is responsible for promoting neurotoxicity. Furthermore, there is no clear pattern to the nature or the location of these mutations that could suggest a molecular mechanism behind SOD1-linked ALS. Here, we utilize reliable and accurate computational techniques to predict the perturbations of 10 such mutations to the free energy changes of SOD1 as it matures from apo monomer to metallated dimer. We find that the free energy perturbations caused by these mutations strongly depend on maturational progress, indicating the need for state-specific therapeutic targeting. We also find that many mutations exhibit similar patterns of perturbation to native and non-native maturation, indicating strong thermodynamic coupling between the dynamics at various sites of maturation within SOD1. These results suggest the presence of an allosteric network in SOD1 which is vulnerable to disruption by these mutations. Analysis of these perturbations may contribute to uncovering a unifying molecular mechanism which explains SOD1-linked ALS and help to guide future therapeutic efforts.
Collapse
Affiliation(s)
- Nicholas G M Wells
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| | - Grant A Tillinghast
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA.,Department of Biomedical Engineering, Columbia University, New York, New York City, USA
| | - Alison L O'Neil
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| | - Colin A Smith
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
14
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
15
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
16
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
17
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
18
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
19
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Cveticanin J, Mondal T, Meiering EM, Sharon M, Horovitz A. Insight into the Autosomal-Dominant Inheritance Pattern of SOD1-Associated ALS from Native Mass Spectrometry. J Mol Biol 2020; 432:5995-6002. [PMID: 33058881 DOI: 10.1016/j.jmb.2020.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023]
Abstract
About 20% of all familial amyotrophic lateral sclerosis (ALS) cases are associated with mutations in superoxide dismutase (SOD1), a homodimeric protein. The disease has an autosomal-dominant inheritance pattern. It is, therefore, important to determine whether wild-type and mutant SOD1 subunits self-associate randomly or preferentially. A measure for the extent of bias in subunit association is the coupling constant determined in a double-mutant cycle type analysis. Here, cell lysates containing co-expressed wild-type and mutant SOD1 subunits were analyzed by native mass spectrometry to determine these coupling constants. Strikingly, we find a linear positive correlation between the coupling constant and the reported average duration of the disease. Our results indicate that inter-subunit communication and a preference for heterodimerization greatly increase the disease severity.
Collapse
Affiliation(s)
- Jelena Cveticanin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tridib Mondal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
21
|
Cohen NR, Kayatekin C, Zitzewitz JA, Bilsel O, Matthews CR. Friction-Limited Folding of Disulfide-Reduced Monomeric SOD1. Biophys J 2020; 118:1992-2000. [PMID: 32191862 DOI: 10.1016/j.bpj.2020.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
The folding reaction of a stable monomeric variant of Cu/Zn superoxide dismutase (mSOD1), an enzyme responsible for the conversion of superoxide free radicals into hydrogen peroxide and oxygen, is known to be among the slowest folding processes that adhere to two-state behavior. The long lifetime, ∼10 s, of the unfolded state presents ample opportunities for the polypeptide chain to transiently sample nonnative structures before the formation of the productive folding transition state. We recently observed the formation of a nonnative structure in a peptide model of the C-terminus of SOD1, a sequence that might serve as a potential source of internal chain friction-limited folding. To test for friction-limited folding, we performed a comprehensive thermodynamic and kinetic analysis of the folding mechanism of mSOD1 in the presence of the viscogens glycerol and glucose. Using a, to our knowledge, novel analysis of the folding reactions, we found the disulfide-reduced form of the protein that exposes the C-terminal sequence, but not its disulfide-oxidized counterpart that protects it, experiences internal chain friction during folding. The sensitivity of the internal friction to the disulfide bond status suggests that one or both of the cross-linked regions play a critical role in driving the friction-limited folding. We speculate that the molecular mechanisms giving rise to the internal friction of disulfide-reduced mSOD1 might play a role in the amyotrophic lateral sclerosis-linked aggregation of SOD1.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; Rare and Neurological Therapeutic Area, Sanofi, Framingham, Massachusetts
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - C R Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
22
|
Alderson TR, Kay LE. Unveiling invisible protein states with NMR spectroscopy. Curr Opin Struct Biol 2020; 60:39-49. [DOI: 10.1016/j.sbi.2019.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
|
23
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
24
|
Cohen NR, Zitzewitz JA, Bilsel O, Matthews CR. Nonnative structure in a peptide model of the unfolded state of superoxide dismutase 1 (SOD1): Implications for ALS-linked aggregation. J Biol Chem 2019; 294:13708-13717. [PMID: 31341015 DOI: 10.1074/jbc.ra119.008765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Dozens of mutations throughout the sequence of the gene encoding superoxide dismutase 1 (SOD1) have been linked to toxic protein aggregation in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). A parsimonious explanation for numerous genotypes resulting in a common phenotype would be mutation-induced perturbation of the folding free-energy surface that increases the populations of high-energy states prone to aggregation. The absence of intermediates in the folding of monomeric SOD1 suggests that the unfolded ensemble is a potential source of aggregation. To test this hypothesis, here we dissected SOD1 into a set of peptides end-labeled with FRET probes to model the local behavior of the corresponding sequences in the unfolded ensemble. Using time-resolved FRET, we observed that the peptide corresponding to the Loop VII-β8 sequence at the SOD1 C terminus was uniquely sensitive to denaturant. Utilizing a two-dimensional form of maximum entropy modeling, we demonstrate that the sensitivity to denaturant is the surprising result of a two-state-like transition from a compact to an expanded state. Variations of the peptide sequence revealed that the compact state involves a nonnative interaction between the disordered N terminus and the hydrophobic C terminus of the peptide. This nonnative intramolecular structure could serve as a precursor for intermolecular association and result in aggregation associated with ALS. We propose that this precursor would provide a common molecular target for therapeutic intervention in the dozens of ALS-linked SOD1 mutations.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
25
|
Keskin I, Forsgren E, Lehmann M, Andersen PM, Brännström T, Lange DJ, Synofzik M, Nordström U, Zetterström P, Marklund SL, Gilthorpe JD. The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta Neuropathol 2019; 138:85-101. [PMID: 30863976 PMCID: PMC6570705 DOI: 10.1007/s00401-019-01986-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low O2 tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.
Collapse
Affiliation(s)
- Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Elin Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Manuela Lehmann
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Dale J Lange
- Department of Neurology, Hospital for Special Surgery and Weill Cornell Medical Center, New York, NY, 10021, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden.
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
26
|
Abstract
Biological molecules are often highly dynamic, and this flexibility can be critical for function. The large range of sampled timescales and the fact that many of the conformers that are continually explored are only transiently formed and sparsely populated challenge current biophysical approaches. Solution nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for characterizing biomolecular dynamics in detail, even in cases where excursions involve short-lived states. Here, we briefly review a number of NMR experiments for studies of biomolecular dynamics on the microsecond-to-second timescale and focus on applications to protein and nucleic acid systems that clearly illustrate the functional relevance of motion in both health and disease.
Collapse
Affiliation(s)
- Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
27
|
Yuwen T, Sekhar A, Baldwin AJ, Vallurupalli P, Kay LE. Measuring Diffusion Constants of Invisible Protein Conformers by Triple‐Quantum
1
H CPMG Relaxation Dispersion. Angew Chem Int Ed Engl 2018; 57:16777-16780. [DOI: 10.1002/anie.201810868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
| | - Ashok Sekhar
- Molecular Biophysics UnitIndian Institute of Science Bangalore Karnataka 560012 India
| | - Andrew J. Baldwin
- Physical and Theoretical Chemistry LaboratoryUniversity of Oxford Oxford OX1 3QZ UK
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad Telangana 500107 India
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular MedicineHospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
| |
Collapse
|
28
|
Yuwen T, Sekhar A, Baldwin AJ, Vallurupalli P, Kay LE. Measuring Diffusion Constants of Invisible Protein Conformers by Triple‐Quantum
1
H CPMG Relaxation Dispersion. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
| | - Ashok Sekhar
- Molecular Biophysics UnitIndian Institute of Science Bangalore Karnataka 560012 India
| | - Andrew J. Baldwin
- Physical and Theoretical Chemistry LaboratoryUniversity of Oxford Oxford OX1 3QZ UK
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad Telangana 500107 India
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and ChemistryUniversity of Toronto Toronto Ontario M5S 1A8 Canada
- Program in Molecular MedicineHospital for Sick Children 555 University Avenue Toronto Ontario M5G 1X8 Canada
| |
Collapse
|
29
|
Tryptophan 32 mediates SOD1 toxicity in a in vivo motor neuron model of ALS and is a promising target for small molecule therapeutics. Neurobiol Dis 2018; 124:297-310. [PMID: 30528257 DOI: 10.1016/j.nbd.2018.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/11/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
SOD1 misfolding, toxic gain of function, and spread are proposed as a pathological basis of amyotrophic lateral sclerosis (ALS), but the nature of SOD1 toxicity has been difficult to elucidate. Uniquely in SOD1 proteins from humans and other primates, and rarely in other species, a tryptophan residue at position 32 (W32) is predicted to be solvent exposed and to participate in SOD1 misfolding. We hypothesized that W32 is influential in SOD1 acquiring toxicity, as it is known to be important in template-directed misfolding. We tested if W32 contributes to SOD1 cytotoxicity and if it is an appropriate drug target to ameliorate ALS-like neuromuscular deficits in a zebrafish model of motor neuron axon morphology and function (swimming). Embryos injected with human SOD1 variant with W32 substituted for a serine (SOD1W32S) had reduced motor neuron axonopathy and motor deficits compared to those injected with wildtype or disease-associated SOD1. A library of FDA-approved small molecules was ranked with virtual screening based on predicted binding to W32, and subsequently filtered for analogues using a pharmacophore model based on molecular features of the uracil moiety of a small molecule previously predicted to interact with W32 (5'-fluorouridine or 5'-FUrd). Along with testing 5'-FUrd and uridine, a lead candidate from this list was selected based on its lower toxicity and improved blood brain barrier penetrance; telbivudine significantly rescued SOD1 toxicity in a dose-dependent manner. The mechanisms whereby the small molecules ameliorated motor neuron phenotypes were specifically mediated through human SOD1 and its residue W32, because these therapeutics had no measurable impact on the effects of UBQLN4D90A, EtOH, or tryptophan-deficient human SOD1W32S. By substituting W32 for a more evolutionarily conserved residue (serine), we confirmed the significant influence of W32 on human SOD1 toxicity to motor neuron morphology and function; further, we performed pharmaceutical targeting of the W32 residue for rescuing SOD1 toxicity. This unique residue offers future novel insights into SOD1 stability and toxic gain of function, and therefore poses an potential target for drug therapy.
Collapse
|
30
|
Byun JA, Melacini G. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes. Methods 2018; 148:19-27. [DOI: 10.1016/j.ymeth.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
|
31
|
Stiers KM, Beamer LJ. A Hotspot for Disease-Associated Variants of Human PGM1 Is Associated with Impaired Ligand Binding and Loop Dynamics. Structure 2018; 26:1337-1345.e3. [PMID: 30122451 DOI: 10.1016/j.str.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
Abstract
Human phosphoglucomutase 1 (PGM1) plays a central role in cellular glucose homeostasis, catalyzing the conversion of glucose 1-phosphate and glucose 6-phosphate. Recently, missense variants of this enzyme were identified as causing an inborn error of metabolism, PGM1 deficiency, with features of a glycogen storage disease and a congenital disorder of glycosylation. Previous studies of selected PGM1 variants have revealed various mechanisms for enzyme dysfunction, including regions of structural disorder and side-chain rearrangements within the active site. Here, we examine variants within a substrate-binding loop in domain 4 (D4) of PGM1 that cause extreme impairment of activity. Biochemical, structural, and computational studies demonstrate multiple detrimental impacts resulting from these variants, including loss of conserved ligand-binding interactions and reduced mobility of the D4 loop, due to perturbation of its conformational ensemble. These potentially synergistic effects make this conserved ligand-binding loop a hotspot for disease-related variants in PGM1 and related enzymes.
Collapse
Affiliation(s)
- Kyle M Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
32
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Koss H, Rance M, Palmer AG. General Expressions for Carr-Purcell-Meiboom-Gill Relaxation Dispersion for N-Site Chemical Exchange. Biochemistry 2018; 57:4753-4763. [PMID: 30040382 DOI: 10.1021/acs.biochem.8b00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Carr-Purcell-Meiboom-Gill (CPMG) nuclear magnetic resonance experiment is widely used to characterize chemical exchange phenomena in biological macromolecules. Theoretical expressions for the nuclear spin relaxation rate constant for two-site chemical exchange during CPMG pulse trains valid for all time scales are well-known as are descriptions of N-site exchange in the fast limit. We have obtained theoretical expressions for N-site exchange outside of the fast limit by using approximations to an average Liouvillian describing the decay of magnetization during a CPMG pulse train. We obtain general expressions for CPMG experiments for any N-site scheme and all experimentally accessible time scales. For sufficiently slow chemical exchange, we obtain closed-form expressions for the relaxation rate constant and a general characteristic polynomial for arbitrary kinetic schemes. Furthermore, we highlight features that qualitatively characterize CPMG curves obtained for various N-site kinetic topologies, quantitatively characterize CPMG curves obtained from systems in various N-site exchange situations, and test distinguishability of kinetic models.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics , Columbia University , 630 West 168th Street , New York , New York 10032 , United States
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati , Cincinnati , Ohio 45267 , United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics , Columbia University , 630 West 168th Street , New York , New York 10032 , United States
| |
Collapse
|
34
|
Large SOD1 aggregates, unlike trimeric SOD1, do not impact cell viability in a model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2018; 115:4661-4665. [PMID: 29666246 DOI: 10.1073/pnas.1800187115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aberrant accumulation of misfolded Cu, Zn superoxide dismutase (SOD1) is a hallmark of SOD1-associated amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disease. While recent discovery of nonnative trimeric SOD1-associated neurotoxicity has suggested a potential pathway for motor neuron impairment, it is yet unknown whether large, insoluble aggregates are cytotoxic. Here we designed SOD1 mutations that specifically stabilize either the fibrillar form or the trimeric state of SOD1. The designed mutants display elevated populations of fibrils or trimers correspondingly, as demonstrated by gel filtration chromatography and electron microscopy. The trimer-stabilizing mutant, G147P, promoted cell death, even more potently in comparison with the aggressive ALS-associated mutants A4V and G93A. In contrast, the fibril-stabilizing mutants, N53I and D101I, positively impacted the survival of motor neuron-like cells. Hence, we conclude the SOD1 oligomer and not the mature form of aggregated fibril is critical for the neurotoxic effects in the model of ALS. The formation of large aggregates is in competition with trimer formation, suggesting that aggregation may be a protective mechanism against formation of toxic oligomeric intermediates.
Collapse
|
35
|
Goyal VD, Magliery TJ. Phylogenetic spread of sequence data affects fitness of SOD1 consensus enzymes: Insights from sequence statistics and structural analyses. Proteins 2018; 86:609-620. [PMID: 29490429 DOI: 10.1002/prot.25486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Non-natural protein sequences with native-like structures and functions can be constructed successfully using consensus design. This design strategy is relatively well understood in repeat proteins with simple binding function, however detailed studies are lacking in globular enzymes. The SOD1 family is a good model for such studies due to the availability of large amount of sequence and structure data motivated by involvement of human SOD1 in the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). We constructed two consensus SOD1 enzymes from multiple sequence alignments from all organisms and eukaryotic organisms. A significant difference in their catalytic activities shows that the phylogenetic spread of the sequences used affects the fitness of the construct obtained. A mutation in an electrostatic loop and overall design incompatibilities between bacterial and eukaryotic sequences were implicated in this disparity. Based on this analysis, a bioinformatics approach was used to classify mutations thought to cause familial ALS providing a unique high level view of the physical basis of disease-causing aggregation of human SOD1.
Collapse
Affiliation(s)
- Venuka Durani Goyal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210.,Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
36
|
Effects of maturation on the conformational free-energy landscape of SOD1. Proc Natl Acad Sci U S A 2018; 115:E2546-E2555. [PMID: 29483249 DOI: 10.1073/pnas.1721022115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating fatal syndrome characterized by very rapid degeneration of motor neurons. A leading hypothesis is that ALS is caused by toxic protein misfolding and aggregation, as also occurs in many other neurodegenerative disorders, such as prion, Alzheimer's, Parkinson's, and Huntington's diseases. A prominent cause of familial ALS is mutations in the protein superoxide dismutase (SOD1), which promote the formation of misfolded SOD1 conformers that are prone to aberrant interactions both with each other and with other cellular components. We have shown previously that immature SOD1, lacking bound Cu and Zn metal ions and the intrasubunit disulfide bond (apoSOD12SH), has a rugged free-energy surface (FES) and exchanges with four other conformations (excited states) that have millisecond lifetimes and sparse populations on the order of a few percent. Here, we examine further states of SOD1 along its maturation pathway, as well as those off-pathway resulting from metal loss that have been observed in proteinaceous inclusions. Metallation and disulfide bond formation lead to structural transformations including local ordering of the electrostatic loop and native dimerization that are observed in rare conformers of apoSOD12SH; thus, SOD1 maturation may occur via a population-switch mechanism whereby posttranslational modifications select for preexisting structures on the FES. Metallation and oxidation of SOD1 stabilize the native, mature conformation and decrease the number of detected excited conformational states, suggesting that it is the immature forms of the protein that contribute to misfolded conformations in vivo rather than the highly stable enzymatically active dimer.
Collapse
|
37
|
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
|
38
|
Fraga H, Pujols J, Gil-Garcia M, Roque A, Bernardo-Seisdedos G, Santambrogio C, Bech-Serra JJ, Canals F, Bernadó P, Grandori R, Millet O, Ventura S. Disulfide driven folding for a conditionally disordered protein. Sci Rep 2017; 7:16994. [PMID: 29208936 PMCID: PMC5717278 DOI: 10.1038/s41598-017-17259-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
Affiliation(s)
- Hugo Fraga
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marcos Gil-Garcia
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alicia Roque
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Oscar Millet
- Protein Stability and Inherited Diseases Laboratory, CIC bioGUNE, 48160, Derio, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
39
|
Rajasekaran N, Sekhar A, Naganathan AN. A Universal Pattern in the Percolation and Dissipation of Protein Structural Perturbations. J Phys Chem Lett 2017; 8:4779-4784. [PMID: 28910120 DOI: 10.1021/acs.jpclett.7b02021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Understanding the extent to which information is transmitted through the intramolecular interaction network of proteins upon a perturbation, that is, an allosteric effect, has long remained an unsolved problem. Through an analysis of high-resolution NMR data from the literature on 28 different proteins and 49 structural perturbations, we show that the extent of induced structural changes through mutations and molecular events including protein-protein, protein-peptide, protein-ligand binding, and post-translational modifications exhibit a near-universal exponential functional form. The extent of percolation into the protein structures can be up to 20-25 Å despite no apparent change in the 3D structures. These observations are also consistent with theoretical expectations, elementary graph theoretic analysis of protein structures, detailed molecular dynamics simulations, and experimental double-mutant cycles. Our analysis highlights that most molecular events would contribute to allosteric effects independent of protein structure, topology, or identity and provides a simple avenue to test and potentially model their effects.
Collapse
Affiliation(s)
- Nandakumar Rajasekaran
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai 600036, India
| | - Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
40
|
Ye L, Van Eps N, Li X, Ernst OP, Prosser RS. Utilizing tagged paramagnetic shift reagents to monitor protein dynamics by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1555-1563. [PMID: 28951313 DOI: 10.1016/j.bbapap.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Calmodulin is a ubiquitous calcium sensor protein, known to serve as a critical interaction hub with a wide range of signaling partners. While the holo form of calmodulin (CaM-4Ca2+) has a well-defined ground state structure, it has been shown to undergo exchange, on a millisecond timescale, to a conformation resembling that of the peptide bound state. Tagged paramagnetic relaxation agents have been previously used to identify long-range dipolar interactions through relaxation effects on nuclear spins of interest. In the case of calmodulin, this lead to the determination of the relative orientation of the N- and C-terminal domains and the presence of a weakly populated peptide bound like state. Here, we make use of pseudocontact shifts from a tagged paramagnetic shift reagent which allows us to define minor states both in 13C and 15N NMR spectra and through 13C- and 15N-edited 1H-CPMG relaxation dispersion measurements. This is validated by pulsed EPR (DEER) spectroscopy which reveals an ensemble consisting of a compact peptide-bound like conformer, an intermediate peptide-bound like conformer, and a (dumbbell-like) extended ground state conformer of CaM-4Ca2+, where addition of the MLCK peptide increases the population of the peptide-bound conformers. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Libin Ye
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Xiang Li
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
41
|
Ikeya T, Ban D, Lee D, Ito Y, Kato K, Griesinger C. Solution NMR views of dynamical ordering of biomacromolecules. Biochim Biophys Acta Gen Subj 2017; 1862:287-306. [PMID: 28847507 DOI: 10.1016/j.bbagen.2017.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND To understand the mechanisms related to the 'dynamical ordering' of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells. SCOPE OF REVIEW In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges. MAJOR CONCLUSIONS Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques. GENERAL SIGNIFICANCE For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Teppei Ikeya
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0373, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0373, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
| | - Christian Griesinger
- Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
42
|
Schmitt ND, Agar JN. Parsing disease-relevant protein modifications from epiphenomena: perspective on the structural basis of SOD1-mediated ALS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:480-491. [PMID: 28558143 PMCID: PMC6002871 DOI: 10.1002/jms.3953] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 05/08/2023]
Abstract
Conformational change and modification of proteins are involved in many cellular functions. However, they can also have adverse effects that are implicated in numerous diseases. How structural change promotes disease is generally not well-understood. This perspective illustrates how mass spectrometry (MS), followed by toxicological and epidemiological validation, can discover disease-relevant structural changes and therapeutic strategies. We (with our collaborators) set out to characterize the structural and toxic consequences of disease-associated mutations and post-translational modifications (PTMs) of the cytosolic antioxidant protein Cu/Zn-superoxide dismutase (SOD1). Previous genetic studies discovered >180 different mutations in the SOD1 gene that caused familial (inherited) amyotrophic lateral sclerosis (fALS). Using hydrogen-deuterium exchange with mass spectrometry, we determined that diverse disease-associated SOD1 mutations cause a common structural defect - perturbation of the SOD1 electrostatic loop. X-ray crystallographic studies had demonstrated that this leads to protein aggregation through a specific interaction between the electrostatic loop and an exposed beta-barrel edge strand. Using epidemiology methods, we then determined that decreased SOD1 stability and increased protein aggregation are powerful risk factors for fALS progression, with a combined hazard ratio > 300 (for comparison, a lifetime of smoking is associated with a hazard ratio of ~15 for lung cancer). The resulting structural model of fALS etiology supported the hypothesis that some sporadic ALS (sALS, ~80% of ALS is not associated with a gene defect) could be caused by post-translational protein modification of wild-type SOD1. We developed immunocapture antibodies and high sensitivity top-down MS methods and characterized PTMs of wild-type SOD1 using human tissue samples. Using global hydrogen-deuterium exchange, X-ray crystallography and neurotoxicology, we then characterized toxic and protective subsets of SOD1 PTMs. To cap this perspective, we present proof-of-concept that post-translational modification can cause disease. We show that numerous mutations (N➔D; Q➔E), which result in the same chemical structure as the PTM deamidation, cause multiple diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Correspondence Northeastern University, 360 Huntington Avenue, 140 The Fenway, Room 417, Boston, MA 02115
| |
Collapse
|
43
|
Ban D, Smith CA, de Groot BL, Griesinger C, Lee D. Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Arch Biochem Biophys 2017; 628:81-91. [PMID: 28576576 DOI: 10.1016/j.abb.2017.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022]
Abstract
Protein function can be modulated or dictated by the amplitude and timescale of biomolecular motion, therefore it is imperative to study protein dynamics. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique capable of studying timescales of motion that range from those faster than molecular reorientation on the picosecond timescale to those that occur in real-time. Across this entire regime, NMR observables can report on the amplitude of atomic motion, and the kinetics of atomic motion can be ascertained with a wide variety of experimental techniques from real-time to milliseconds and several nanoseconds to picoseconds. Still a four orders of magnitude window between several nanoseconds and tens of microseconds has remained elusive. Here, we highlight new relaxation dispersion NMR techniques that serve to cover this "hidden-time" window up to hundreds of nanoseconds that achieve atomic resolution while studying the molecule under physiological conditions.
Collapse
Affiliation(s)
- David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Colin A Smith
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany; Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Bert L de Groot
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Christian Griesinger
- Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
44
|
Boulton S, Akimoto M, Akbarizadeh S, Melacini G. Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia. J Biol Chem 2017; 292:6414-6428. [PMID: 28174302 DOI: 10.1074/jbc.m116.773697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.
Collapse
Affiliation(s)
- Stephen Boulton
- From the Departments of Biochemistry and Biomedical Sciences and
| | - Madoka Akimoto
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sam Akbarizadeh
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- From the Departments of Biochemistry and Biomedical Sciences and .,Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|