1
|
Berrens M, Calegari Andrade MF, Fourkas JT, Pham TA, Donadio D. Molecular Fingerprints of Ice Surfaces in Sum Frequency Generation Spectra: A First-Principles Machine Learning Study. JACS AU 2025; 5:1173-1183. [PMID: 40151237 PMCID: PMC11938005 DOI: 10.1021/jacsau.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 03/29/2025]
Abstract
Understanding the molecular-level structure and dynamics of ice surfaces is crucial for deciphering several chemical, physical, and atmospheric processes. Vibrational sum-frequency generation (SFG) spectroscopy is the most prominent tool for probing the molecular-level structure of the air-ice interface as it is a surface-specific technique, but the molecular interpretation of SFG spectra is challenging. This study utilizes a machine-learning potential, along with dipole and polarizability models trained on ab initio data, to calculate the SFG spectrum of the air-ice interface. At temperatures below ice surface premelting, our simulations support the presence of a proton-ordered arrangement at the Ice I h surface, similar to that seen in Ice XI. Additionally, our simulations provide insight into the assignment of SFG peaks to specific molecular configurations where possible and assess the contribution of subsurface layers to the overall SFG spectrum. These insights enhance our understanding and interpretation of vibrational studies of environmental chemistry at the ice surface.
Collapse
Affiliation(s)
- Margaret
L. Berrens
- Department
of Chemistry, University of California Davis, One Shields Ave., Davis, California 95616, United States
- Quantum
Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Marcos F. Calegari Andrade
- Quantum
Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
- Laboratory
for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - John T. Fourkas
- Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
- Institute
for Physical Science and Technology, University
of Maryland, College Park, Maryland 20742, United States
- Maryland
Quantum Materials Center, University of
Maryland, College Park, Maryland 20742, United
States
| | - Tuan Anh Pham
- Quantum
Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
- Laboratory
for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Davide Donadio
- Department
of Chemistry, University of California Davis, One Shields Ave., Davis, California 95616, United States
| |
Collapse
|
2
|
Demmenie M, Woutersen S, Bonn D. Ice Sintering by Sublimation and Condensation. J Phys Chem Lett 2025; 16:2104-2109. [PMID: 39976459 PMCID: PMC11874037 DOI: 10.1021/acs.jpclett.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
The sintering behavior of ice has been the subject of controversy for more than 160 years. Various factors have led to confusion about the mechanisms behind mass transport during sintering; erroneously derived growth rate exponents, experimental challenges in achieving equilibrium conditions, and incorrect comparisons between ice sintering and snow densification have all played a role. Here we demonstrate that sintering of ice under equilibrium conditions proceeds primarily through sublimation and condensation. Mass transfer occurs through the vapor phase, driven by increased volatility at the formed neck due to its high curvature. Our findings on the sintering of ice spheres are consistent with the healing of micrometer-sized scratches in ice under similar conditions.
Collapse
Affiliation(s)
- Menno Demmenie
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Biswas S, Paul D, Mondal K, Kaiser RI. Simulating atmospheric freezing of single aqueous droplets to ice in a cryogenically cooled ultrasonic levitator. Proc Natl Acad Sci U S A 2025; 122:e2425543122. [PMID: 39899722 PMCID: PMC11831174 DOI: 10.1073/pnas.2425543122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025] Open
Abstract
Atmospheric freezing of water droplets suspended in air followed by cloud formation and precipitation represent fundamental steps of the terrestrial water cycle. These aqueous droplets exhibit distinct freezing mechanisms and thermodynamic requirements compared to bulk water often forming metastable supercooled water at subzero temperatures on the Celsius scale (<273 K) prior to crystallization. Here, we report on a real-time spectroscopic investigation combined with simultaneous visualizations of single aqueous droplet freezing events inside a cryogenically cooled ultrasonic levitation chamber with the ultimate goal of probing the molecular structure evolution and stages of ice formation. The observed droplet freezing follows a pseudoheterogeneous ice nucleation mechanism mimicking the process that occurs for atmospherically supercooled water droplets at the air-water interface. This proof-of-concept experimental setup allows future crystallization studies of homo- and heterogeneously doped aqueous droplets under simulated atmospheric environments-also in the presence of reactive trace gases, thus untangling dynamic molecular interactions and chemical reactions, which are of fundamental interest to low-temperature atmospheric chemistry delineating with ice nucleation mechanisms.
Collapse
Affiliation(s)
- Souvick Biswas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI96822
| | - Dababrata Paul
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI96822
| | - Koushik Mondal
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI96822
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI96822
| |
Collapse
|
4
|
Shi J, Fulford M, Salvalaglio M, Molteni C. Unveiling the face-dependent ice growth kinetics: Insights from molecular dynamics on the basal and prism surfaces. J Chem Phys 2025; 162:054714. [PMID: 39902702 DOI: 10.1063/5.0240795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Ice nucleation and growth are critical in many fields, including atmospheric science, cryobiology, and aviation. However, understanding the detailed mechanisms of ice crystal growth remains challenging. In this work, crystallization at the ice/quasi-liquid layer (QLL) interface of the basal and primary prism (prism1) surfaces of hexagonal ice (Ih) was investigated using molecular dynamics simulations across a wide range of temperatures for the TIP4P/Ice model, with comparisons to the mW coarse-grained model. Together with elucidating the temperature-dependent mechanisms of crystallization, face-specific growth rates were systematically estimated. While the prism surface generally exhibits faster growth rates than the basal surface, a temperature-dependent crossover in growth rates between the basal and prism surfaces is observed in TIP4P/Ice simulations, which correlates with crossovers in QLL thickness and properties and with the well-known column to platelets transition in ice-crystal habits at low vapor pressure. This observation helps decode the complex dependence between crystal morphology and temperature in ice crystals.
Collapse
Affiliation(s)
- Jihong Shi
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Maxwell Fulford
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Carla Molteni
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
5
|
Chen Z, Wang J, Liu X, Wang Y, Shen J, Li J, Liu X, Li X, Pei W, Guo Y, Shi G, Li H, Siddiqui AMU, de Rooij NF, Jiang L, Zhou G. Crafting Hollow Spheres via Bulk Ice Melting with ppb-Level Gas Sensing Performance. J Am Chem Soc 2025; 147:3478-3487. [PMID: 39817490 DOI: 10.1021/jacs.4c14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Ice melting, a common yet complex phenomenon, remains incompletely understood. While theoretical studies suggest that preexisting defects in ice generate "off-lattice" water molecules, triggering bulk ice melting, direct experimental evidence of their form has been lacking as the transparent and transient nature of ice poses significant challenges for observation with current techniques. Here, we introduce an ice-melting-induced lyophilization (IMIL) technique that employs graphene-based nanoprobes to replicate and track liquid evolution within melting bulk ice. Our experimental data and theoretical calculations indicate that "off-lattice" water molecules form spherical droplets that enlarge and coalesce as the melting progresses. Notably, the IMIL technique represents a novel nanotechnology for crafting high-quality hollow spheres by leveraging naturally occurring droplets as templates, offering advantages in simplicity, environmental friendliness, scalability, and size adjustability over traditional methods. Additionally, platinum-loaded graphene-based hollow spheres fabricated via the IMIL technique demonstrate ultrasensitive formaldehyde detection with a 5 parts per billion detection limit, rapid response and recovery times (∼4.9 s), and room-temperature operation without auxiliary technology, outperforming WHO standards and current detection methods. These findings highlight the potential of the IMIL technique for creating versatile hollow spheres for diverse applications.
Collapse
Affiliation(s)
- Zhuo Chen
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Hebei Onlysense Technology Co., Ltd., Tangshan 063000, China
| | - Jinrong Wang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xing Liu
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Yao Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jie Shen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqiang Li
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xianda Liu
- School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
| | - Xueyan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Wenle Pei
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Guo
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325000, China
| | - Hao Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Ahmad M U Siddiqui
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
| | - Nicolaas F de Rooij
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Ji S, Torres SAG, Chen J, Lei L, Li L. Molecular dynamics simulation of film water thickness and properties at different interfaces in partially saturated frozen soil systems. Sci Rep 2025; 15:2343. [PMID: 39824914 PMCID: PMC11742411 DOI: 10.1038/s41598-025-85975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
The film water, with an exceptional capacity to maintain a premelting, liquid-like state even under subzero conditions, provides a potential dynamic conduit for the movement of water in frozen soils. However, the distinctive structural and dynamic characteristics of film water have not been comprehensively elucidated. In this study, molecular dynamics (MD) simulations were conducted to examine the freezing of a system containing ice, water, silica, and gas. The simulations revealed that as the temperature approaches the melting point, the air-water interface tends to possess a thicker layer of unfrozen water, characterized by a higher diffusion coefficient and lower viscosity. In contrast, the film water near the silica-water interface tends to be thinner and remains relatively unaffected by temperature, with only one twentieth of the diffusion coefficient and nearly 20 times the viscosity observed at the air-water interface. These distinct characteristics resulted from the varying interactions between water molecules and their immediate surroundings. Consequently, the film water in proximity of the silica can be assumed to be relatively immobile compared to that of air-water interface. These findings have implications for the study of unsaturated frozen soil systems, in particular, the importance of considering the film water at the air-water interface in the modeling framework.
Collapse
Affiliation(s)
- Shuting Ji
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China
| | - Sergio Andres Galindo Torres
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China
| | - Jinfeng Chen
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Lei
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Rashmi R, Paesani F. Dissecting the Molecular Structure of the Air/Ice Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum. J Am Chem Soc 2025; 147:1903-1910. [PMID: 39749984 DOI: 10.1021/jacs.4c14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive. In this work, we use state-of-the-art quantum dynamics simulations with a realistic data-driven many-body potential to dissect the vibrational sum-frequency generation (vSFG) spectrum of the air/ice interface in terms of contributions arising from individual molecular layers, orientations, and hydrogen-bonding topologies that determine the QLL properties. The agreement between experimental and simulated spectra provides a realistic molecular picture of the evolution of the QLL as a function of the temperature without the need for empirical adjustments. The emergence of specific features in the experimental vSFG spectrum suggests that surface restructuring may occur at lower temperatures. This work not only underscores the critical role of many-body interactions and nuclear quantum effects in understanding ice surfaces but also provides a definitive molecular-level picture of the QLL, which plays a central role in multiphase and heterogeneous processes of relevance to a range of fields, including atmospheric chemistry, cryopreservation, and materials science.
Collapse
Affiliation(s)
- Richa Rashmi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Kwon Y, Ha Y, Lee S, Park J, Bhak G, Paik SR. Freeze-Induced Protein Assembly of α-Synuclein into Stable Microspheres to Fabricate Light-Induced Cargo Release Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:594-606. [PMID: 39727059 DOI: 10.1021/acsami.4c17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization. MSs transform into amyloid fibril condensates when heated to 70 °C, and the drug is loaded via centrifugal membrane filtration. Additionally, the MSs were shielded with an iron-alginate layer embedded with gold nanoparticles (AuNPs) to prevent premature leakage and to control drug release. This takes advantage of the photothermal effect of AuNPs, resulting in combined cytotoxicity between the drug and heat. Therefore, drug-loaded MSs comprising αS and AuNPs can be suggested as light-controllable drug delivery systems that exhibit chemical and physical anticancer therapeutic effects.
Collapse
Affiliation(s)
- Yeji Kwon
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yosub Ha
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soonkoo Lee
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongha Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ghibom Bhak
- Chemical Engineering Department, Faculty of Chemical Sciences, University of Salamanca, Salamanca 37008, Spain
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Richhariya V, Tripathy A, Carvalho O, Gomes J, Nine MJ, Silva FS. Capillary-Enhanced Biomimetic Adhesion on Icy Surfaces for High-Performance Antislip Shoe-Soles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2450-2461. [PMID: 39722588 DOI: 10.1021/acsami.4c14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The World Health Organization (WHO) reports 684,000 deaths/year due to slips and falls (SFs), with ∼38 million people requiring medical attention per annum. In particular, SFs on ice surfaces account for 45% of all SF incidents, costing over $100 billion globally in healthcare, intensive care, and insurance expenses. Current antislip solutions focus on hydrophobicity to repel interfacial fluids, aiming to maintain solid-to-solid contact. However, these solutions often wear out quickly, clog, or become ineffective. Wet ice is particularly challenging due to its nanometer-thick quasi-liquid layer (QLL), which makes it extremely slippery. Inspired by the capillary suction adhesion observed in gecko footpads and the slip resistance of frog toepads on wet surfaces, we developed an innovative approach to regulate ice adhesion and deadhesion. The solution presented in this work mimics this mechanism by employing textured microcavities into silicone rubber (SR)/zirconia (ZrO2) closely mirroring the properties of gecko and frog toepads. Given the dynamics of walking, the surface exhibited hydrophilicity-induced capillary suction of the QLL, facilitating their rapid frost to achieve greater mechanical interlocking. The developed textures displayed capillary suction within 1.5 ms, resulting in a maximum friction coefficient of 3.46 on wet ice. This breakthrough outcome provides a robust, durable solution to significantly reduce SFs on ice surfaces, saving lives and livelihoods.
Collapse
Affiliation(s)
- Vipin Richhariya
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Ashis Tripathy
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| | - Oscar Carvalho
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Jose Gomes
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Md Julker Nine
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Filipe Samuel Silva
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| |
Collapse
|
10
|
Cui X, Yang C, Sun Q, Zhang W, Wang X. Investigating Shear Stress of Ice Accumulated on Surfaces with Various Roughnesses: Effects of a Quasi-Water Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14214-14223. [PMID: 38954504 PMCID: PMC11256739 DOI: 10.1021/acs.langmuir.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The investigation of the anti-icing/deicing is essential because the icing phenomenon deteriorates the natural environment and various projects. By conducting molecular dynamics simulation, this work analyzes the effect of the quasi-water layer on the ice shear stress over smooth and rough surfaces, along with the underlying physics of the quasi-water layer. The results indicate that the thickness of the quasi-water layer monotonically increases with temperature, resulting in a monotonic decrease in the ice shear stress on the smooth surface. Due to the joint effects of the smooth surface wettability and the quasi-water layer, the ice shear stress increases and then decreases to almost a constant value when the surface changes from a hydrophobic to a hydrophilic one. For rough surfaces with stripe nanostructures, when the width of the bump for one case equals the depression for the other case, the variations of shear stress with height for these two cases are almost the same. The rough surface is effective in reducing the ice shear stress compared to the smooth surface due to the thickening of the quasi-water layer. Each molecule in the quasi-water layer and its four nearest neighboring molecules gradually form a tetrahedral ice-like structure along the direction away from the surface. The radial distribution function also shows that the quasi-water layer resembles the liquid water rather than the ice structure. These findings shed light on developing anti-icing and deicing techniques.
Collapse
Affiliation(s)
- Xinjiao Cui
- Institute
of Thermal Science and Technology, Shandong
University, Jinan 250061, China
- Institute
for Advanced Technology, Shandong University, Jinan 250061, China
| | - Chao Yang
- Institute
of Thermal Science and Technology, Shandong
University, Jinan 250061, China
| | - Qiangqiang Sun
- Faculty
of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Wenqiang Zhang
- School
of Mechatronical Engineering, Beijing Institute
of Technology, Beijing 100081, China
| | - Xinyu Wang
- Institute
of Thermal Science and Technology, Shandong
University, Jinan 250061, China
- Shenzhen
Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
11
|
Tipeev AO, Gurashkin AL, Zanotto ED. Exploring surface properties and premelting in crystals. J Chem Phys 2024; 160:224705. [PMID: 38864371 DOI: 10.1063/5.0210127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Crystal surfaces play a pivotal role in governing various significant processes, such as adsorption, nucleation, wetting, friction, and wear. A fundamental property that influences these processes is the surface free energy, γ. We have directly calculated γ(T) for low-index faces of Lennard-Jones (LJ), germanium, and silicon crystals along their sublimation lines using the computational cleavage technique. Our calculations agree well with experimental values for Si(111) and Ge(111), highlighting the accuracy of the method and models used. For LJ crystals, we identified a premelting onset at Tpm = 0.75Tm, marked by a sharp increase in atom mobility within the second outermost surface layer. Notably, Tpm closely aligned with the endpoint of the LJ melting line at negative pressures, Tend = 0.76Tm. We hypothesize that the emergence and coexistence of a liquid film atop the LJ crystal at Tpm < T < Tm correspond to the metastable melting line under negative pressures experienced by stretched crystal surfaces. Furthermore, our study of thin LJ crystal slabs reveals that premelting-induced failure leads to recrystallization below the homogeneous freezing limit, offering a promising avenue to explore crystal nucleation and growth at extremely deep supercoolings. Finally, no evidence of premelting was detected in the model crystals of Ge and Si, which is consistent with the experimental observations. Overall, our findings offer valuable insights into crystal surface phenomena at the atomic scale.
Collapse
Affiliation(s)
- Azat O Tipeev
- Department of Materials Engineering, Federal University of São Carlos, 13.565-905 São Carlos, SP, Brazil
| | - Alexander L Gurashkin
- Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, 620016 Ekaterinburg, Russia
| | - Edgar D Zanotto
- Department of Materials Engineering, Federal University of São Carlos, 13.565-905 São Carlos, SP, Brazil
| |
Collapse
|
12
|
Lu H, Macht M, Rosenberg R, Wiedenbeck E, Lukas M, Qi D, Maltseva D, Zahn D, Cölfen H, Bonn M. Organic Nucleation: Water Rearrangement Reveals the Pathway of Ibuprofen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307858. [PMID: 38269485 DOI: 10.1002/smll.202307858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/31/2023] [Indexed: 01/26/2024]
Abstract
The organic nucleation of the pharmaceutical ibuprofen is investigated, as triggered by the protonation of ibuprofen sodium salt at elevated pH. The growth and aggregation of nanoscale solution species by Analytical Ultracentrifugation and Molecular Dynamics (MD) simulations is tracked. Both approaches reveal solvated molecules, oligomers, and prenucleation clusters, their size as well as their hydration at different reaction stages. By combining surface-specific vibrational spectroscopy and MD simulations, water interacting with ibuprofen at the air-water interface during nucleation is probed. The results show the structure of water changes upon ibuprofen protonation in response to the charge neutralization. Remarkably, the water structure continues to evolve despite the saturation of protonated ibuprofen at the hydrophobic interface. This further water rearrangement is associated with the formation of larger aggregates of ibuprofen molecules at a late prenucleation stage. The nucleation of ibuprofen involves ibuprofen protonation and their hydrophobic assembly. The results highlight that these processes are accompanied by substantial water reorganization. The critical role of water is possibly relevant for organic nucleation in aqueous environments in general.
Collapse
Affiliation(s)
- Hao Lu
- Department of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P. R. China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Moritz Macht
- Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Rose Rosenberg
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Eduard Wiedenbeck
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Max Lukas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Daizong Qi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Daria Maltseva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dirk Zahn
- Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
13
|
Hong J, Tian Y, Liang T, Liu X, Song Y, Guan D, Yan Z, Guo J, Tang B, Cao D, Guo J, Chen J, Pan D, Xu LM, Wang EG, Jiang Y. Imaging surface structure and premelting of ice Ih with atomic resolution. Nature 2024; 630:375-380. [PMID: 38778112 DOI: 10.1038/s41586-024-07427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Ice surfaces are closely relevant to many physical and chemical properties, such as melting, freezing, friction, gas uptake and atmospheric reaction1-8. Despite extensive experimental and theoretical investigations9-17, the exact atomic structures of ice interfaces remain elusive owing to the vulnerable hydrogen-bonding network and the complicated premelting process. Here we realize atomic-resolution imaging of the basal (0001) surface structure of hexagonal water ice (ice Ih) by using qPlus-based cryogenic atomic force microscopy with a carbon monoxide-functionalized tip. We find that the crystalline ice-Ih surface consists of mixed Ih- and cubic (Ic)-stacking nanodomains, forming 19 × 19 periodic superstructures. Density functional theory reveals that this reconstructed surface is stabilized over the ideal ice surface mainly by minimizing the electrostatic repulsion between dangling OH bonds. Moreover, we observe that the ice surface gradually becomes disordered with increasing temperature (above 120 Kelvin), indicating the onset of the premelting process. The surface premelting occurs from the defective boundaries between the Ih and Ic domains and can be promoted by the formation of a planar local structure. These results put an end to the longstanding debate on ice surface structures and shed light on the molecular origin of ice premelting, which may lead to a paradigm shift in the understanding of ice physics and chemistry.
Collapse
Affiliation(s)
- Jiani Hong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
| | - Tiancheng Liang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Xinmeng Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Dong Guan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Zixiang Yan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Jiadong Guo
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Binze Tang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, People's Republic of China
| | - Jing Guo
- College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ji Chen
- School of Physics, Peking University, Beijing, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China
| | - Ding Pan
- Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Li-Mei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
- Tsientang Institute for Advanced Study, Zhejiang, People's Republic of China.
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
- New Cornerstone Science Laboratory, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Yasuda I, Endo K, Arai N, Yasuoka K. In-layer inhomogeneity of molecular dynamics in quasi-liquid layers of ice. Commun Chem 2024; 7:117. [PMID: 38811834 PMCID: PMC11136980 DOI: 10.1038/s42004-024-01197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Quasi-liquid layers (QLLs) are present on the surface of ice and play a significant role in its distinctive chemical and physical properties. These layers exhibit considerable heterogeneity across different scales ranging from nanometers to millimeters. Although the formation of partially ice-like structures has been proposed, the molecular-level understanding of this heterogeneity remains unclear. Here, we examined the heterogeneity of molecular dynamics on QLLs based on molecular dynamics simulations and machine learning analysis of the simulation data. We demonstrated that the molecular dynamics of QLLs do not comprise a mixture of solid- and liquid water molecules. Rather, molecules having similar behaviors form dynamical domains that are associated with the dynamical heterogeneity of supercooled water. Nonetheless, molecules in the domains frequently switch their dynamical state. Furthermore, while there is no observable characteristic domain size, the long-range ordering strongly depends on the temperature and crystal face. Instead of a mixture of static solid- and liquid-like regions, our results indicate the presence of heterogeneous molecular dynamics in QLLs, which offers molecular-level insights into the surface properties of ice.
Collapse
Affiliation(s)
- Ikki Yasuda
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Katsuhiro Endo
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama, Japan.
| |
Collapse
|
15
|
Zhu Y, Wei M, Ma X, Ma H, Chen R, Zhang H, Wang X, Ji J, Xue M. Precisely Controlled Polymerization of Two-Dimensional Conducting Polymers in Quasi-Liquid Layer Enables Ultrahigh Sensing Performance. Macromol Rapid Commun 2024; 45:e2400037. [PMID: 38437164 DOI: 10.1002/marc.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Indexed: 03/06/2024]
Abstract
Gas sensors based on conducting polymers offer great potential for high-performance room temperature applications due to their cost-effectiveness, high-sensitivity, and operational advantage. However, their current performance is limited by the deficiency of control in conventional polymerization methods, leading to poor crystallinity and inconsistent material properties. Here, the quasi-liquid layer (QLL) on the ice surface acts as a self-regulating nano-reactor for precise control of thermodynamics and kinetics in the polymerization, resulting in a 7.62 nm thick two-dimensional (2D) polyaniline (PANI) film matching the QLL thickness. The ultra-thin film optimizes the exposure of active sites, enhancing the detection of analyte gases at low concentrations. It is validated by fabricating a chemiresistive gas sensor with the 2D PANI film, demonstrating stable room-temperature detection of ammonia down to 10 ppt in ambient air with an impressive 10% response. This achievement represents the highest sensitivity among sensors of this kind while maintaining excellent selectivity and repeatability. Moreover, the QLL-controlled polymerization strategy offers an alternative route for precise control of the polymerization process for conducting polymers, enabling the creation of advanced materials with enhanced properties.
Collapse
Affiliation(s)
- Yucheng Zhu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengzhen Wei
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlei Ma
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Hui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruoqi Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanrong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xusheng Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junhui Ji
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
16
|
Kapil V, Kovács DP, Csányi G, Michaelides A. First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects. Faraday Discuss 2024; 249:50-68. [PMID: 37799072 PMCID: PMC10845015 DOI: 10.1039/d3fd00113j] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 10/07/2023]
Abstract
Vibrational spectroscopy is a powerful approach to visualising interfacial phenomena. However, extracting structural and dynamical information from vibrational spectra is a challenge that requires first-principles simulations, including non-Condon and quantum nuclear effects. We address this challenge by developing a machine-learning enhanced first-principles framework to speed up predictive modelling of infrared, Raman, and sum-frequency generation spectra. Our approach uses machine learning potentials that encode quantum nuclear effects to generate quantum trajectories using simple molecular dynamics efficiently. In addition, we reformulate bulk and interfacial selection rules to express them unambiguously in terms of the derivatives of polarisation and polarisabilities of the whole system and predict these derivatives efficiently using fully-differentiable machine learning models of dielectric response tensors. We demonstrate our framework's performance by predicting the IR, Raman, and sum-frequency generation spectra of liquid water, ice and the water-air interface by achieving near quantitative agreement with experiments at nearly the same computational efficiency as pure classical methods. Finally, to aid the experimental discovery of new phases of nanoconfined water, we predict the temperature-dependent vibrational spectra of monolayer water across the solid-hexatic-liquid phases transition.
Collapse
Affiliation(s)
- Venkat Kapil
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | - Gábor Csányi
- Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
17
|
Devlin SW, Bernal F, Riffe EJ, Wilson KR, Saykally RJ. Spiers Memorial Lecture: Water at interfaces. Faraday Discuss 2024; 249:9-37. [PMID: 37795954 DOI: 10.1039/d3fd00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In this article we discuss current issues in the context of the four chosen subtopics for the meeting: dynamics and nano-rheology of interfacial water, electrified/charged aqueous interfaces, ice interfaces, and soft matter/water interfaces. We emphasize current advances in both theory and experiment, as well as important practical manifestations and areas of unresolved controversy.
Collapse
Affiliation(s)
- Shane W Devlin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Franky Bernal
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Erika J Riffe
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Lin Y, Zhou T, Rosenmann ND, Yu L, Gage TE, Banik S, Neogi A, Chan H, Lei A, Lin XM, Holt M, Arslan I, Wen J. Surface premelting of ice far below the triple point. Proc Natl Acad Sci U S A 2023; 120:e2304148120. [PMID: 37844213 PMCID: PMC10622896 DOI: 10.1073/pnas.2304148120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 10/18/2023] Open
Abstract
Premelting of ice, a quasi-liquid layer (QLL) at the surface below the melting temperature, was first postulated by Michael Faraday 160 y ago. Since then, it has been extensively studied theoretically and experimentally through many techniques. Existing work has been performed predominantly on hexagonal ice, at conditions close to the triple point. Whether the same phenomenon can persist at much lower pressure and temperature, where stacking disordered ice sublimates directly into water vapor, remains unclear. Herein, we report direct observations of surface premelting on ice nanocrystals below the sublimation temperature using transmission electron microscopy (TEM). Similar to what has been reported on hexagonal ice, a QLL is found at the solid-vapor interface. It preferentially decorates certain facets, and its thickness increases as the phase transition temperature is approached. In situ TEM reveals strong diffusion of the QLL, while electron energy loss spectroscopy confirms its amorphous nature. More significantly, the premelting observed in this work is thought to be related to the metastable low-density ultraviscous water, instead of ambient liquid water as in the case of hexagonal ice. This opens a route to understand premelting and grassy liquid state, far away from the normal water triple point.
Collapse
Affiliation(s)
- Yulin Lin
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan430072, People's Republic of China
| | - Tao Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | | | - Lei Yu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Thomas E. Gage
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Suvo Banik
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Arnab Neogi
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Henry Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan430072, People's Republic of China
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Martin Holt
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Ilke Arslan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
| |
Collapse
|
19
|
Zhang Y, Wang H, Guo J, Cheng X, Han G, Lau CH, Lin H, Liu S, Ma J, Shao L. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes. Science 2023; 382:202-206. [PMID: 37824644 DOI: 10.1126/science.adi9531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Existing polyamide (PA) membrane synthesis protocols are underpinned by controlling diffusion-dominant liquid-phase reactions that yield subpar spatial architectures and ionization behavior. We report an ice-confined interfacial polymerization strategy to enable the effective kinetic control of the interfacial reaction and thermodynamic manipulation of the hexagonal polytype (Ih) ice phase containing monomers to rationally synthesize a three-dimensional quasilayered PA membrane for nanofiltration. Experiments and molecular simulations confirmed the underlying membrane formation mechanism. Our ice-confined PA nanofiltration membrane features high-density ionized structure and exceptional transport channels, realizing superior water permeance and excellent ion selectivity.
Collapse
Affiliation(s)
- Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Hao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiquan Cheng
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Gang Han
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University Perth, Perth, Western Australia
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
20
|
Baran Ł, Tarasewicz D, Kamiński DM, Rżysko W. Pursuing colloidal diamonds. NANOSCALE 2023; 15:10623-10633. [PMID: 37310349 DOI: 10.1039/d3nr01771k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The endeavor to selectively fabricate a cubic diamond is challenging due to the formation of competing phases such as its hexagonal polymorph or others possessing similar free energy. The necessity to achieve this is of paramount importance since the cubic diamond is the only polymorph exhibiting a complete photonic bandgap, making it a promising candidate in view of photonic applications. Herein, we demonstrate that due to the presence of an external field and delicate manipulation of its strength we can attain selectivity in the formation of a cubic diamond in a one-component system comprised of designer tetrahedral patchy particles. The driving force of such a phenomenon is the structure of the first adlayer which is commensurate with the (110) face of the cubic diamond. Moreover, after a successful nucleation event, once the external field is turned off, the structure remains stable, paving an avenue for further post-synthetic treatment.
Collapse
Affiliation(s)
- Łukasz Baran
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| | - Dariusz Tarasewicz
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| | - Daniel M Kamiński
- Department of Organic and Crystalochemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Rżysko
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
21
|
Kaur R, Sadtchenko V. Mass Accommodation of Water on Ice at Environmentally Relevant Temperatures: Insights from Fast Scanning Calorimetry. J Phys Chem Lett 2022; 13:11112-11117. [PMID: 36441956 DOI: 10.1021/acs.jpclett.2c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using a conceptually simple, quasi-adiabatic, fast scanning calorimetry technique, we have investigated the sublimation kinetics of ice films with thicknesses ranging from 14 to 400 nm at environmentally relevant temperatures, between 223 and 268 K. The technique enables accurate determination of ice sublimation rates into vacuum under the conditions of free molecular flow during rapid yet quasistatic heating. The measured sublimation fluxes yield the vapor pressure of the ice samples, which is indistinguishable from that derived from experiments under near-equilibrium conditions. Thus, in agreement with the microscopic reversibility principle, we conclude that the mass accommodation coefficient of water by ice is unity and temperature-independent in the temperature range of the studies. We discuss these findings in the context of current computational and theoretical research into the chemistry and physics of aqueous interfaces.
Collapse
Affiliation(s)
- Rinipal Kaur
- Department of Chemistry, The George Washington University, Washington, D.C.20052, United States
| | - Vlad Sadtchenko
- Department of Chemistry, The George Washington University, Washington, D.C.20052, United States
| |
Collapse
|
22
|
Sun Q, Xiao D, Zhang W, Mao X. Quasi-water layer sandwiched between hexagonal ice and wall and its influences on the ice tensile stress. NANOSCALE 2022; 14:13324-13333. [PMID: 36065833 DOI: 10.1039/d2nr02042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of a quasi-water/premelting layer at the interface between wall and ice when the temperature (T) is below the melting point was extensively observed in experiments. In this work, molecular dynamics simulations are performed to analyze the underlying physics of the quasi-water layer and the effects of the layer on the ice tensile stress. The results indicate that each molecule and its four nearest neighbours in the quasi-water layer representing an equilibrium structure gradually form a tetrahedral ice-like arrangement from an unstructured liquid-like structure along the direction away from the wall. The average density of the quasi-water layer is equal to or higher than the bulk density of water at T ≥ 240 K or T ≤ 240 K respectively, and reaches 1.155 g cm-3 at T = 210 K, suggesting a structural correlation with the high-density liquid phase of water. Depending on the temperature and wall wettability, the thickness of the quasi-water layer (Hq) ranges from ∼2 Å to ∼25 Å. For prescribed hydrophilic walls, Hq increases monotonically with temperature, and is almost proportional to(Tm - T)-1/3, where Tm is the melting temperature of ice. Hq keeps an almost constant value (2 Å) as the temperature increases and rises sharply after passing a threshold temperature of T ≈ 250 K. In the joint effects of the wall wettability and quasi-water layer's thickness, the ice tensile stress decreasing monotonically at a larger temperature shows an upward trend and then reduces to almost a constant value as the wall changes from a hydrophobic to a hydrophilic one. The results reveal the potential development of anti-icing/de-icing techniques by heating the wall or modifying its surface to increase Hq.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Dandan Xiao
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Wenqiang Zhang
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Xuerui Mao
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
23
|
Berrens ML, Bononi FC, Donadio D. Effect of sodium chloride adsorption on the surface premelting of ice. Phys Chem Chem Phys 2022; 24:20932-20940. [PMID: 36040383 DOI: 10.1039/d2cp02277j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We characterise the structural properties of the quasi-liquid layer (QLL) at two low-index ice surfaces in the presence of sodium chloride (Na+/Cl-) ions by molecular dynamics simulations. We find that the presence of a high surface density of Na+/Cl- pairs changes the surface melting behaviour from step-wise to gradual melting. The ions lead to an overall increase of the thickness and the disorder of the QLL, and to a low-temperature roughening transition of the air-ice interface. The local molecular structure of the QLL is similar to that of liquid water, and the differences between the basal and primary prismatic surface are attenuated by the presence of Na+/Cl- pairs. These changes modify the crystal growth rates of different facets and the solvation environment at the surface of sea-water ice with a potential impact on light scattering and environmental chemical reactions.
Collapse
Affiliation(s)
- Margaret L Berrens
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA.
| | - Fernanda C Bononi
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA.
| | - Davide Donadio
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
24
|
Horvath A, Anaredy RS, Shaw SK. Solvents and Stabilization in Ionic Liquid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9372-9381. [PMID: 35862667 PMCID: PMC10111422 DOI: 10.1021/acs.langmuir.2c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
We report the interfacial structures and chemical environments of ionic liquid films as a function of dilution with molecular solvents and over a range of film thicknesses (a few micrometers). Data from spectroscopic ellipsometry and infrared spectroscopy measurements show differences between films comprised of neat ionic liquids, as well as films comprised of ionic liquids diluted with two molecular solvents (water and acetonitrile). While the water-diluted IL films follow thickness trends predicted by the Landau-Levich model, neat IL and IL/MeCN films deviate significantly from predicted behaviors. Specifically, these film thicknesses are far greater than the predicted values, suggesting enhanced intermolecular interactions or other non-Newtonian behaviors not captured by the theory. We correlate film thicknesses with trends in the infrared intensity profiles across film thicknesses and IL-solvent dilution conditions and interpret the changes from expected behaviors as varying amounts of the film volume existing in isotropic (bulk) vs anisotropic (interfacial) states. The hydrogen bonding network of water-diluted ionic liquids is implicated in the agreement of this system with the Landau-Levich model's thickness predictions.
Collapse
|
25
|
Gebauer D, Gale JD, Cölfen H. Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107735. [PMID: 35678091 DOI: 10.1002/smll.202107735] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.
Collapse
Affiliation(s)
- Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TiGER), School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
| | - Helmut Cölfen
- University of Konstanz, Physical Chemistry, Universitätsstr. 10, 78465, Konstanz, Germany
| |
Collapse
|
26
|
Odendahl NL, Geissler PL. Local Ice-like Structure at the Liquid Water Surface. J Am Chem Soc 2022; 144:11178-11188. [PMID: 35696525 DOI: 10.1021/jacs.2c01827] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Experiments and computer simulations have established that liquid water's surfaces can deviate in important ways from familiar bulk behavior. Even in the simplest case of an air-water interface, distinctive layering, orientational biases, and hydrogen bond arrangements have been reported, but an overarching picture of their origins and relationships has been incomplete. Here we show that a broad set of such observations can be understood through an analogy with the basal face of crystalline ice. Using simulations, we demonstrate a number of structural similarities between water and ice surfaces, suggesting the presence of domains at the air-water interface with ice-like features that persist over 2-3 molecular diameters. Most prominent is a shared characteristic layering of molecular density and orientation perpendicular to the interface. Lateral correlations of hydrogen bond network geometry point to structural similarities in the parallel direction as well. Our results bolster and significantly extend previous conceptions of ice-like structure at the liquid's boundary and suggest that the much-discussed quasi-liquid layer on ice evolves subtly above the melting point into a quasi-ice layer at the surface of liquid water.
Collapse
Affiliation(s)
- Nathan L Odendahl
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Cui S, Chen H, Zhao Z. Premelting layer during ice growth: role of clusters. Phys Chem Chem Phys 2022; 24:15330-15339. [PMID: 35703342 DOI: 10.1039/d2cp00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The premelting layer plays an important role in ice growth, but there is a significant gap in our knowledge between the atomistic premelting surface structure and the macroscopic growth mechanism. In this work, using large-scale molecular dynamics simulation, we reveal the existence of clusters on the premelting surface, as an intermediate feature bridging the gap. We show the spontaneous formation and evolution of clusters, and they form a stable distribution determined by the growth rate. We demonstrate how this stable distribution is related to the growth mode of ice, connected by the growth of clusters. We come to a bilayer-by-bilayer growth mode at simulation-reachable high growth rates, but another mechanism, namely "cluster stacking", is speculated to exist at lower growth rates. This work builds a connection between the microscopic structure of the premelting layer and the macroscopic growth of ice, making a step forward toward the full understanding of premelting and ice growth.
Collapse
Affiliation(s)
- Shifan Cui
- International Center for Quantum Materials, School of Physics, Peking University, 209 Chengfu Road, Haidian District, Beijing 100871, China.
| | - Haoxiang Chen
- School of Physics, Peking University, 209 Chengfu Road, Haidian District, Beijing 100871, China
| | - Zhengpu Zhao
- International Center for Quantum Materials, School of Physics, Peking University, 209 Chengfu Road, Haidian District, Beijing 100871, China.
| |
Collapse
|
28
|
Shi J, Fulford M, Li H, Marzook M, Reisjalali M, Salvalaglio M, Molteni C. Investigating the quasi-liquid layer on ice surfaces: a comparison of order parameters. Phys Chem Chem Phys 2022; 24:12476-12487. [PMID: 35576067 DOI: 10.1039/d2cp00752e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ice surfaces are characterized by pre-melted quasi-liquid layers (QLLs), which mediate both crystal growth processes and interactions with external agents. Understanding QLLs at the molecular level is necessary to unravel the mechanisms of ice crystal formation. Computational studies of the QLLs heavily rely on the accuracy of the methods employed for identifying the local molecular environment and arrangements, discriminating between solid-like and liquid-like water molecules. Here we compare the results obtained using different order parameters to characterize the QLLs on hexagonal ice (Ih) and cubic ice (Ic) model surfaces investigated with molecular dynamics (MD) simulations in a range of temperatures. For the classification task, in addition to the traditional Steinhardt order parameters in different flavours, we select an entropy fingerprint and a deep learning neural network approach (DeepIce), which are conceptually different methodologies. We find that all the analysis methods give qualitatively similar trends for the behaviours of the QLLs on ice surfaces with temperature, with some subtle differences in the classification sensitivity limited to the solid-liquid interface. The thickness of QLLs on the ice surface increases gradually as the temperature increases. The trends of the QLL size and of the values of the order parameters as a function of temperature for the different facets may be linked to surface growth rates which, in turn, affect crystal morphologies at lower vapour pressure. The choice of the order parameter can be therefore informed by computational convenience except in cases where a very accurate determination of the liquid-solid interface is important.
Collapse
Affiliation(s)
- Jihong Shi
- Department of Physics, King's College London, Strand, London WC2R 2LS, UK.
| | - Maxwell Fulford
- Department of Physics, King's College London, Strand, London WC2R 2LS, UK.
| | - Hui Li
- Department of Physics, King's College London, Strand, London WC2R 2LS, UK.
| | - Mariam Marzook
- Department of Physics, King's College London, Strand, London WC2R 2LS, UK.
| | - Maryam Reisjalali
- Department of Physics, King's College London, Strand, London WC2R 2LS, UK.
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Carla Molteni
- Department of Physics, King's College London, Strand, London WC2R 2LS, UK.
| |
Collapse
|
29
|
Wang Y, He H, Wang C, Lu Y, Dong K, Huo F, Zhang S. Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. JACS AU 2022; 2:543-561. [PMID: 35373210 PMCID: PMC8965826 DOI: 10.1021/jacsau.1c00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Ionic liquids (ILs) hold great promise in the fields of green chemistry, environmental science, and sustainable technology due to their unique properties, such as a tailorable structure, the various types available, and their environmentally friendly features. On the basis of multiscale simulations and experimental characterizations, two unique features of ILs are as follows: (1) strong coupling interactions between the electrostatic forces and hydrogen bonds, namely in the Z-bond, and (2) the unique semiordered structure and properties of ultrathin films, specifically regarding the quasi-liquid. In accordance with the aforementioned theoretical findings, many cutting-edge applications have been proposed: for example, CO2 capture and conversion, biomass conversion and utilization, and energy storage materials. Although substantial progress has been made recently in the field of ILs, considerable challenges remain in understanding the nature of and devising applications for ILs, especially in terms of e.g. in situ/real-time observation and highly precise multiscale simulations of the Z-bond and quasi-liquid. In this Perspective, we review recent developments and challenges for the IL research community and provide insights into the nature and function of ILs, which will facilitate future applications.
Collapse
Affiliation(s)
- Yanlei Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Hongyan He
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Chenlu Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Yumiao Lu
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kun Dong
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Feng Huo
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Suojiang Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| |
Collapse
|
30
|
Jiao X, He C, Yu H, He J, Wang C. Photo-generated hydroxyl radicals contribute to the formation of halogen radicals leading to ozone depletion on and within polar stratospheric clouds surface. CHEMOSPHERE 2022; 291:132816. [PMID: 34752833 DOI: 10.1016/j.chemosphere.2021.132816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Polar stratospheric clouds (PSCs), of which the surface is a dynamic liquid water layer and might consist of aqueous HNO3 and H2O2, is a well-known key meteorological condition contributing to the ozone hole in the polar stratosphere. PSCs has been considered to provide abundant surface for the heterogeneous reactions causing the formation of the Cl2 and HOCl, which are further photolyzed into Cl and ClO radicals leading to the ozone destruction. Here we demonstrated that the sunlight drives the massive and stable production of OH radicals in aqueous HNO3 and its main photo-induced byproduct HNO2. We also found that the photo-generated OH radicals in aqueous HNO3, HNO2 and H2O2 have the remarkable capability to react with the dissolved HCl, Cl- and Br- to form halogen radicals. In addition, we observed that the H2O2 can react with dissolved HCl and Br- in darkness to form and release Cl2 and Br2 gases, which could further be photolyzed into reactive halogen radicals whenever sunlight is available. All these findings suggest that, except for the well-known heterogeneous reactions, photochemical reactions involving the aqueous HNO3 and H2O2 on and within PSCs surface might constitute another important halogen activation pathway for ozone destruction. This study may shed deeper insights into the mechanism of halogen radicals resulting in ozone depletion in polar stratosphere.
Collapse
Affiliation(s)
- Xiaoyu Jiao
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Congcong He
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Huan Yu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
31
|
Maggiore E, Tortora M, Rossi B, Tommasini M, Ossi PM. UV Resonance Raman Spectroscopy of weakly hydrogen-bonded water in the liquid phase and on ice and snow surfaces. Phys Chem Chem Phys 2022; 24:10499-10505. [DOI: 10.1039/d2cp01072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen bond network has a major role in determining the physical and chemical properties of water both in the solid and in the liquid state. In the bulk liquid...
Collapse
|
32
|
Chen J, Fan X, Liu J, Gu C, Shi Y, Zheng W, Singh DJ. Interior Melting of Rapidly Heated Gold Nanoparticles. J Phys Chem Lett 2021; 12:8170-8177. [PMID: 34415170 DOI: 10.1021/acs.jpclett.1c02081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Normal melting invariably starts from surfaces or interfaces due to the weaker bonding constraints in these regions. However, we show that melting can be initiated from the interior of gold nanoparticles with high heating rates. We find that melting starts from the surface with the formation of a premelting layer, as usual, but that the premelting layer does not extend to the interior under certain conditions. Instead, liquid nucleation occurs in the core of the nanoparticle. This unexpected interior melting is connected to the slower melting kinetics, which is related to heat transfer near the premelted surface. The required conditions for interior melting are a suitable size of the nanoparticle and a sufficiently fast heating rate. The present results point to a novel melting regime in nanoparticles. We note that the time scales are now accessible using ultrafast tools such as X-ray lasers that can probe dynamical structure changes, suggesting opportunities for experiments.
Collapse
Affiliation(s)
- Jixing Chen
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiaofeng Fan
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Jialin Liu
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Changzhi Gu
- Laboratory of Microfabrication, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfeng Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, Missouri 65211-7010, United States
| |
Collapse
|
33
|
Malek SMA, Kwan V, Saika-Voivod I, Consta S. Low Density Interior in Supercooled Aqueous Nanodroplets Expels Ions to the Subsurface. J Am Chem Soc 2021; 143:13113-13123. [PMID: 34375522 DOI: 10.1021/jacs.1c04142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between water and ions within droplets plays a key role in the chemical reactivity of atmospheric and man-made aerosols. Here we report direct computational evidence that in supercooled aqueous nanodroplets a lower density core of tetrahedrally coordinated water expels the cosmotropic ions to the denser and more disordered subsurface. In contrast, at room temperature, depending on the nature of the ion, the radial distribution in the droplet core is nearly uniform or elevated toward the center. We analyze the spatial distribution of a single ion in terms of a reference electrostatic model. The energy of the system in the analytical model is expressed as the sum of the electrostatic and surface energy of a deformable droplet. The model predicts that the ion is subject to a harmonic potential centered at the droplet's center of mass. We name this effect "electrostatic confinement". The model's predictions are consistent with the simulation findings for a single ion at room temperature but not at supercooling. We anticipate this study to be the starting point for investigating the structure of supercooled (electro)sprayed droplets that are used to preserve the conformations of macromolecules originating from the bulk solution.
Collapse
Affiliation(s)
- Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada
| | - Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada.,Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
34
|
Qiu H, Zhao W, Zhou W, Guo W. Edge premelting of two-dimensional ices. J Chem Phys 2021; 155:044706. [PMID: 34340399 DOI: 10.1063/5.0056732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The surface of a three-dimensional ice crystal naturally has a quasi-liquid layer (QLL) at temperatures below its bulk melting point, due to a phenomenon called surface premelting. Here, we show that the edges of a two-dimensional (2D) bilayer hexagonal ice adsorbed on solid surfaces undergo premelting as well, resulting in the formation of quasi-liquid bands (QLBs) at the edges. Our extensive molecular dynamics simulations show that the QLB exhibits structure and dynamics indistinguishable from the bilayer liquid phase, acting as a lower-dimensional analog of the QLL on the bulk ice. We further find that at low temperatures, the width of the QLBs at armchair-type edges of the 2D ice is almost identical to that at zigzag-type edges but becomes far greater than the latter at temperatures near the melting point. The chirality-dependent edge premelting of 2D ices should add an important new ingredient to the heterogeneity of premelting.
Collapse
Affiliation(s)
- Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wen Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
35
|
Lin L, Chowdhury AU, Ma YZ, Sacci RL, Katsaras J, Hong K, Collier CP, Carrillo JMY, Doughty B. Ion Pairing Mediates Molecular Organization Across Liquid/Liquid Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33734-33743. [PMID: 34235915 DOI: 10.1021/acsami.1c09763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid/liquid interfaces play a central role in scientific fields ranging from nanomaterial synthesis and soft matter electronics to nuclear waste remediation and chemical separations. This diversity of functions arises from an interface's ability to respond to changing conditions in its neighboring bulk phases. Understanding what drives this interfacial flexibility can provide novel avenues for designing new functional interfaces. However, limiting this progress is an inadequate understanding of the subtle intermolecular and interphase interactions taking place at the molecular level. Here, we use surface-specific vibrational sum frequency generation spectroscopy combined with atomistic molecular dynamics simulations to investigate the self-assembly and structure of model ionic oligomers consisting of an oligodimethylsiloxane (ODMS) tail covalently attached to a positively charged methyl imidazolium (MIM+) head group at buried oil/aqueous interfaces. We show how the presence of seemingly innocuous salts can impart dramatic changes to the ODMS tail conformations in the oil phase via specific ion effects and ion-pairing interactions taking place in the aqueous phase. These specific ion interactions are shown to drive enhanced amphiphile adsorption, induce morphological changes, and disrupt emergent hydrogen-bonding structures at the interface. Tuning these interactions allows for independent control over the oligomer structure in the oil phase versus interfacial population changes and represents key mechanistic insight that is needed to control chemical reactions at liquid/liquid interfaces.
Collapse
Affiliation(s)
- Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Azhad U Chowdhury
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
36
|
Wassermobilität in der grenzflächeninduzierten Schmelzschicht von Eis/Tonmineral‐Nanokompositen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Li H, Mars J, Lohstroh W, Koza MM, Butt H, Mezger M. Water Mobility in the Interfacial Liquid Layer of Ice/Clay Nanocomposites. Angew Chem Int Ed Engl 2021; 60:7697-7702. [PMID: 33238050 PMCID: PMC8048683 DOI: 10.1002/anie.202013125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Indexed: 12/03/2022]
Abstract
At solid/ice interfaces, a premelting layer is formed at temperatures below the melting point of bulk water. However, the structural and dynamic properties within the premelting layer have been a topic of intense debate. Herein, we determined the translational diffusion coefficient Dt of water in ice/clay nanocomposites serving as model systems for permafrost by quasi-elastic neutron scattering. Below the bulk melting point, a rapid decrease of Dt is found for charged hydrophilic vermiculite, uncharged hydrophilic kaolin, and more hydrophobic talc, reaching plateau values below -4 °C. At this temperature, Dt in the premelting layer is reduced up to a factor of two compared to supercooled bulk water. Adjacent to charged vermiculite the lowest water mobility was observed, followed by kaolin and the more hydrophobic talc. Results are explained by the intermolecular water interactions with different clay surfaces and interfacial segregation of the low-density liquid water (LDL) component.
Collapse
Affiliation(s)
- Hailong Li
- Department of Physics at InterfacesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Julian Mars
- Department of Physics at InterfacesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ)Technische Universität MünchenLichtenbergstrasse 185748GarchingGermany
| | - Michael Marek Koza
- Institut Laue-Langevin71 Avenue des Martyrs, CS 2015638042GrenobleFrance
| | - Hans‐Jürgen Butt
- Department of Physics at InterfacesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Markus Mezger
- Department of Physics at InterfacesMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Physics, Dynamics of Condensed SystemsUniversity of ViennaBoltzmanngasse 51090WienAustria
| |
Collapse
|
38
|
Niblett SP, Limmer DT. Ion Dissociation Dynamics in an Aqueous Premelting Layer. J Phys Chem B 2021; 125:2174-2181. [DOI: 10.1021/acs.jpcb.0c11286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Samuel P. Niblett
- Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, United States
| | - David T. Limmer
- Chemistry Department, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Liang Z, Zhang X, Lv S, Liang H, Yang Y. Crystal-Melt Interface Kinetics and the Capillary Wave Dynamics of the Monolayer Confined Ice-Water Coexistence Lines. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20090423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Bononi FC, Chen Z, Rocca D, Andreussi O, Hullar T, Anastasio C, Donadio D. Bathochromic Shift in the UV–Visible Absorption Spectra of Phenols at Ice Surfaces: Insights from First-Principles Calculations. J Phys Chem A 2020; 124:9288-9298. [DOI: 10.1021/acs.jpca.0c07038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fernanda C. Bononi
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Zekun Chen
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Dario Rocca
- Université de Lorraine, CNRS, LPTC, F-54000 Nancy, France
| | - Oliviero Andreussi
- Department of Physics, University of North Texas Denton, Texas 76203, United States
| | - Ted Hullar
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| |
Collapse
|
41
|
Wang Y, Cheng L, Wen S, Zhou S, Wang Z, Deng L, Mao HQ, Cui W, Zhang H. Ice-Inspired Superlubricated Electrospun Nanofibrous Membrane for Preventing Tissue Adhesion. NANO LETTERS 2020; 20:6420-6428. [PMID: 32813534 DOI: 10.1021/acs.nanolett.0c01990] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by the superlubricated surface (SLS) of ice, which consists of an ultrathin and contiguous layer of surface-bound water, we built a SLS on the polycaprolactone (PCL)/poly(2-methacryloxyethylphosphorylcholine) (PMPC) composite nanofibrous membrane via electrospinning under controlled relative humidity (RH). The zwitterionic PMPC on the nanofiber provided a surface layer of bound water, thus generating a hydration lubrication surface. Prepared under 20% RH, electrospun PCL/PMPC nanofibers reached a minimum coefficient of friction (COF) of about 0.12 when the weight ratio of PMPC to PCL was 0.1. At a higher RH, a SLS with an ultralow COF of less than 0.05 was formed on the composite nanofibers. The high stability of the SLS hydration layer on the engineered nanofibrous membrane effectively inhibited fibroblast adhesion and markedly reduced tissue adhesion during tendon repair in vivo. This work demonstrates the great potential of this ice-inspired SLS approach in tissue adhesion-prevention applications.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
42
|
Hullar T, Bononi FC, Chen Z, Magadia D, Palmer O, Tran T, Rocca D, Andreussi O, Donadio D, Anastasio C. Photodecay of guaiacol is faster in ice, and even more rapid on ice, than in aqueous solution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1666-1677. [PMID: 32671365 DOI: 10.1039/d0em00242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Snowpacks contain a wide variety of inorganic and organic compounds, including some that absorb sunlight and undergo direct photoreactions. How the rates of these reactions in, and on, ice compare to rates in water is unclear: some studies report similar rates, while others find faster rates in/on ice. Further complicating our understanding, there is conflicting evidence whether chemicals react more quickly at the air-ice interface compared to in liquid-like regions (LLRs) within the ice. To address these questions, we measured the photodegradation rate of guaiacol (2-methoxyphenol) in various sample types, including in solution, in ice, and at the air-ice interface of nature-identical snow. Compared to aqueous solution, we find modest rate constant enhancements (increases of 3- to 6-fold) in ice LLRs, and much larger enhancements (of 17- to 77-fold) at the air-ice interface of nature-identical snow. Our computational modeling suggests the absorption spectrum for guaiacol red-shifts and increases on ice surfaces, leading to more light absorption, but these changes explain only a small portion (roughly 2 to 9%) of the observed rate constant enhancements in/on ice. This indicates that increases in the quantum yield are primarily responsible for the increased photoreactivity of guaiacol on ice; relative to solution, our results suggest that the quantum yield is larger by a factor of roughly 3-6 in liquid-like regions and 12-40 at the air-ice interface.
Collapse
Affiliation(s)
- Ted Hullar
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim K, Park MJ. Ice-assisted synthesis of functional nanomaterials: the use of quasi-liquid layers as nanoreactors and reaction accelerators. NANOSCALE 2020; 12:14320-14338. [PMID: 32458875 DOI: 10.1039/d0nr02624g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The discovery of peculiar quasi-liquid layers on ice surfaces marks a major breakthrough in ice-related sciences, as the facile tuning of the reactions and morphologies of substances in contact with these layers make ice-assisted chemistry a low-cost, environmentally benign, and ubiquitous methodology for the synthesis of nanomaterials with improved functionality. Ice-templated synthesis of porous materials offers the appealing features of rapid self-organization and remarkable property changes arising from confinement effects and affords materials that have found a diverse range of applications such as batteries, supercapacitors, and gas separation. Moreover, much attention has been drawn to the acceleration of chemical reactions and transformations on the ice surface due to the freeze concentration effect, fast self-diffusion of surface water, and modulated surface potential energy. Some of these results are related to the accumulation of inorganic contaminants in glaciers and the blockage of natural gas pipelines. As an emerging theme in nanomaterial design, the dimension-controlled synthesis of hybrid materials with unprecedentedly enhanced properties on ice surfaces has attracted much interest. However, a deep understanding of quasi-liquid layer characteristics (and hence, the development of cutting-edge analytical technologies with high surface sensitivity) is required to achieve the current goal of ice-assisted chemistry, namely the preparation of tailor-made materials with the desired properties.
Collapse
Affiliation(s)
- Kyoungwook Kim
- Department of Chemistry, Division of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784.
| | - Moon Jeong Park
- Department of Chemistry, Division of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784.
| |
Collapse
|
44
|
Sudera P, Cyran JD, Deiseroth M, Backus EHG, Bonn M. Interfacial Vibrational Dynamics of Ice I h and Liquid Water. J Am Chem Soc 2020; 142:12005-12009. [PMID: 32573242 PMCID: PMC7467663 DOI: 10.1021/jacs.0c04526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Insights
into energy flow dynamics at ice surfaces are essential
for understanding chemical dynamics relevant to atmospheric and geographical
sciences. Here, employing ultrafast surface-specific spectroscopy,
we report the interfacial vibrational dynamics of ice Ih. A comparison to liquid water surfaces reveals accelerated vibrational
energy relaxation and dissipation at the ice surface for hydrogen-bonded
OH groups. In contrast, free-OH groups sticking into the vapor phase
exhibit substantially slower vibrational dynamics on ice. The acceleration
and deceleration of vibrational dynamics of these different OH groups
at the ice surface are attributed to enhanced intermolecular coupling
and reduced rotational mobility, respectively. Our results highlight
the unique properties of free-OH groups on ice, putatively linked
to the high catalytic activities of ice surfaces.
Collapse
Affiliation(s)
- Prerna Sudera
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jenée D Cyran
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Baylor University, Waco, Texas 76798, United States
| | - Malte Deiseroth
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,University of Vienna, 1090 Vienna, Austria
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
45
|
Llombart P, Noya EG, MacDowell LG. Surface phase transitions and crystal habits of ice in the atmosphere. SCIENCE ADVANCES 2020; 6:eaay9322. [PMID: 32671203 PMCID: PMC7314560 DOI: 10.1126/sciadv.aay9322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/06/2020] [Indexed: 05/28/2023]
Abstract
With climate modeling predicting a raise of at least 2°C by year 2100, the fate of ice has become a serious concern, but we still do not understand how ice grows (or melts). In the atmosphere, crystal growth rates of basal and prism facets exhibit an enigmatic temperature dependence and crossover up to three times in a range between 0° and -40°. Here, we use large-scale computer simulations to characterize the ice surface and identify a sequence of previously unidentified phase transitions on the main facets of ice crystallites. Unexpectedly, we find that as temperature is increased, the crystal surface transforms from a disordered phase with proliferation of steps to a smooth phase with small step density. This causes the anomalous increase of step free energies and provides the long sought explanation for the enigmatic crossover of snow crystal growth rates found in the atmosphere.
Collapse
Affiliation(s)
- Pablo Llombart
- Instituto de Química Física Rocasolano, Madrid, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Eva G. Noya
- Instituto de Química Física Rocasolano, Madrid, Spain
| | - Luis G. MacDowell
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
46
|
Zalutskii AA. Mössbauer Probe Diagnostics of the Properties of Quasi-Liquid Water Layer on the Aluminosilicate Surface of Natural Origin. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, Backus EHG, Mukamel S, Bonn M, Nagata Y. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Chem Rev 2020; 120:3633-3667. [PMID: 32141737 PMCID: PMC7181271 DOI: 10.1021/acs.chemrev.9b00512] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 12/26/2022]
Abstract
From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Collapse
Affiliation(s)
- Fujie Tang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Jérémy R. Rouxel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, State Key Laboratory of Surface Physics and Key Laboratory
of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
48
|
Kato F, Sugimoto T, Matsumoto Y. Direct Experimental Evidence for Markedly Enhanced Surface Proton Activity Inherent to Water Ice. J Phys Chem Lett 2020; 11:2524-2529. [PMID: 32148038 DOI: 10.1021/acs.jpclett.0c00384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Autoionization and subsequent proton transfer processes determine the proton activity inherent to water molecular systems. In this study, we provide direct experimental evidence that the proton activity is markedly enhanced at the surface of crystalline ice, on the basis of the simultaneous observation of H/D exchange of water molecules at the surface and in the interior of well-defined double-layer ice films composed of H2O and D2O. Thermal desorption mass spectrometry showed clear signatures derived from the surface H/D exchange equilibrium, whereas infrared absorption spectroscopy indicated no appreciable H/D exchange progress in the interior. Detailed kinetic analyses revealed that the rate of H/D exchange at the surface is at least 3 orders of magnitude higher than in the interior. This drastic enhancement of the proton activity suggests an extremely high concentration of surface-hydrated protons in comparison with those in the bulk. Our results also highlight the impact of the local hydrogen-bond structure on the autoionization of water molecules.
Collapse
Affiliation(s)
- Fumiaki Kato
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Toshiki Sugimoto
- Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Yoshiyasu Matsumoto
- Toyota Physical and Chemical Research Institute, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
49
|
Yamada A. Multiscale coupled Maxwell's equations and polarizable molecular dynamics simulation based on charge response kernel model. J Chem Phys 2020; 152:094110. [PMID: 33480736 DOI: 10.1063/1.5143742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A computational scheme of coupled Maxwell's equations and polarizable molecular dynamics simulation has been developed based on a multi-scale model to describe the coupled dynamics of light electromagnetic waves and molecules in crystalline solids, where the charge response kernel model is employed to incorporate electronic polarization of the molecules. The method is applicable to electronically non-resonant light-matter interaction systems that involve atomic motions in spectroscopy and photonics. Since the scheme simultaneously traces the light propagation in a medium on a macroscopic scale and the microscopic molecular motion under the light electric field, this enables us to treat the experimental setup and mimic its measurement process. As the first applications, we demonstrate three numerical examples of basic spectroscopies of an ice crystalline solid: simulations of reflection and transmission of visible light, infrared absorption measurement, and stimulated Raman scattering measurement. These examples show the detailed behaviors of the interacting light fields and molecules in the spectroscopic processes.
Collapse
Affiliation(s)
- Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
50
|
Llombart P, Noya EG, Sibley DN, Archer AJ, MacDowell LG. Rounded Layering Transitions on the Surface of Ice. PHYSICAL REVIEW LETTERS 2020; 124:065702. [PMID: 32109130 DOI: 10.1103/physrevlett.124.065702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Understanding the wetting properties of premelting films requires knowledge of the film's equation of state, which is not usually available. Here we calculate the disjoining pressure curve of premelting films and perform a detailed thermodynamic characterization of premelting behavior on ice. Analysis of the density profiles reveals the signature of weak layering phenomena, from one to two and from two to three water molecular layers. However, disjoining pressure curves, which closely follow expectations from a renormalized mean field liquid state theory, show that there are no layering phase transitions in the thermodynamic sense along the sublimation line. Instead, we find that transitions at mean field level are rounded due to capillary wave fluctuations. We see signatures that true first order layering transitions could arise at low temperatures, for pressures between the metastable line of water-vapor coexistence and the sublimation line. The extrapolation of the disjoining pressure curve above water-vapor saturation displays a true first order phase transition from a thin to a thick film consistent with experimental observations.
Collapse
Affiliation(s)
- Pablo Llombart
- Departamento de Química-Física (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - Eva G Noya
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - David N Sibley
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Luis G MacDowell
- Departamento de Química-Física (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|