1
|
Zou C, Choi J, Li Q, Ye S, Yin C, Garcia-Fernandez M, Agrestini S, Qiu Q, Cai X, Xiao Q, Zhou X, Zhou KJ, Wang Y, Peng Y. Evolution from a charge-ordered insulator to a high-temperature superconductor in Bi 2Sr 2(Ca,Dy)Cu 2O 8+δ. Nat Commun 2024; 15:7739. [PMID: 39231956 PMCID: PMC11375163 DOI: 10.1038/s41467-024-52124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
How Cooper pairs form and condense has been the main challenge in the physics of copper-oxide high-temperature superconductors. Great efforts have been made in the 'underdoped' region of the phase diagram, through doping a Mott insulator or cooling a strange metal. However, there is still no consensus on how superconductivity emerges when electron-electron correlations dominate and the Fermi surface is missing. To address this issue, here we carry out high-resolution resonant inelastic X-ray scattering and scanning tunneling microscopy studies on prototype cuprates Bi2Sr2Ca0.6Dy0.4Cu2O8+δ near the onset of superconductivity, combining bulk and surface, momentum- and real-space information. We show that an incipient charge order exists in the antiferromagnetic regime down to 0.04 holes per CuO2 unit, entangled with a particle-hole asymmetric pseudogap. The charge order induces an intensity anomaly in the bond-buckling phonon branch, which exhibits an abrupt increase once the system enters the superconducting dome. Our results suggest that the Cooper pairs grow out of a charge-ordered insulating state, and then condense accompanied by an enhanced interplay between charge excitations and electron-phonon coupling.
Collapse
Affiliation(s)
- Changwei Zou
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, UK
| | - Qizhi Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- Shenzhen Pinghu Laboratory, Building C, Chinese Sciences Vally, Industrial Park (iBT), Shenzhen, China
| | - Shusen Ye
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Chaohui Yin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | - Qingzheng Qiu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xinqiang Cai
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Qian Xiao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, UK
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China.
- Frontier Science Center for Quantum Information, Beijing, China.
| | - Yingying Peng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
2
|
Mazumdar S, Torsten Clay R. Computational demonstrations of density wave of Cooper pairs and paired-electron liquid in the quarter-filled band-A brief review. CHAOS (WOODBURY, N.Y.) 2024; 34:072103. [PMID: 38990964 DOI: 10.1063/5.0200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
There has been strong interest recently in the so-called Cooper pair density wave, subsequent to the proposition that such a state occurs in the hole-doped cuprate superconductors. As of now, there is no convincing demonstration of such a state in the cuprate theoretical literature. We present here a brief but complete review of our theoretical and computational work on the paired-electron crystal (PEC), which has also been experimentally seen in the insulating phase proximate to superconductivity (SC) in organic charge-transfer solid (CTS) superconductors. Within our theory, SC in the CTS does indeed evolve from the PEC. A crucial requirement for the finding of the PEC is that the proper carrier density of one charge carrier per two sites is taken into consideration at the outset. Following the discussion of CTS superconductors, we briefly discuss how the theory can be extended to understand the phase diagram of the cuprate superconductors that has remained mysterious after nearly four decades of the discovery of SC in this family.
Collapse
Affiliation(s)
- Sumit Mazumdar
- Department of Physics, University of Arizona Tucson, Tucson, Arizona 85721, USA
| | - R Torsten Clay
- Department of Physics and Astronomy and HPC2, Center for Computational Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
3
|
Mesaros A, Gu GD, Massee F. Topologically trivial gap-filling in superconducting Fe(Se,Te) by one-dimensional defects. Nat Commun 2024; 15:3774. [PMID: 38710680 DOI: 10.1038/s41467-024-48047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Structural distortions and imperfections are a crucial aspect of materials science, on the macroscopic scale providing strength, but also enhancing corrosion and reducing electrical and thermal conductivity. At the nanometre scale, multi-atom imperfections, such as atomic chains and crystalline domain walls have conversely been proposed as a route to topological superconductivity, whose most prominent characteristic is the emergence of Majorana Fermions that can be used for error-free quantum computing. Here, we shed more light on the nature of purported domain walls in Fe(Se,Te) that may host 1D dispersing Majorana modes. We show that the displacement shift of the atomic lattice at these line-defects results from sub-surface impurities that warp the topmost layer(s). Using the electric field between the tip and sample, we manage to reposition the sub-surface impurities, directly visualizing the displacement shift and the underlying defect-free lattice. These results, combined with observations of a completely different type of 1D defect where superconductivity remains fully gapped, highlight the topologically trivial nature of 1D defects in Fe(Se,Te).
Collapse
Affiliation(s)
- A Mesaros
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - G D Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - F Massee
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
| |
Collapse
|
4
|
Vinograd I, Souliou SM, Haghighirad AA, Lacmann T, Caplan Y, Frachet M, Merz M, Garbarino G, Liu Y, Nakata S, Ishida K, Noad HML, Minola M, Keimer B, Orgad D, Hicks CW, Le Tacon M. Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa 2Cu 3O y. Nat Commun 2024; 15:3277. [PMID: 38627407 PMCID: PMC11021565 DOI: 10.1038/s41467-024-47540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Uniaxial pressure provides an efficient approach to control charge density waves in YBa2Cu3Oy. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them. We show that this interplay is qualitatively described by including strain effects in a nonlinear sigma model of competing superconducting and charge-density-wave orders. Our analysis suggests that strain stabilizes the 3D charge density wave in the regions between disorder-pinned domains of 2D charge density waves, and that the two orders compete at the boundaries of these domains. No signatures of discommensurations nor of pair density waves are observed. From a broader perspective, our results underscore the potential of strain tuning as a powerful tool for probing competing orders in quantum materials.
Collapse
Affiliation(s)
- I Vinograd
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, D-37077, Göttingen, Germany
| | - S M Souliou
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - A-A Haghighirad
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - T Lacmann
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - Y Caplan
- Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | - M Frachet
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - M Merz
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - G Garbarino
- ESRF, The European Synchrotron, 71, avenue des Martyrs, CS 40220, F-38043, Grenoble Cedex 9, France
| | - Y Liu
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - S Nakata
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - K Ishida
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - H M L Noad
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany
| | - M Minola
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - B Keimer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - D Orgad
- Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | - C W Hicks
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - M Le Tacon
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany.
| |
Collapse
|
5
|
Aishwarya A, May-Mann J, Raghavan A, Nie L, Romanelli M, Ran S, Saha SR, Paglione J, Butch NP, Fradkin E, Madhavan V. Magnetic-field-sensitive charge density waves in the superconductor UTe 2. Nature 2023; 618:928-933. [PMID: 37380690 DOI: 10.1038/s41586-023-06005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/23/2023] [Indexed: 06/30/2023]
Abstract
The intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-Abelian Majorana modes, chiral supercurrents and half-quantum vortices1-4. However, fundamentally new and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. Here we use scanning tunnelling microscopy to reveal an unusual charge-density-wave (CDW) order in the heavy-fermion triplet superconductor UTe2 (refs. 5-8). Our high-resolution maps reveal a multi-component incommensurate CDW whose intensity gets weaker with increasing field, with the CDW eventually disappearing at the superconducting critical field Hc2. To understand the phenomenology of this unusual CDW, we construct a Ginzburg-Landau theory for a uniform triplet superconductor coexisting with three triplet pair-density-wave states. This theory gives rise to daughter CDWs that would be sensitive to magnetic field owing to their origin in a pair-density-wave state and provides a possible explanation for our data. Our discovery of a CDW state that is sensitive to magnetic fields and strongly intertwined with superconductivity provides important information for understanding the order parameters of UTe2.
Collapse
Affiliation(s)
- Anuva Aishwarya
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian May-Mann
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Arjun Raghavan
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Laimei Nie
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Marisa Romanelli
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheng Ran
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Department of Physics, Washington University in St. Louis, St Louis, MO, USA
| | - Shanta R Saha
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
| | - Johnpierre Paglione
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Nicholas P Butch
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Eduardo Fradkin
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Condensed Matter Theory, University of Illinois, Urbana, IL, USA
| | - Vidya Madhavan
- Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Jiang K, Wu T, Yin JX, Wang Z, Hasan MZ, Wilson SD, Chen X, Hu J. Kagome superconductors AV 3Sb 5 (A = K, Rb, Cs). Natl Sci Rev 2023; 10:nwac199. [PMID: 36935933 PMCID: PMC10016199 DOI: 10.1093/nsr/nwac199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
The quasi-two-dimensional kagome materials AV3Sb5 (A = K, Rb, Cs) were found to be a prime example of kagome superconductors, a new quantum platform to investigate the interplay between electron correlation effects, topology and geometric frustration. In this review, we report recent progress on the experimental and theoretical studies of AV3Sb5 and provide a broad picture of this fast-developing field in order to stimulate an expanded search for unconventional kagome superconductors. We review the electronic properties of AV3Sb5, the experimental measurements of the charge density wave state, evidence of time-reversal symmetry breaking and other potential hidden symmetry breaking in these materials. A variety of theoretical proposals and models that address the nature of the time-reversal symmetry breaking are discussed. Finally, we review the superconducting properties of AV3Sb5, especially the potential pairing symmetries and the interplay between superconductivity and the charge density wave state.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Xin Yin
- Laboratory for Quantum Emergence, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenyu Wang
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Stephen D Wilson
- Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Xianhui Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Wandel S, Boschini F, da Silva Neto EH, Shen L, Na MX, Zohar S, Wang Y, Welch SB, Seaberg MH, Koralek JD, Dakovski GL, Hettel W, Lin MF, Moeller SP, Schlotter WF, Reid AH, Minitti MP, Boyle T, He F, Sutarto R, Liang R, Bonn D, Hardy W, Kaindl RA, Hawthorn DG, Lee JS, Kemper AF, Damascelli A, Giannetti C, Turner JJ, Coslovich G. Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor. Science 2022; 376:860-864. [PMID: 35587968 DOI: 10.1126/science.abd7213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.
Collapse
Affiliation(s)
- S Wandel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - F Boschini
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
| | - E H da Silva Neto
- Department of Physics, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, New Haven, CT 06516, USA.,Department of Physics, University of California, Davis, CA 95616, USA
| | - L Shen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - M X Na
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - S Zohar
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Y Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S B Welch
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M H Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J D Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - G L Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - W Hettel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M-F Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S P Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - W F Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A H Reid
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M P Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - T Boyle
- Department of Physics, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, New Haven, CT 06516, USA.,Department of Physics, University of California, Davis, CA 95616, USA
| | - F He
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - R Sutarto
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - R Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - D Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - W Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R A Kaindl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D G Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - J-S Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A F Kemper
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - A Damascelli
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - C Giannetti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia, BS I-25121, Italy
| | - J J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - G Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
8
|
Wang S, Choubey P, Chong YX, Chen W, Ren W, Eisaki H, Uchida S, Hirschfeld PJ, Davis JCS. Scattering interference signature of a pair density wave state in the cuprate pseudogap phase. Nat Commun 2021; 12:6087. [PMID: 34667154 PMCID: PMC8526682 DOI: 10.1038/s41467-021-26028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
An unidentified quantum fluid designated the pseudogap (PG) phase is produced by electron-density depletion in the CuO2 antiferromagnetic insulator. Current theories suggest that the PG phase may be a pair density wave (PDW) state characterized by a spatially modulating density of electron pairs. Such a state should exhibit a periodically modulating energy gap [Formula: see text] in real-space, and a characteristic quasiparticle scattering interference (QPI) signature [Formula: see text] in wavevector space. By studying strongly underdoped Bi2Sr2CaDyCu2O8 at hole-density ~0.08 in the superconductive phase, we detect the 8a0-periodic [Formula: see text] modulations signifying a PDW coexisting with superconductivity. Then, by visualizing the temperature dependence of this electronic structure from the superconducting into the pseudogap phase, we find the evolution of the scattering interference signature [Formula: see text] that is predicted specifically for the temperature dependence of an 8a0-periodic PDW. These observations are consistent with theory for the transition from a PDW state coexisting with d-wave superconductivity to a pure PDW state in the Bi2Sr2CaDyCu2O8 pseudogap phase.
Collapse
Affiliation(s)
- Shuqiu Wang
- Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Peayush Choubey
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Germany
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Yi Xue Chong
- LASSP, Department of Physics, Cornell University, Ithaca, NY, USA
| | - Weijiong Chen
- Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Wangping Ren
- Clarendon Laboratory, University of Oxford, Oxford, UK
| | - H Eisaki
- Institute of Advanced Industrial Science and Tech., Tsukuba, Ibaraki, Japan
| | - S Uchida
- Institute of Advanced Industrial Science and Tech., Tsukuba, Ibaraki, Japan
| | | | - J C Séamus Davis
- Clarendon Laboratory, University of Oxford, Oxford, UK.
- LASSP, Department of Physics, Cornell University, Ithaca, NY, USA.
- Department of Physics, University College Cork, Cork, Ireland.
- Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| |
Collapse
|
9
|
Vinograd I, Zhou R, Hirata M, Wu T, Mayaffre H, Krämer S, Liang R, Hardy WN, Bonn DA, Julien MH. Locally commensurate charge-density wave with three-unit-cell periodicity in YBa 2Cu 3O y. Nat Commun 2021; 12:3274. [PMID: 34075033 PMCID: PMC8169916 DOI: 10.1038/s41467-021-23140-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022] Open
Abstract
In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDW's microscopic structure are generic and which are material-dependent. Here, we show that, at the local scale probed by NMR, long-range CDW order in YBa2Cu3Oy is unidirectional with a commensurate period of three unit cells (λ = 3b), implying that the incommensurability found in X-ray scattering is ensured by phase slips (discommensurations). Furthermore, NMR spectra reveal a predominant oxygen character of the CDW with an out-of-phase relationship between certain lattice sites but no specific signature of a secondary CDW with λ = 6b associated with a putative pair-density wave. These results shed light on universal aspects of the cuprate CDW. In particular, its spatial profile appears to generically result from the interplay between an incommensurate tendency at long length scales, possibly related to properties of the Fermi surface, and local commensuration effects, due to electron-electron interactions or lock-in to the lattice.
Collapse
Affiliation(s)
- Igor Vinograd
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France.
| | - Rui Zhou
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
- Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing, China
| | - Michihiro Hirata
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tao Wu
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Hadrien Mayaffre
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
| | - Steffen Krämer
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
| | - Ruixing Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| | - W N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| | - D A Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| | - Marc-Henri Julien
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France.
| |
Collapse
|
10
|
Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity. Proc Natl Acad Sci U S A 2020; 117:14805-14811. [PMID: 32546526 PMCID: PMC7334493 DOI: 10.1073/pnas.2002429117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By making a variety of quantitative comparisons between electronic visualization experiments and a theory describing coexisting pair density wave and superconductive states in cuprates, we find striking correspondence throughout. Our model can thus explain the microscopic origins of many key atomic-scale phenomena of the cuprate broken-symmetry state. These observations are consistent with the possibility that a short-range pair density wave (PDW) state coexists with superconductivity below a critical hole density in Bi2Sr2CaCu2O8, that the charge density wave modulations in cuprates are a consequence of the PDW state, that the cuprate pseudogap is the antinodal gap of the PDW, and that the critical point in the cuprate phase diagram occurs due to disappearance of the PDW. The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states Nr,E is predicted at the terminal BiO surface of Bi2Sr2CaCu2O8 and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of Nr,E, the modulations of the coherence peak energy Δpr, and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space q-space. Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi2Sr2CaCu2O8 does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.
Collapse
|
11
|
Wang X, Yuan Y, Xue QK, Li W. Charge ordering in high-temperature superconductors visualized by scanning tunneling microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013002. [PMID: 31487703 DOI: 10.1088/1361-648x/ab41c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the discovery of stripe order in La1.6-x Nd0.4Sr x CuO4 superconductors in 1995, charge ordering in cuprate superconductors has been intensively studied by various experimental techniques. Among these studies, scanning tunneling microscope (STM) plays an irreplaceable role in determining the real space structures of charge ordering. STM imaging of different families of cuprates over a wide range of doping levels reveal similar checkerboard-like patterns, indicating that such a charge ordered state is likely a ubiquitous and intrinsic characteristic of cuprate superconductors, which may shed light on understanding the mechanism of high-temperature superconductivity. In another class of high-temperature superconductors, iron-based superconductors, STM studies reveal several charge ordered states as well, but their real-space patterns and the interplay with superconductivity are markedly different among different materials. In this paper, we present a brief review on STM studies of charge ordering in these two classes of high-temperature superconductors. Possible origins of charge ordering and its interplay with superconductivity will be discussed.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
12
|
High-temperature superconductivity in monolayer Bi 2Sr 2CaCu 2O 8+δ. Nature 2019; 575:156-163. [PMID: 31666697 DOI: 10.1038/s41586-019-1718-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/23/2019] [Indexed: 11/09/2022]
Abstract
Although copper oxide high-temperature superconductors constitute a complex and diverse material family, they all share a layered lattice structure. This curious fact prompts the question of whether high-temperature superconductivity can exist in an isolated monolayer of copper oxide, and if so, whether the two-dimensional superconductivity and various related phenomena differ from those of their three-dimensional counterparts. The answers may provide insights into the role of dimensionality in high-temperature superconductivity. Here we develop a fabrication process that obtains intrinsic monolayer crystals of the high-temperature superconductor Bi2Sr2CaCu2O8+δ (Bi-2212; here, a monolayer refers to a half unit cell that contains two CuO2 planes). The highest superconducting transition temperature of the monolayer is as high as that of optimally doped bulk. The lack of dimensionality effect on the transition temperature defies expectations from the Mermin-Wagner theorem, in contrast to the much-reduced transition temperature in conventional two-dimensional superconductors such as NbSe2. The properties of monolayer Bi-2212 become extremely tunable; our survey of superconductivity, the pseudogap, charge order and the Mott state at various doping concentrations reveals that the phases are indistinguishable from those in the bulk. Monolayer Bi-2212 therefore displays all the fundamental physics of high-temperature superconductivity. Our results establish monolayer copper oxides as a platform for studying high-temperature superconductivity and other strongly correlated phenomena in two dimensions.
Collapse
|
13
|
Zhang Y, Mesaros A, Fujita K, Edkins SD, Hamidian MH, Ch'ng K, Eisaki H, Uchida S, Davis JCS, Khatami E, Kim EA. Machine learning in electronic-quantum-matter imaging experiments. Nature 2019; 570:484-490. [PMID: 31217587 DOI: 10.1038/s41586-019-1319-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/08/2019] [Indexed: 11/09/2022]
Abstract
For centuries, the scientific discovery process has been based on systematic human observation and analysis of natural phenomena1. Today, however, automated instrumentation and large-scale data acquisition are generating datasets of such large volume and complexity as to defy conventional scientific methodology. Radically different scientific approaches are needed, and machine learning (ML) shows great promise for research fields such as materials science2-5. Given the success of ML in the analysis of synthetic data representing electronic quantum matter (EQM)6-16, the next challenge is to apply this approach to experimental data-for example, to the arrays of complex electronic-structure images17 obtained from atomic-scale visualization of EQM. Here we report the development and training of a suite of artificial neural networks (ANNs) designed to recognize different types of order hidden in such EQM image arrays. These ANNs are used to analyse an archive of experimentally derived EQM image arrays from carrier-doped copper oxide Mott insulators. In these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs determine that this state is unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals18,19 are consistent with these observations.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - A Mesaros
- Department of Physics, Cornell University, Ithaca, NY, USA.,Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, Orsay, France
| | - K Fujita
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - S D Edkins
- Department of Physics, Cornell University, Ithaca, NY, USA.,Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - M H Hamidian
- Department of Physics, Cornell University, Ithaca, NY, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| | - K Ch'ng
- Department of Physics and Astronomy, San Jose State University, San Jose, CA, USA
| | - H Eisaki
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - S Uchida
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Department of Physics, University of Tokyo, Tokyo, Japan
| | - J C Séamus Davis
- Department of Physics, Cornell University, Ithaca, NY, USA.,Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA.,Department of Physics, University College Cork, Cork, Ireland.,Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Ehsan Khatami
- Department of Physics and Astronomy, San Jose State University, San Jose, CA, USA
| | - Eun-Ah Kim
- Department of Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Tu WL, Lee TK. Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors. Sci Rep 2019; 9:1719. [PMID: 30737472 PMCID: PMC6368576 DOI: 10.1038/s41598-018-38288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/10/2018] [Indexed: 11/09/2022] Open
Abstract
One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions in momentum space and a fraction of Fermi surface remained, known as Fermi arcs. The arc turns into a d-wave SC gap with a node below the SC transition temperature. Here, by studying a strongly correlated model at low temperatures, we obtained a phase characterized by two kinds of pairing order parameters with the total momentum of the Cooper pair to be zero and finite. The finite momentum pairing is accompanied with a spatial modulation of pairing order, i.e. a pair density wave (PDW). These PDW phases are intertwined with modulations of charge density and intra-unit cell form factors. The coexistence of the two different pairing orders provides the unique two-gaps like spectra observed by ARPES for superconducting cuprates. As temperature raises, the zero-momentum pairing order vanishes while the finite momentum pairing orders are kept, thus Fermi arcs are realized. The calculated quasiparticle spectra have the similar doping and temperature dependence as reported by ARPES and scanning tunneling spectroscopy (STS). The consequence of breaking symmetry between x and y due to the unidirectional PDW and the possibility to probe such a PDW state in the PG phase is discussed.
Collapse
Affiliation(s)
- Wei-Lin Tu
- Department of Physics, National Taiwan University, Daan, Taipei, 10617, Taiwan
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, Toulouse, France
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Ting-Kuo Lee
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
15
|
Zhao H, Ren Z, Rachmilowitz B, Schneeloch J, Zhong R, Gu G, Wang Z, Zeljkovic I. Charge-stripe crystal phase in an insulating cuprate. NATURE MATERIALS 2019; 18:103-107. [PMID: 30559411 DOI: 10.1038/s41563-018-0243-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
High-temperature (high-Tc) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases1. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state1-3, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi2Sr2CaCu2O8+x. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4a0 period along the Cu-O-Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-Tc cuprates.
Collapse
Affiliation(s)
- He Zhao
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Zheng Ren
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | | | | | - Genda Gu
- Brookhaven National Laboratory, Upton, NY, USA
| | - Ziqiang Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Ilija Zeljkovic
- Department of Physics, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
16
|
Morice C, Chakraborty D, Montiel X, Pépin C. Pseudo-spin skyrmions in the phase diagram of cuprate superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:295601. [PMID: 29947331 DOI: 10.1088/1361-648x/aacc0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Topological states of matter are at the root of some of the most fascinating phenomena in condensed matter physics. Here we argue that skyrmions in the pseudo-spin space related to an emerging SU(2) symmetry enlighten many mysterious properties of the pseudogap phase in under-doped cuprates. We detail the role of the SU(2) symmetry in controlling the phase diagram of the cuprates, in particular how a cascade of phase transitions explains the arising of the pseudogap, superconducting and charge modulation phases seen at low temperature. We specify the structure of the charge modulations inside the vortex core below T c, as well as in a wide temperature region above T c, which is a signature of the skyrmion topological structure. We argue that the underlying SU(2) symmetry is the main structure controlling the emergent complexity of excitations at the pseudogap scale T *. The theory yields a gapping of a large part of the anti-nodal region of the Brillouin zone, along with q = 0 phase transitions, of both nematic and loop currents characters.
Collapse
Affiliation(s)
- C Morice
- Institut de Physique Théorique, CEA, Université Paris-Saclay, Saclay, France
| | | | | | | |
Collapse
|
17
|
Wang X, Wang Y, Schattner Y, Berg E, Fernandes RM. Fragility of Charge Order Near an Antiferromagnetic Quantum Critical Point. PHYSICAL REVIEW LETTERS 2018; 120:247002. [PMID: 29956998 DOI: 10.1103/physrevlett.120.247002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 06/08/2023]
Abstract
We investigate the interplay between charge order and superconductivity near an antiferromagnetic quantum critical point using sign-problem-free Quantum Monte Carlo simulations. We establish that, when the electronic dispersion is particle-hole symmetric, the system has an emergent SU(2) symmetry that implies a degeneracy between d-wave superconductivity and charge order with d-wave form factor. Deviations from particle-hole symmetry, however, rapidly lift this degeneracy, despite the fact that the SU(2) symmetry is preserved at low energies. As a result, we find a strong suppression of charge order caused by the competing, leading superconducting instability. Across the antiferromagnetic phase transition, we also observe a shift in the charge order wave vector from diagonal to axial. We discuss the implications of our results to the universal phase diagram of antiferromagnetic quantum-critical metals and to the elucidation of the charge order experimentally observed in the cuprates.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Yuxuan Wang
- Institute for Condensed Matter Theory and Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - Yoni Schattner
- Weizmann Institute of Science, Rehovot 761000, Israel
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California 94025, USA
| | - Erez Berg
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Rafael M Fernandes
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
18
|
Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy. Proc Natl Acad Sci U S A 2018; 115:1445-1450. [PMID: 29382750 PMCID: PMC5816166 DOI: 10.1073/pnas.1714901115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Charge order is a modulation of the electron density and is associated with unconventional phenomena, including colossal magnetoresistance and metal–insulator transitions. Determining how the lattice responds provides insights into the nature and symmetry of the ordered state. Scanning transmission electron microscopy can measure lattice displacements with picometer precision, but its use has been limited to room-temperature phases only. Here, we demonstrate high-resolution imaging at cryogenic temperature and map the nature and evolution of charge order in a manganite. We uncover picometer-scale displacive modulations whose periodicity is strongly locked to the lattice and visualize temperature-dependent phase inhomogeneity in the modulations. These results pave the way to understanding the underlying structure of charge-ordered states and other complex phenomena. Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides.
Collapse
|
19
|
Ekino T, Gabovich AM, Suan Li M, Szymczak H, Voitenko AI. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:505602. [PMID: 29105650 DOI: 10.1088/1361-648x/aa9867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.
Collapse
Affiliation(s)
- T Ekino
- Hiroshima University, Graduate School of Integrated Arts and Sciences, Higashi-Hiroshima, 739-8521, Japan
| | | | | | | | | |
Collapse
|
20
|
Cai RG, Li L, Wang YQ, Zaanen J. Intertwined Order and Holography: The Case of Parity Breaking Pair Density Waves. PHYSICAL REVIEW LETTERS 2017; 119:181601. [PMID: 29219557 DOI: 10.1103/physrevlett.119.181601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Indexed: 06/07/2023]
Abstract
We present a minimal bottom-up extension of the Chern-Simons bulk action for holographic translational symmetry breaking that naturally gives rise to pair density waves. We construct stationary inhomogeneous black hole solutions in which both the U(1) symmetry and spatially translational symmetry are spontaneously broken at a finite temperature and charge density. This novel solution provides a dual description of a superconducting phase intertwined with charge, current, and parity orders.
Collapse
Affiliation(s)
- Rong-Gen Cai
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18018, USA
| | - Yong-Qiang Wang
- Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
| | - Jan Zaanen
- Institute Lorentz for Theoretical Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Zhou R, Hirata M, Wu T, Vinograd I, Mayaffre H, Krämer S, Horvatić M, Berthier C, Reyes AP, Kuhns PL, Liang R, Hardy WN, Bonn DA, Julien MH. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}. PHYSICAL REVIEW LETTERS 2017; 118:017001. [PMID: 28106424 DOI: 10.1103/physrevlett.118.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 06/06/2023]
Abstract
We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.
Collapse
Affiliation(s)
- R Zhou
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - M Hirata
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - T Wu
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - I Vinograd
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - H Mayaffre
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - S Krämer
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - M Horvatić
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - C Berthier
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-UPS-INSA-EMFL, 38042 Grenoble, France
| | - A P Reyes
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - P L Kuhns
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - R Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Canadian Institute for Advanced Research, Toronto M5G 1Z8, Canada
| | - W N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Canadian Institute for Advanced Research, Toronto M5G 1Z8, Canada
| | - D A Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Canadian Institute for Advanced Research, Toronto M5G 1Z8, Canada
| | - M-H Julien
- Laboratoire National des Champs Magnétiques Intenses, CNRS-Université Grenoble Alpes-EMFL, 38042 Grenoble, France
| |
Collapse
|