1
|
Maity N, Konar A, Hazra S. αB-crystallin mini-peptides support corneal healing in vitro and in vivo in rabbit model. Int J Ophthalmol 2024; 17:1772-1779. [PMID: 39430030 PMCID: PMC11422379 DOI: 10.18240/ijo.2024.10.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To evaluate if topical use of αB-crystallin mini-peptides supports corneal healing following flap surgery. METHODS Cultured corneal cells were treated with fluorescent tagged αB-crystallin mini-peptides to assess its internalization. Cultured corneal cells pre-treated with or without the mini-peptides were exposed to H2O2 and cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Elongation of neurites of cultured trigeminal neurones was examined following treatment either with αB-crystallin mini-peptides or protein. Cultured trigeminal neurones were pre-treated either with αB-crystallin mini-peptides or crystallin protein and exposed to H2O2 and presence of beading in the dendrites and axons was assessed. Corneal flap surgery was conducted on rabbit cornea and treated topically either with αB-crystallin peptide (0.5 mg/mL thrice daily for 14d) or phosphate-buffered saline (PBS). Corneal healing was evaluated under slit-lamp biomicroscope, mRNA expression of inflammatory cytokines were assessed and the corneas were evaluated by histopathology. RESULTS Internalization of αB-crystallin mini-peptides was ascertained by the detection of fluorescence within the corneal cells. The MTT assay revealed that treatment with αB-crystallin mini-peptide reduced cell death induced by H2O2 treatment. The mini-peptides did not influence the elongation of trigeminal neurites, but significantly (P<0.05) reduced beading in the neurites. In rabbit eye, the treated corneas showed reduced hyper-reflective zones (P<0.05) and suppression in the expression of inflammatory cytokines. Histopathological examination also revealed reduction of inflammatory response in treated corneas. CONCLUSION The αB-crystallin mini-peptides restrict the damage to corneal cells and neurons and aids in corneal healing.
Collapse
Affiliation(s)
- Namrata Maity
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Sarbani Hazra
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
2
|
Yue Y, Wang J, Tian J. Glycyrrhizic acid promote remyelination after peripheral nerve injury by reducing NF-κB activation. Neurosci Lett 2024; 843:138009. [PMID: 39396548 DOI: 10.1016/j.neulet.2024.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Peripheral nerve injury (PNI) causes motor and sensory defects, has strong impact on life quality and still has no effective therapy. Glycyrrhizic acid (GA) is one of the most widely used in traditional Chinese prescriptions and as a flavoring additive in the food industry; the aims of the study were to investigate the effects of GA during sciatic nerve regeneration in a mouse model of sciatic nerve crush injury. METHODS We established peripheral nerve crush model and investigated the effects of GA. We further studied the potential mechanism of action of GA by Western blotting, fluorescence immunohistochemistry, and PCR analysis. RESULTS GA improves the sensory and motor functions of crushed nerve by preventing Schwann cell loss, axonal loss and promoting remyelination of sciatic nerve. Affected by GA, the inflammatory response in the distal part of the sciatic nerve was reduced. Finally, the neuroprotective properties of GA may be regulated by the nuclear factor (NF)-κB pathway. CONCLUSIONS Our data suggest that GA can effectively alleviate PNI, and the mechanism involves mediating inflammatory response by suppressing NF-κB pathway activation. Thus, GA may represent a potential therapeutic intervention for nerve crush injury.
Collapse
Affiliation(s)
- Yuan Yue
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China; The First People's Hospital of Jiande, Hangzhou 311600, Zhejiang Province, PR China
| | - Jing Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Xiang Y, Li X, Huang Y, Gao S, Wei P, Wu L, Dong J. ADSCs encapsulated in Gelatin methacrylate substrate promotes the repair of peripheral nerve injury by SIRT6/PGC-1α pathway. Regen Ther 2024; 26:671-682. [PMID: 39281107 PMCID: PMC11402067 DOI: 10.1016/j.reth.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Peripheral nerve injury is a prevalent disease but the spontaneous recovery of nerve function is protracted and incomplete. Given the damaging of stem cells and fragile of intra-neural structures in the course of stem cell transplantation, our study tried to investigate whether encapsulating adipose derived mesenchymal stem cells (ADSCs) with GelMA could achieve better repair in peripheral nerve injury. PC-12 cells were cultured on the surface of GelMA encapsulating ADSCs and 3D co-culture system was constructed. CCK-8, Real-Time PCR, ELISA, Immunofluorescent Assay and Western Blot were used to evaluate the functionality of this system. Ultimately, nerve conduit containing the 3D co-culture system was linked between the two ends of an injured nerve. ADSCs encapsulated in 5% GeIMA had a better activity than 10% GeIMA. Furthermore, the viability of PC-12 cells was also better in this 3D co-culture system than in co-culture system with ADSCs without GeIMA. The expression of SIRT6 and PGC-1α in PC-12 cells were prominently promoted, and the entry to nuclear of PGC-1α was more obvious in this 3D co-culture system. After silencing of SIRT6, the protein expression level of PGC-1α was inhibited, and the activity of PC-12 cells was significantly reduced, suggesting that ADSCs encapsulated in GelMA upregulated the expression of SIRT6 to induce the level of PGC-1α protein, thereby achieving an impact on the activity of PC-12 cells. In vivo, nerve conduit containing the 3D co-culture system significantly promoted the repair of damaged peripheral nerves. In conclusion, our study demonstrated that 5% GelMA enhanced ADSCs activity, thereby promoting the activity of nerve cells and repair of damaged peripheral nerves by SIRT6/PGC-1α pathway.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
- Department of Plastic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xin Li
- Jiaxing Shuguang Cosmetic Hospital, Cosmetic Surgery Department, Jiaxing, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Suyue Gao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Wei
- Department of Plastic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lijun Wu
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
4
|
Poongodi R, Yang TH, Huang YH, Yang KD, Chen HZ, Chu TY, Wang TY, Lin HC, Cheng JK. Stem cell exosome-loaded Gelfoam improves locomotor dysfunction and neuropathic pain in a rat model of spinal cord injury. Stem Cell Res Ther 2024; 15:143. [PMID: 38764049 PMCID: PMC11103960 DOI: 10.1186/s13287-024-03758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Kuender D Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, 25245, Taiwan.
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Hong-Zhao Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tsuei-Yu Chu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tao-Yeuan Wang
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
- Department of Pathology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS 2 B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan.
| |
Collapse
|
5
|
Hagen KM, Gordon P, Frederick A, Palmer AL, Edalat P, Zonta YR, Scott L, Flancia M, Reid JK, Joel M, Ousman SS. CRYAB plays a role in terminating the presence of pro-inflammatory macrophages in the older, injured mouse peripheral nervous system. Neurobiol Aging 2024; 133:1-15. [PMID: 38381471 DOI: 10.1016/j.neurobiolaging.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 02/22/2024]
Abstract
Evidence indicates that dysfunction of older Schwann cells and macrophages contributes to poor regeneration of more mature peripheral nervous system (PNS) neurons after damage. Since the underlying molecular factors are largely unknown, we investigated if CRYAB, a small heat shock protein that is expressed by Schwann cells and axons and whose expression declines with age, impacts prominent deficits in the injured, older PNS including down-regulation of cholesterol biosynthesis enzyme genes, Schwann cell dysfunction, and macrophage persistence. Following sciatic nerve transection injury in 3- and 12-month-old wildtype and CRYAB knockout mice, we found by bulk RNA sequencing and RT-PCR, that while gene expression of cholesterol biosynthesis enzymes is markedly dysregulated in the aging, injured PNS, CRYAB is not involved. However, immunohistochemical staining of crushed sciatic nerves revealed that more macrophages of the pro-inflammatory but not immunosuppressive phenotype persisted in damaged 12-month-old knockout nerves. These pro-inflammatory macrophages were more efficient at engulfing myelin debris. CRYAB thus appears to play a role in resolving pro-inflammatory macrophage responses after damage to the older PNS.
Collapse
Affiliation(s)
- Kathleen Margaret Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra Louise Palmer
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yohan Ricci Zonta
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Scott
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Melissa Flancia
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline Kelsey Reid
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Joel
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shalina Sheryl Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Gupta DP, Bhusal A, Rahman MH, Kim JH, Choe Y, Jang J, Jung HJ, Kim UK, Park JS, Maeng LS, Suk K, Song GJ. EBP50 is a key molecule for the Schwann cell-axon interaction in peripheral nerves. Prog Neurobiol 2023; 231:102544. [PMID: 37940033 DOI: 10.1016/j.pneurobio.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Peripheral nerve injury disrupts the Schwann cell-axon interaction and the cellular communication between them. The peripheral nervous system has immense potential for regeneration extensively due to the innate plastic potential of Schwann cells (SCs) that allows SCs to interact with the injured axons and exert specific repair functions essential for peripheral nerve regeneration. In this study, we show that EBP50 is essential for the repair function of SCs and regeneration following nerve injury. The increased expression of EBP50 in the injured sciatic nerve of control mice suggested a significant role in regeneration. The ablation of EBP50 in mice resulted in delayed nerve repair, recovery of behavioral function, and remyelination following nerve injury. EBP50 deficiency led to deficits in SC functions, including proliferation, migration, cytoskeleton dynamics, and axon interactions. The adeno-associated virus (AAV)-mediated local expression of EBP50 improved SCs migration, functional recovery, and remyelination. ErbB2-related proteins were not differentially expressed in EBP50-deficient sciatic nerves following injury. EBP50 binds and stabilizes ErbB2 and activates the repair functions to promote regeneration. Thus, we identified EBP50 as a potent SC protein that can enhance the regeneration and functional recovery driven by NRG1-ErbB2 signaling, as well as a novel regeneration modulator capable of potential therapeutic effects.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Lee-So Maeng
- Department of Hospital Pathology, Incheon St. Mary's Hospital College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
7
|
Zhang L, Zhang H, Wang H, Guo K, Zhu H, Li S, Gao F, Li S, Yang Z, Liu X, Zheng X. Fabrication of Multi-Channel Nerve Guidance Conduits Containing Schwann Cells Based on Multi-Material 3D Bioprinting. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1046-1054. [PMID: 37886409 PMCID: PMC10599437 DOI: 10.1089/3dp.2021.0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Nerve guidance conduits (NGCs) are an essential solution for peripheral nerve repair and regeneration in tissue engineering and medicine. However, the ability of current NGCs is limited to repairing longer nerve gap (i.e., >20 mm) because it cannot meet the following two conditions simultaneously: (1) directional guidance of the axial high-density channels and (2) regenerative stimulation of the extracellular matrix secreted by Schwann cells (SCs). Therefore, we propose a multi-material 3D bioprinting process to fabricate multi-channel nerve guide conduits (MNGCs) containing SCs. In the article, cell-laden methacrylate gelatin (GelMA) was used as the bulk material of MNGCs. To improve the printing accuracy of the axial channels and the survival rate of SCs, we systematically optimized the printing temperature parameter based on hydrogel printability analysis. The multi-material bioprinting technology was used to realize the alternate printing of supporting gelatin and cell-laden GelMA. Then, the high-accuracy channels were fabricated through the UV cross-linking of GelMA and the dissolving technique of gelatin. The SCs distributed around the channels with a high survival rate, and the cell survival rate maintained above 90%. In general, the study on multi-material 3D printing was carried out from the fabricating technology and material analysis, which will provide a potential solution for the fabrication of MNGCs containing SCs.
Collapse
Affiliation(s)
- Liming Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Hui Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Huixuan Zhu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Feiyang Gao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Shijie Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Zhenda Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
8
|
Namini MS, Daneshimehr F, Beheshtizadeh N, Mansouri V, Ai J, Jahromi HK, Ebrahimi-Barough S. Cell-free therapy based on extracellular vesicles: a promising therapeutic strategy for peripheral nerve injury. Stem Cell Res Ther 2023; 14:254. [PMID: 37726794 PMCID: PMC10510237 DOI: 10.1186/s13287-023-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
Peripheral nerve injury (PNI) is one of the public health concerns that can result in a loss of sensory or motor function in the areas in which injured and non-injured nerves come together. Up until now, there has been no optimized therapy for complete nerve regeneration after PNI. Exosome-based therapies are an emerging and effective therapeutic strategy for promoting nerve regeneration and functional recovery. Exosomes, as natural extracellular vesicles, contain bioactive molecules for intracellular communications and nervous tissue function, which could overcome the challenges of cell-based therapies. Furthermore, the bioactivity and ability of exosomes to deliver various types of agents, such as proteins and microRNA, have made exosomes a potential approach for neurotherapeutics. However, the type of cell origin, dosage, and targeted delivery of exosomes still pose challenges for the clinical translation of exosome therapeutics. In this review, we have focused on Schwann cell and mesenchymal stem cell (MSC)-derived exosomes in nerve tissue regeneration. Also, we expressed the current understanding of MSC-derived exosomes related to nerve regeneration and provided insights for developing a cell-free MSC therapeutic strategy for nerve injury.
Collapse
Affiliation(s)
- Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Li X, Jiang H, He N, Yuan WE, Qian Y, Ouyang Y. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. CYBORG AND BIONIC SYSTEMS 2022; 2022:9892526. [PMID: 36285317 PMCID: PMC9494693 DOI: 10.34133/2022/9892526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, β, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.
Collapse
Affiliation(s)
- Xiao Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| | - Huiquan Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| | - Ning He
- Shanghai Eighth People’s Hospital, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, China
| |
Collapse
|
10
|
Moiseev D, Wazir Z, Liu D, Li J, Hu B. C698R mutation in Lrsam1 gene impairs nerve regeneration in a CMT2P mouse model. Sci Rep 2022; 12:12160. [PMID: 35842440 PMCID: PMC9288509 DOI: 10.1038/s41598-022-15902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Missense mutation C694R in the RING domain of the LRSAM1 gene results in a dominantly inherited polyneuropathy, Charcot-Marie-Tooth disease type 2P (CMT2P). We have generated and characterized a Lrsam1C698R knock-in mouse model produced through CRISPR/Cas9 technology. Both heterozygous (Lrsam1+/C698R) and homozygous (Lrsam1C698/C698R) knock-in mice exhibited normal motor functions on behavioral tests as well as normal on nerve conduction studies. Axonal density and myelin thickness were not significantly different between mutants and wild-type mice by sciatic nerve morphometric analysis up to 17 months of age. In line with these normal findings, protein–protein interactions between mutant LRSAM1 and RNA-binding proteins (such as FUS and G3BP1) were still present in mouse cells, which differs from the disrupted interactions between these proteins in human CMT2P cells. However, after crush nerve injury, Lrsam1+/C698R mice had a mild, but statistically significant, reduced compound nerve action potential and conduction velocity during recovery. Therefore, C698R mutation results in a mild impaired nerve regeneration in mice. We speculate that repetitive nerve injuries may, at least partially, contribute to the slowly progressive axonal loss in CMT2P.
Collapse
Affiliation(s)
- Daniel Moiseev
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zafar Wazir
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Donghao Liu
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Bo Hu
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
11
|
Liu H, Bell K, Herrmann A, Arnhold S, Mercieca K, Anders F, Nagel-Wolfrum K, Thanos S, Prokosch V. Crystallins Play a Crucial Role in Glaucoma and Promote Neuronal Cell Survival in an In Vitro Model Through Modulating Müller Cell Secretion. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35816047 PMCID: PMC9284462 DOI: 10.1167/iovs.63.8.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to explore the roles of crystallins in the context of aging in glaucoma and potential mechanisms of neuroprotection in an experimental animal model of glaucoma. Methods Intraocular pressure (IOP) was significantly elevated for 8 weeks in animals at different ages (10 days, 12 weeks, and 44 weeks) by episcleral vein cauterization. Retinal ganglion cells (RGCs) were quantified by anti-Brn3a immunohistochemical staining (IHC). Proteomics using ESI-LTQ Orbitrap XL-MS was used to analyze the presence and abundance of crystallin isoforms the retinal samples, respectively. Neuroprotective property and localization of three selected crystallins CRYAB, CRYBB2, and CRYGB as most significantly changed in retina and retinal layers were determined by IHC. Their expressions and endocytic uptakes into Müller cells were analyzed by IHC and Western blotting. Müller cell secretion of neurotrophic factors into the supernatant following CRYAB, CRYBB2, and CRYGB supplementation in vitro was measured via microarray. Results IOP elevation resulted in significant RGC loss in all age groups (P < 0.001). The loss increased with aging. Proteomics analysis revealed in parallel a significant decrease of crystallin abundance – especially CRYAB, CRYBB2, and CRYGB. Significant neuroprotective effects of CRYAB, CRYBB2, and CRYGB after addition to retinal cultures were demonstrated (P < 0.001). Endocytic uptake of CRYAB, CRYBB2, and CRYGB was seen in Müller cells with subsequent increased secretion of various neurotrophic factors into the supernatant, including nerve growth factor, clusterin, and matrix metallopeptidase 9. Conclusions An age-dependent decrease in CRYAB, CRYBB2, and CRYGB abundance is found going along with increased RGC loss. Addition of CRYAB, CRYBB2, and CRYGB to culture protected RGCs in vitro. CRYAB, CRYBB2, and CRYGB were uptaken into Müller cells. Secretion of neurotrophic factors was increased as a potential mode of action.
Collapse
Affiliation(s)
- Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Katharina Bell
- Singapore Eye Research Institute and Singapore National Eye Center, Singapore; Duke-NUS Medical School, Singapore
| | - Anja Herrmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Karl Mercieca
- Department of Ophthalmology, University Medical Center Bonn, Bonn, Germany
| | - Fabian Anders
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Solon Thanos
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Münster, Münster, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Zeng Z, Yang Y, Deng J, Saif Ur Rahman M, Sun C, Xu S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering (Basel) 2022; 9:292. [PMID: 35877343 PMCID: PMC9311987 DOI: 10.3390/bioengineering9070292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) is a clinical problem with high morbidity that can cause severe damage. Surgical suturing or implants are usually required due to the slow speed and numerous factors affecting repair after PNI. An autologous nerve graft is the gold standard for PNI repair among implants. However, there is a potential problem of the functional loss of the donor site. Therefore, tissue-engineered nerve biomaterials are often used to bridge the gap between nerve defects, but the therapeutic effect is insufficient. In order to enhance the repair effect of nerve biomaterials for PNI, researchers are seeking to combine various stimulation elements, such as the addition of biological factors such as nerve growth factors or physical factors such as internal microstructural modifications of catheters and their combined application with physical stimulation therapy. Physical stimulation therapy is safer, is more convenient, and has more practical features than other additive factors. Its feasibility and convenience, when combined with nerve biomaterials, provide broader application prospects for PNI repair, and has therefore become a research hot spot. This paper will review the combined application of physical stimulation and biomaterials in PNI repair in recent years to provide new therapeutic ideas for the future use of physical stimulation in PNI repair.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yajing Yang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen 518116, China;
| | - Junyong Deng
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Su Q, Nasser MI, He J, Deng G, Ouyang Q, Zhuang D, Deng Y, Hu H, Liu N, Li Z, Zhu P, Li G. Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction. Front Cell Neurosci 2022; 16:865266. [PMID: 35602558 PMCID: PMC9120533 DOI: 10.3389/fncel.2022.865266] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with the central nervous system, the adult peripheral nervous system possesses a remarkable regenerative capacity, which is due to the strong plasticity of Schwann cells (SCs) in peripheral nerves. After peripheral nervous injury, SCs de-differentiate and transform into repair phenotypes, and play a critical role in axonal regeneration, myelin formation, and clearance of axonal and myelin debris. In view of the limited self-repair capability of SCs for long segment defects of peripheral nerve defects, it is of great clinical value to supplement SCs in necrotic areas through gene modification or stem cell transplantation or to construct tissue-engineered nerve combined with bioactive scaffolds to repair such tissue defects. Based on the developmental lineage of SCs and the gene regulation network after peripheral nerve injury (PNI), this review summarizes the possibility of using SCs constructed by the latest gene modification technology to repair PNI. The therapeutic effects of tissue-engineered nerve constructed by materials combined with Schwann cells resembles autologous transplantation, which is the gold standard for PNI repair. Therefore, this review generalizes the research progress of biomaterials combined with Schwann cells for PNI repair. Based on the difficulty of donor sources, this review also discusses the potential of “unlimited” provision of pluripotent stem cells capable of directing differentiation or transforming existing somatic cells into induced SCs. The summary of these concepts and therapeutic strategies makes it possible for SCs to be used more effectively in the repair of PNI.
Collapse
Affiliation(s)
- Qisong Su
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jiaming He
- School of Basic Medical Science, Shandong University, Jinan, China
| | - Gang Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Donglin Zhuang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Haoyun Hu
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Nanbo Liu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhetao Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- *Correspondence: Ping Zhu,
| | - Ge Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- Ge Li,
| |
Collapse
|
14
|
Nimodipine Exerts Beneficial Effects on the Rat Oligodendrocyte Cell Line OLN-93. Brain Sci 2022; 12:brainsci12040476. [PMID: 35448007 PMCID: PMC9029615 DOI: 10.3390/brainsci12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Therapy is currently limited to drugs that interfere with the immune system; treatment options that primarily mediate neuroprotection and prevent neurodegeneration are not available. Here, we studied the effects of nimodipine on the rat cell line OLN-93, which resembles young mature oligodendrocytes. Nimodipine is a dihydropyridine that blocks the voltage-gated L-type calcium channel family members Cav1.2 and Cav1.3. Our data show that the treatment of OLN-93 cells with nimodipine induced the upregulation of myelin genes, in particular of proteolipid protein 1 (Plp1), which was confirmed by a significantly greater expression of PLP1 in immunofluorescence analysis and the presence of myelin structures in the cytoplasm at the ultrastructural level. Whole-genome RNA sequencing additionally revealed the upregulation of genes that are involved in neuroprotection, remyelination, and antioxidation pathways. Interestingly, the observed effects were independent of Cav1.2 and Cav1.3 because OLN-93 cells do not express these channels, and there was no measurable response pattern in patch-clamp analysis. Taking into consideration previous studies that demonstrated a beneficial effect of nimodipine on microglia, our data support the notion that nimodipine is an interesting drug candidate for the treatment of MS and other demyelinating diseases.
Collapse
|
15
|
Becerra-Hernández LV, Escobar-Betancourt MI, Pimienta-Jiménez HJ, Buriticá E. Crystallin Alpha-B Overexpression as a Possible Marker of Reactive Astrogliosis in Human Cerebral Contusions. Front Cell Neurosci 2022; 16:838551. [PMID: 35360493 PMCID: PMC8963874 DOI: 10.3389/fncel.2022.838551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of traumatic brain injury (TBI) has not yet been fully elucidated. Crystallin alpha-B (CRYAB) is a molecular chaperone that apparently tries to stabilize the rapid thickening of the intermediate filaments of glial fibrillary acidic protein (GFAP) during the process of reactive astrogliosis in response to TBI. Previous analyses of the gene expression profile in human brain contusion tissue showed us an exacerbated CRYAB overexpression. Here, we used 3, 3’-diaminobenzidine (DAB) immunohistochemistry and immunofluorescence to verify CRYAB overexpression and to describe its expression and distribution in samples of contused cortical tissue derived from emergency decompressive surgery after severe TBI. The histological expression of CRYAB was mainly seen in subcortical white matter astrocytes of injured tissue. Most of the cells that overexpressed GFAP in the analyzed tissue also overexpressed CRYAB, a finding corroborated by the co-localization of the two markers. The only difference was the presence of a few pyramidal neurons that expressed CRYAB in layer V of the cerebral cortex. The selective vulnerability of layer V of the cerebral cortex during TBI could explain the expression of CRYAB in neurons of this cortical layer. Our results indicate a parallel behavior in the cellular expression of CRYAB and GFAP during the subacute response to TBI. These results lead us to postulate CRYAB as a possible marker of reactive astrogliosis in contused cortical tissue.
Collapse
|
16
|
Yin GN, Shin TY, Ock J, Choi MJ, Limanjaya A, Kwon MH, Liu FY, Hong SS, Kang JH, Gho YS, Suh JK, Ryu JK. Pericyte‑derived extracellular vesicles‑mimetic nanovesicles improves peripheral nerve regeneration in mouse models of sciatic nerve transection. Int J Mol Med 2022; 49:18. [PMID: 34935051 PMCID: PMC8711595 DOI: 10.3892/ijmm.2021.5073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 11/06/2022] Open
Abstract
Pericyte‑derived extracellular vesicle‑mimetic nanovesicles (PC‑NVs) play an important role in the improvement of erectile function after cavernous nerve injury. However, the impact of PC‑NVs on the peripheral nervous system (PNS), such as the sciatic nerve, is unclear. In this study, PC‑NVs were isolated from mouse cavernous pericytes (MCPs). A sciatic nerve transection (SNT) model was established using 8‑week‑old C57BL/6J mice. The sciatic nerve was harvested 5 and 14 days for immunofluorescence and western blot studies. Function studies were evaluated by performing the rotarod test and walking track analysis. The results demonstrated that PC‑NVs could stimulate endothelial cells, increase neuronal cell content, and increase macrophage and Schwann cell presence at the proximal stump rather than the distal stump in the SNT model, thereby improving angiogenesis and nerve regeneration in the early stage of sciatic nerve regeneration. In addition, PC‑NVs also increased the expression of neurotrophic factors (brain‑derived nerve growth factor, neurotrophin‑3 and nerve growth factor) and the activity of the cell survival signaling pathway (PI3K/Akt signaling), and reduced the activity of the JNK signaling pathway. Additionally, after 8 weeks of local application of PC‑NVs in SNT model mice, their motor and sensory functions were significantly improved, as assessed by performing the rotarod test and walking track analysis. In conclusion, the present study showed that the significant improvement of neurovascular regeneration in mice following treatment with PC‑NVs may provide a favorable strategy for promoting motor and sensory regeneration and functional recovery of the PNS.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Tae Young Shin
- Department of Urology, Ewha Woman's University School of Medicine, Seoul 07804, Republic of Korea
| | - Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Anita Limanjaya
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Fang-Yuan Liu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
17
|
Yan X, Wang J, He Q, Xu H, Tao J, Koral K, Li K, Xu J, Wen J, Huang Z, Xu P. PDLLA/ β-TCP/HA/CHS/NGF Sustained-release Conduits for Peripheral Nerve Regeneration. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY. MATERIALS SCIENCE EDITION 2021; 36:600-606. [PMID: 34483596 PMCID: PMC8403253 DOI: 10.1007/s11595-021-2450-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/17/2020] [Indexed: 06/13/2023]
Abstract
Using nerve guide conduits (NGCs) to promote the regeneration of PNI is a feasible alternative to autograft. Compared with NGCs made of single material, composite NGCs have a greater development prospect. Our previous research has confirmed that poly(D, L-lactic acid)/β-tricalcium phosphate/hyaluronic acid/chitosan/nerve growth factor (PDLLA/β-TCP/HA/CHS/NGF) NGCs have excellent physical and chemical properties, which can slowly release NGF and support cell adhesion and proliferation. In this study, PDLLA/β-TCP/HA/CHS/NGF NGCs were prepared and used to bridge a 10 mm sciatic nerve defect in 200-250 g Sprague-Dawley (SD) rat to verify the performance of the NGCs in vivo. Substantial improvements in nerve regeneration were observed after using the PDLLA/β-TCP/HA/CHS/NGF NGCs based on gross post-operation observation, triceps wet weight analysis and nerve histological assessment. In vivo studies illustrate that the PDLLA/β-TCP/HA/CHS/NGF sustained-release NGCs can effectively promote peripheral nerve regeneration, and the effect is similar to that of autograft.
Collapse
Affiliation(s)
- Xiumei Yan
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Jing Wang
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, 518029 China
| | - Qundi He
- Wuhan Mafangshan Middle School, Wuhan, 430070 China
| | - Haixing Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA USA
| | - Kelly Koral
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA USA
| | - Kebi Li
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Jingyi Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Jing Wen
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Zhijun Huang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Peihu Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| |
Collapse
|
18
|
Yang Z, Yang Y, Xu Y, Jiang W, Shao Y, Xing J, Chen Y, Han Y. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration. Stem Cell Res Ther 2021; 12:442. [PMID: 34362437 PMCID: PMC8343914 DOI: 10.1186/s13287-021-02528-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Efficient and stable delivery of neurotrophic factors (NTFs) is crucial to provide suitable microenvironment for peripheral nerve regeneration. Neurotrophin-3 (NT-3) is an important NTF during peripheral nerve regeneration which is scarce in the first few weeks of nerve defect. Exosomes are nanovesicles and have been served as promising candidate for biocarrier. In this work, NT-3 mRNA was encapsulated in adipose-derived stem cell (ADSC)-derived exosomes (ExoNT-3). These engineered exosomes were applied as NT-3 mRNA carrier and then were loaded in nerve guidance conduit (ExoNT-3-NGC) to bridge rat sciatic nerve defect. METHOD NT-3 mRNA was encapsulated in exosomes by forcedly expression of NT-3 mRNA in the donor ADSCs. ExoNT-3 were co-cultured with SCs in vitro; after 24 h of culture, the efficiency of NT-3 mRNA delivery was evaluated by qPCR, western blotting and ELISA. Then, ExoNT-3 were loaded in alginate hydrogel to construct the nerve guidance conduits (ExoNT-3-NGC). ExoNT-3-NGC were implanted in vivo to reconstruct 10 mm rat sciatic nerve defect. The expression of NT-3 was measured 2 weeks after the implantation operation. The sciatic nerve functional index (SFI) was examined at 2 and 8 weeks after the operation. Moreover, the therapeutic effect of ExoNT-3-NGC was also evaluated by morphology assay, immunofluorescence staining of regenerated nerves, function evaluation of gastrocnemius muscles after 8 weeks of implantation. RESULTS The engineered exosomes could deliver NT-3 mRNA to the recipient cells efficiently and translated into functional protein. The constructed NGC could realize stable release of exosomes at least for 2 weeks. After NGC implantation in vivo, ExoNT-3-NGC group significantly promote nerve regeneration and improve the function recovery of gastrocnemius muscles compared with control exosomes (Exoempty-NGC) group. CONCLUSION In this work, NGC was constructed to allow exosome-mediated NT-3 mRNA delivery. After ExoNT-3-NGC implantation in vivo, the level of NT-3 could restore which enhance the nerve regeneration. Our study provide a potential approach to improve nerve regeneration.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yang
- Xi'an Daxing Hospital, Xi'an, 710016, Shaanxi, China
| | - Yichi Xu
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Shao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiahua Xing
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Youbai Chen
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Han
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
19
|
Jung K, Kim HN, Jeon NL, Hyung S. Comparison of the Efficacy of Optogenetic Stimulation of Glia versus Neurons in Myelination. ACS Chem Neurosci 2020; 11:4280-4288. [PMID: 33269905 DOI: 10.1021/acschemneuro.0c00542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence demonstrates that optogenetics contributes to the regulation of brain behavior, cognition, and physiology, particularly during myelination, potentially allowing for the bidirectional modulation of specific cell lines with spatiotemporal accuracy. However, the type of cell to be targeted, namely, glia vs neurons, and the degree to which optogenetically induced cell activity can regulate myelination during the development of the peripheral nervous system (PNS) are still underexplored. Herein, we report the comparison of optogenetic stimulation (OS) of Schwann cells (SCs) and motor neurons (MNs) for activation of myelination in the PNS. Capitalizing on these optogenetic tools, we confirmed that the formation of the myelin sheath was initially promoted more by OS of calcium translocating channelrhodopsin (CatCh)-transfected SCs than by OS of transfected MNs at 7 days in vitro (DIV). Additionally, the level of myelination was substantially enhanced even until 14 DIV. Surprisingly, after OS of SCs, > 91.1% ± 5.9% of cells expressed myelin basic protein, while that of MNs was 67.8% ± 6.1%. The potent effect of OS of SCs was revealed by the increased thickness of the myelin sheath at 14 DIV. Thus, the OS of SCs could highly accelerate myelination, while the OS of MNs only somewhat promoted myelination, indicating a clear direction for the optogenetic application of unique cell types for initiating and promoting myelination. Together, our findings support the importance of precise cell type selection for use in optogenetics, which in turn can be broadly applied to overcome the limitations of optogenetics after injury.
Collapse
Affiliation(s)
- Kyuhwan Jung
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Sujin Hyung
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Jiang H, Qian Y, Fan C, Ouyang Y. Polymeric Guide Conduits for Peripheral Nerve Tissue Engineering. Front Bioeng Biotechnol 2020; 8:582646. [PMID: 33102465 PMCID: PMC7546820 DOI: 10.3389/fbioe.2020.582646] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are usually caused by trauma, immune diseases, and genetic factors. Peripheral nerve injury (PNI) may lead to limb numbness, muscle atrophy, and loss of neurological function. Although an abundance of theories have been proposed, very few treatments can effectively lead to complete recovery of neurological function. Autologous nerve transplantation is currently the gold standard. Nevertheless, only 50% of all patients were successfully cured using this method. In addition, it causes inevitable damage to the donor site, and available donor sites in humans are very limited. Tissue engineering has become a research hotspot aimed at achieving a better therapeutic effect from peripheral nerve regeneration. Nerve guide conduits (NGCs) show great potential in the treatment of PNI. An increasing number of scaffold materials, including natural and synthetic polymers, have been applied to fabricate NGCs for peripheral nerve regeneration. This review focuses on recent nerve guide conduit (NGC) composite scaffold materials that are applied for nerve tissue engineering. Furthermore, the development tendency of NGCs and future areas of interest are comprehensively discussed.
Collapse
Affiliation(s)
- Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
21
|
Abstract
Peripheral nerves contain axons and their enwrapping glia cells named Schwann cells (SCs) that are either myelinating (mySCs) or nonmyelinating (nmSCs). Our understanding of other cells in the peripheral nervous system (PNS) remains limited. Here, we provide an unbiased single cell transcriptomic characterization of the nondiseased rodent PNS. We identified and independently confirmed markers of previously underappreciated nmSCs and nerve-associated fibroblasts. We also found and characterized two distinct populations of nerve-resident homeostatic myeloid cells that transcriptionally differed from central nervous system microglia. In a model of chronic autoimmune neuritis, homeostatic myeloid cells were outnumbered by infiltrating lymphocytes which modulated the local cell-cell interactome and induced a specific transcriptional response in glia cells. This response was partially shared between the peripheral and central nervous system glia, indicating common immunological features across different parts of the nervous system. Our study thus identifies subtypes and cell-type markers of PNS cells and a partially conserved autoimmunity module induced in glia cells.
Collapse
|
22
|
Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater 2020; 106:54-69. [PMID: 32044456 DOI: 10.1016/j.actbio.2020.02.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Peripheral nerves can sustain injuries due to loss of structure and/or function of peripheral nerves because of accident, trauma and other causes, which leads to partial or complete loss of sensory, motor, and autonomic functions and neuropathic pain. Even with the extensive knowledge on the pathophysiology and regeneration mechanisms of peripheral nerve injuries (PNI), reliable treatment methods that ensure full functional recovery are scant. Nerve autografting is the current gold standard for treatment of PNI. Given the limitations of autografts including donor site morbidity and limited supply, alternate treatment methods are being pursued by the researchers. Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts. The anatomy of peripheral nerves, classification of PNI, and current treatment methods are briefly yet succinctly reviewed. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods adopted is presented in this work. Much progress had been made in all the aspects of making an NGC, including the design, materials and fabrication techniques. The advent of advanced technologies such as additive manufacturing and 3D bioprinting could be beneficial in easing the production of patient-specific NGCs. NGCs with supporting cells or stem cells, NGCs loaded with neurotropic factors and drugs, and 4D printed NGCs are some of the futuristic areas of interest. STATEMENT OF SIGNIFICANCE: Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts in the treatment of peripheral nerve injuries. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods (including Additive Manufacturing) adopted is presented in this work.
Collapse
Affiliation(s)
- Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, UAE; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA.
| |
Collapse
|
23
|
Pinho AC, Vieira Branquinho M, Alvites RD, Fonseca AC, Caseiro AR, Santos Pedrosa S, Luís AL, Pires I, Prada J, Muratori L, Ronchi G, Geuna S, Santos JD, Maurício AC, Serra AC, Coelho JFJ. Dextran-based tube-guides for the regeneration of the rat sciatic nerve after neurotmesis injury. Biomater Sci 2020; 8:798-811. [PMID: 31904045 DOI: 10.1039/c9bm00901a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, dextran-based nerve tube-guides were prepared, characterized and used in a standardized animal model of neurotmesis injury. Non-porous and porous transparent tube-guides were obtained by photocrosslinking of two co-macromonomers based on dextran and poly(ε-caprolactone) (PCL). Swelling capacity of the tube-guides ranged from 40-60% with no visible constriction of their inner diameter. In vitro hydrolytic degradation tests showed that the tube-guides maintained their structural integrity up to 6 months. The in vivo performance of the tube-guides was evaluated by entubulation of the rat sciatic nerve after a neurotmesis injury, with a 10 mm-gap between the nerve stumps. The results showed that the tube-guides were able to promote the regeneration of the nerve in a similar manner to what was observed with conventional techniques (nerve graft and end-to-end suture). Stereological analysis proved that nerve regeneration occurred, and both tube-guides presented fibre diameter and g-ratio closer to healthy sciatic nerves. The histomorphometric analysis of Tibialis anterior (TA) skeletal muscle showed decreased neurogenic atrophy in the porous tube-guides treated group, presenting measurements that are similar to the uninjured control.
Collapse
Affiliation(s)
- Ana Catarina Pinho
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | - Mariana Vieira Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Rui Damásio Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Clotilde Fonseca
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | - Ana Rita Caseiro
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal and Vasco da Gama University School/Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Lúcia Luís
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Isabel Pires
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Justina Prada
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Luísa Muratori
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation and Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Giulia Ronchi
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation and Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Stefano Geuna
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Department of Metallurgy and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Colette Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Arménio Coimbra Serra
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | | |
Collapse
|
24
|
Stratton JA, Holmes A, Rosin NL, Sinha S, Vohra M, Burma NE, Trang T, Midha R, Biernaskie J. Macrophages Regulate Schwann Cell Maturation after Nerve Injury. Cell Rep 2019; 24:2561-2572.e6. [PMID: 30184491 DOI: 10.1016/j.celrep.2018.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/15/2018] [Accepted: 07/29/2018] [Indexed: 12/26/2022] Open
Abstract
Pro-regenerative macrophages are well known for their role in promoting tissue repair; however, their specific roles in promoting regeneration of the injured nerve are not well defined. Specifically, how macrophages interact with Schwann cells following injury during remyelination has been largely unexplored. We demonstrate that after injury, including in humans, macrophages function to clear debris and persist within the nerve microenvironment. Macrophage ablation immediately preceding remyelination results in an increase in immature Schwann cell density, a reduction in remyelination, and long-term deficits in conduction velocity. Targeted RNA-seq of macrophages from injured nerve identified Gas6 as one of several candidate factors involved in regulating Schwann cell dynamics. Functional studies show that the absence of Gas6 within monocyte lineage cells impairs Schwann cell remyelination within the injured nerve. These results demonstrate a role for macrophages in regulating Schwann cell function during nerve regeneration and highlight a molecular mechanism by which this occurs.
Collapse
Affiliation(s)
- Jo Anne Stratton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexandra Holmes
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mohit Vohra
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Nicole E Burma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Tuan Trang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rajiv Midha
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
25
|
Stankowska DL, Nam MH, Nahomi RB, Chaphalkar RM, Nandi SK, Fudala R, Krishnamoorthy RR, Nagaraj RH. Systemically administered peptain-1 inhibits retinal ganglion cell death in animal models: implications for neuroprotection in glaucoma. Cell Death Discov 2019; 5:112. [PMID: 31285855 PMCID: PMC6609721 DOI: 10.1038/s41420-019-0194-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal degeneration and death of retinal ganglion cells (RGCs) are the primary causes of vision loss in glaucoma. In this study, we evaluated the efficacy of a peptide (peptain-1) that exhibits robust chaperone and anti-apoptotic activities against RGC loss in two rodent models and in cultured RGCs. In cultures of rat primary RGCs and in rat retinal explants peptain-1 significantly decreased hypoxia-induced RGC loss when compared to a scrambled peptide. Intraperitoneally (i.p.) injected peptain-1 (conjugated to a Cy7 fluorophore) was detected in the retina indicative of its ability to cross the blood-retinal barrier. Peptain-1 treatment inhibited RGC loss in the retina of mice subjected to ischemia/reperfusion (I/R) injury. A reduction in anterograde axonal transport was also ameliorated by peptain-1 treatment in the retina of I/R injured mice. Furthermore, i.p. injections of peptain-1 significantly reduced RGC death and axonal loss and partially restored retinal mitochondrial cytochrome c oxidase subunit 6b2 (COX 6b2) levels in rats subjected to five weeks of elevated intraocular pressure. We conclude that i.p. injected peptain-1 gains access to the retina and protects both RGC somas and axons against the injury caused by I/R and ocular hypertension. Based on these findings, peptain-1 has the potential to be developed as an efficacious neuroprotective agent for the treatment of glaucoma.
Collapse
Affiliation(s)
- Dorota L Stankowska
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Mi-Hyun Nam
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Rooban B Nahomi
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Renuka M Chaphalkar
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Sandip K Nandi
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Rafal Fudala
- 3Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Raghu R Krishnamoorthy
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Ram H Nagaraj
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA.,4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045 USA
| |
Collapse
|
26
|
Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers (Basel) 2018; 10:E753. [PMID: 30960678 PMCID: PMC6403768 DOI: 10.3390/polym10070753] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
The prevalence of peripheral nerve injuries resulting in loss of motor function, sensory function, or both, is on the rise. Artificial Nerve Guide Conduits (NGCs) are considered an effective alternative treatment for autologous nerve grafts, which is the current gold-standard for treating peripheral nerve injuries. In this study, Polycaprolactone-based three-dimensional porous NGCs are fabricated using Electrohydrodynamic jet 3D printing (EHD-jetting) for the first time. The main advantage of this technique is that all the scaffold properties, namely fibre diameter, pore size, porosity, and fibre alignment, can be controlled by tuning the process parameters. In addition, EHD-jetting has the advantages of customizability, repeatability, and scalability. Scaffolds with five different pore sizes (125 to 550 μm) and porosities (65 to 88%) are fabricated and the effect of pore size on the mechanical properties is evaluated. In vitro degradation studies are carried out to investigate the degradation profile of the scaffolds and determine the influence of pore size on the degradation rate and mechanical properties at various degradation time points. Scaffolds with a pore size of 125 ± 15 μm meet the requirements of an optimal NGC structure with a porosity greater than 60%, mechanical properties closer to those of the native peripheral nerves, and an optimal degradation rate matching the nerve regeneration rate post-injury. The in vitro neural differentiation studies also corroborate the same results. Cell proliferation was highest in the scaffolds with a pore size of 125 ± 15 μm assessed by the PrestoBlue assay. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) results involving the three most important genes concerning neural differentiation, namely β3-tubulin, NF-H, and GAP-43, confirm that the scaffolds with a pore size of 125 ± 15 μm have the highest gene expression of all the other pore sizes and also outperform the electrospun Polycaprolactone (PCL) scaffold. The immunocytochemistry results, expressing the two important nerve proteins β3-tubulin and NF200, showed directional alignment of the neurite growth along the fibre direction in EHD-jet 3D printed scaffolds.
Collapse
Affiliation(s)
| | - Shuo Zhang
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Siti Thaharah
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore 119083, Singapore.
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
- NUS Research Institute, Suzhou Industry Park, Suzhou 215123, China.
| |
Collapse
|
27
|
Ruebsam A, Dulle JE, Myers AM, Sakrikar D, Green KM, Khan NW, Schey K, Fort PE. A specific phosphorylation regulates the protective role of αA-crystallin in diabetes. JCI Insight 2018; 3:97919. [PMID: 29467334 DOI: 10.1172/jci.insight.97919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration is a central aspect of the early stages of diabetic retinopathy, the primary ocular complication associated with diabetes. While progress has been made to improve the vascular perturbations associated with diabetic retinopathy, there are still no treatment options to counteract the neuroretinal degeneration associated with diabetes. Our previous work suggested that the molecular chaperones α-crystallins could be involved in the pathophysiology of diabetic retinopathy; however, the role and regulation of α-crystallins remained unknown. In the present study, we demonstrated the neuroprotective role of αA-crystallin during diabetes and its regulation by its phosphorylation on residue 148. We further characterized the dual role of αA-crystallin in neurons and glia, its essential role for neuronal survival, and its direct dependence on phosphorylation on this residue. These findings support further evaluation of αA-crystallin as a treatment option to promote neuron survival in diabetic retinopathy and neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Anne Ruebsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer E Dulle
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela M Myers
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Katelyn M Green
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Schey
- Department of Biochemistry and Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit. Mol Neurobiol 2018; 55:6769-6787. [DOI: 10.1007/s12035-018-0875-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
|
29
|
Li X, Liu H, Yang Y. Magnesium sulfate attenuates brain edema by lowering AQP4 expression and inhibits glia-mediated neuroinflammation in a rodent model of eclampsia. Behav Brain Res 2017; 364:403-412. [PMID: 29288747 DOI: 10.1016/j.bbr.2017.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 12/26/2022]
Abstract
Eclampsia is characterized by high morbidity and mortality wordwide. Magnesium sulfate (MgSO4) is used frequently as a prophylaxis for eclamptic seizure in clinical settings. However, the underlying mechanism is less studied, we have previously demonstrated that MgSO4 pretreatment decreases eclampsia-like seizure threshold. Here, we further evaluated the hypothesis that MgSO4 exert neuroprotective actions in eclampsia-like rats model by ameliorating neuroinflammation and brain edema. In this study, the eclampsia-like model was established by administering lipopolysaccharide plus pentylenetetrazol in pregnant Sprague-Dawley rats. Rats were given MgSO4 from gestation day14-19. Then, Iba-1 (a marker for microglia) and S100-B (a marker for astrocytes) expression levels in the hippocampus CA3 region were detected by Enzyme-linked immunosorbent assay. Cerebrospinal fluid (CSF) levels of inflammatory cytokines were measured by Luminex assays. Aquaporin-4 (a transmembrane water channel protein) expression levels in cortex were analyzed using immunohistochemistry. Astrocyte and microglia expressions were detected by immunofluorescence, neuronal damage were evaluated by Nissl staining, and changes in neuronal number in the hippocampal CA3 region (CA3) among different groups were detected by neuronal nuclei staining. Our results demonstrated that MgSO4 effectively attenuated astrocyte and microglia activation and promoted the neuronal survival in the CA3. Additionally, MgSO4 significantly reduced inflammatory cytokines response in the CSF, and decreased the expression of AQP-4 protein in the cortex. Collectively, the findings of this study indicated that MgSO4 has a neuroprotective role in eclampsia-like seizure rats through its anti-neuroninflammatory and brain edema-attenuating properties.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Obstetrics, Guangzhou Women and Children's Medical Center, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.
| |
Collapse
|
30
|
Aging Schwann cells: mechanisms, implications, future directions. Curr Opin Neurobiol 2017; 47:203-208. [DOI: 10.1016/j.conb.2017.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
31
|
Ousman SS, Frederick A, Lim EMF. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury. Front Neurosci 2017; 11:79. [PMID: 28270745 PMCID: PMC5318438 DOI: 10.3389/fnins.2017.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.
Collapse
Affiliation(s)
- Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ariana Frederick
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Erin-Mai F Lim
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
32
|
Heat shock protein that facilitates myelination of regenerating axons. Proc Natl Acad Sci U S A 2017; 114:2103-2105. [PMID: 28213495 DOI: 10.1073/pnas.1700755114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|