1
|
Lenc T, Peter V, Hooper C, Keller PE, Burnham D, Nozaradan S. Infants show enhanced neural responses to musical meter frequencies beyond low-level features. Dev Sci 2023; 26:e13353. [PMID: 36415027 DOI: 10.1111/desc.13353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Music listening often entails spontaneous perception and body movement to a periodic pulse-like meter. There is increasing evidence that this cross-cultural ability relates to neural processes that selectively enhance metric periodicities, even when these periodicities are not prominent in the acoustic stimulus. However, whether these neural processes emerge early in development remains largely unknown. Here, we recorded the electroencephalogram (EEG) of 20 healthy 5- to 6-month-old infants, while they were exposed to two rhythms known to induce the perception of meter consistently across Western adults. One rhythm contained prominent acoustic periodicities corresponding to the meter, whereas the other rhythm did not. Infants showed significantly enhanced representations of meter periodicities in their EEG responses to both rhythms. This effect is unlikely to reflect the tracking of salient acoustic features in the stimulus, as it was observed irrespective of the prominence of meter periodicities in the audio signals. Moreover, as previously observed in adults, the neural enhancement of meter was greater when the rhythm was delivered by low-pitched sounds. Together, these findings indicate that the endogenous enhancement of metric periodicities beyond low-level acoustic features is a neural property that is already present soon after birth. These high-level neural processes could set the stage for internal representations of musical meter that are critical for human movement coordination during rhythmic musical behavior. RESEARCH HIGHLIGHTS: 5- to 6-month-old infants were presented with auditory rhythms that induce the perception of a periodic pulse-like meter in adults. Infants showed selective enhancement of EEG activity at meter-related frequencies irrespective of the prominence of these frequencies in the stimulus. Responses at meter-related frequencies were boosted when the rhythm was conveyed by bass sounds. High-level neural processes that transform rhythmic auditory stimuli into internal meter templates emerge early after birth.
Collapse
Affiliation(s)
- Tomas Lenc
- Institute of Neuroscience (IONS), Université catholique de Louvain (UCL), Brussels, Belgium
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
| | - Varghese Peter
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Queensland, Australia
| | - Caitlin Hooper
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
- Center for Music in the Brain & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Denis Burnham
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
| | - Sylvie Nozaradan
- Institute of Neuroscience (IONS), Université catholique de Louvain (UCL), Brussels, Belgium
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
| |
Collapse
|
2
|
Dirks CE, Nelson PB, Oxenham AJ. No Benefit of Deriving Cochlear-Implant Maps From Binaural Temporal-Envelope Sensitivity for Speech Perception or Spatial Hearing Under Single-Sided Deafness. Ear Hear 2022; 43:310-322. [PMID: 34291758 PMCID: PMC8770730 DOI: 10.1097/aud.0000000000001094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study tested whether speech perception and spatial acuity improved in people with single-sided deafness and a cochlear implant (SSD+CI) when the frequency allocation table (FAT) of the CI was adjusted to optimize frequency-dependent sensitivity to binaural disparities. DESIGN Nine SSD+CI listeners with at least 6 months of CI listening experience participated. Individual experimental FATs were created to best match the frequency-to-place mapping across ears using either sensitivity to binaural temporal-envelope disparities or estimated insertion depth. Spatial localization ability was measured, along with speech perception in spatially collocated or separated noise, first with the clinical FATs and then with the experimental FATs acutely and at 2-month intervals for 6 months. Listeners then returned to the clinical FATs and were retested acutely and after 1 month to control for long-term learning effects. RESULTS The experimental FAT varied between listeners, differing by an average of 0.15 octaves from the clinical FAT. No significant differences in performance were observed in any of the measures between the experimental FAT after 6 months and the clinical FAT one month later, and no clear relationship was found between the size of the frequency-allocation shift and perceptual changes. CONCLUSION Adjusting the FAT to optimize sensitivity to interaural temporal-envelope disparities did not improve localization or speech perception. The clinical frequency-to-place alignment may already be sufficient, given the inherently poor spectral resolution of CIs. Alternatively, other factors, such as temporal misalignment between the two ears, may need to be addressed before any benefits of spectral alignment can be observed.
Collapse
Affiliation(s)
- Coral E Dirks
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Applied and Translational Sensory Sciences, Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peggy B Nelson
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Applied and Translational Sensory Sciences, Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew J Oxenham
- Center for Applied and Translational Sensory Sciences, Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Bowling DL, Graf Ancochea P, Hove MJ, Fitch WT. Pupillometry of Groove: Evidence for Noradrenergic Arousal in the Link Between Music and Movement. Front Neurosci 2019; 12:1039. [PMID: 30686994 PMCID: PMC6335267 DOI: 10.3389/fnins.2018.01039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
The capacity to entrain motor action to rhythmic auditory stimulation is highly developed in humans and extremely limited in our closest relatives. An important aspect of auditory-motor entrainment is that not all forms of rhythmic stimulation motivate movement to the same degree. This variation is captured by the concept of musical groove: high-groove music stimulates a strong desire for movement, whereas low-groove music does not. Here, we utilize this difference to investigate the neurophysiological basis of our capacity for auditory-motor entrainment. In a series of three experiments we examine pupillary responses to musical stimuli varying in groove. Our results show stronger pupil dilation in response to (1) high- vs. low-groove music, (2) high vs. low spectral content, and (3) syncopated vs. straight drum patterns. We additionally report evidence for consistent sex differences in music-induced pupillary responses, with males exhibiting larger differences between responses, but females exhibiting stronger responses overall. These results imply that the biological link between movement and auditory rhythms in our species is supported by the capacity of high-groove music to stimulate arousal in the central and peripheral nervous system, presumably via highly conserved noradrenergic mechanisms.
Collapse
Affiliation(s)
- Daniel L. Bowling
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | | | - Michael J. Hove
- Department of Psychological Science, Fitchburg State University, Fitchburg, MA, United States
| | - W. Tecumseh Fitch
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Varlet M, Williams R, Keller PE. Effects of pitch and tempo of auditory rhythms on spontaneous movement entrainment and stabilisation. PSYCHOLOGICAL RESEARCH 2018; 84:568-584. [PMID: 30116886 DOI: 10.1007/s00426-018-1074-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Human movements spontaneously entrain to auditory rhythms, which can help to stabilise movements in time and space. The properties of auditory rhythms supporting the occurrence of this phenomenon, however, remain largely unclear. Here, we investigate in two experiments the effects of pitch and tempo on spontaneous movement entrainment and stabilisation. We examined spontaneous entrainment of hand-held pendulum swinging in time with low-pitched (100 Hz) and high-pitched (1600 Hz) metronomes to test whether low pitch favours movement entrainment and stabilisation. To investigate whether stimulation and movement tempi moderate these effects of pitch, we manipulated (1) participants' preferred movement tempo by varying pendulum mechanical constraints (Experiment 1) and (2) stimulation tempo, which was either equal to, or slightly slower or faster (± 10%) than the participant's preferred movement tempo (Experiment 2). The results showed that participants' movements spontaneously entrained to auditory rhythms, and that this effect was stronger with low-pitched rhythms independently of stimulation and movement tempi. Results also indicated that auditory rhythms can lead to increased movement amplitude and stabilisation of movement tempo and amplitude, particularly when low-pitched. However, stabilisation effects were found to depend on intrinsic movement variability. Auditory rhythms decreased movement variability of individuals with higher intrinsic variability but increased movement variability of individuals with lower intrinsic variability. These findings provide new insights into factors that influence auditory-motor entrainment and how they may be optimised to enhance movement efficiency.
Collapse
Affiliation(s)
- Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Rohan Williams
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
5
|
Abstract
Bass sounds play a special role in conveying the rhythm and stimulating motor entrainment to the beat of music. However, the biological roots of this culturally widespread musical practice remain mysterious, despite its fundamental relevance in the sciences and arts, and also for music-assisted clinical rehabilitation of motor disorders. Here, we show that this musical convention may exploit a neurophysiological mechanism whereby low-frequency sounds shape neural representations of rhythmic input at the cortical level by boosting selective neural locking to the beat, thus explaining the privileged role of bass sounds in driving people to move along with the musical beat. Music makes us move, and using bass instruments to build the rhythmic foundations of music is especially effective at inducing people to dance to periodic pulse-like beats. Here, we show that this culturally widespread practice may exploit a neurophysiological mechanism whereby low-frequency sounds shape the neural representations of rhythmic input by boosting selective locking to the beat. Cortical activity was captured using electroencephalography (EEG) while participants listened to a regular rhythm or to a relatively complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.8 Hz). We found that cortical activity at the frequency of the perceived beat is selectively enhanced compared with other frequencies in the EEG spectrum when rhythms are conveyed by bass sounds. This effect is unlikely to arise from early cochlear processes, as revealed by auditory physiological modeling, and was particularly pronounced for the complex rhythm requiring endogenous generation of the beat. The effect is likewise not attributable to differences in perceived loudness between low and high tones, as a control experiment manipulating sound intensity alone did not yield similar results. Finally, the privileged role of bass sounds is contingent on allocation of attentional resources to the temporal properties of the stimulus, as revealed by a further control experiment examining the role of a behavioral task. Together, our results provide a neurobiological basis for the convention of using bass instruments to carry the rhythmic foundations of music and to drive people to move to the beat.
Collapse
|
6
|
Zuk NJ, Carney LH, Lalor EC. Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat. Front Neurosci 2018; 12:349. [PMID: 29896080 PMCID: PMC5987030 DOI: 10.3389/fnins.2018.00349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification.
Collapse
Affiliation(s)
- Nathaniel J. Zuk
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Laurel H. Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Edmund C. Lalor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Nozaradan S, Schönwiesner M, Keller PE, Lenc T, Lehmann A. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm. Eur J Neurosci 2018; 47:321-332. [PMID: 29356161 DOI: 10.1111/ejn.13826] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/29/2022]
Abstract
The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain. We addressed this question by taking advantage of a new method to simultaneously record human EEG activity originating from cortical and lower-level sources, in the form of slow (< 20 Hz) and fast (> 150 Hz) responses to auditory rhythms. Cortical responses showed increased amplitudes at meter-related frequencies compared to meter-unrelated frequencies, regardless of the prominence of the meter-related frequencies in the modulation spectrum of the rhythmic inputs. In contrast, frequency-following responses showed increased amplitudes at meter-related frequencies only in rhythms with prominent meter-related frequencies in the input but not for a more complex rhythm requiring more endogenous generation of the meter. This interaction with rhythm complexity suggests that the selective enhancement of meter-related frequencies does not fully rely on subcortical auditory properties, but is critically shaped at the cortical level, possibly through functional connections between the auditory cortex and other, movement-related, brain structures. This process of temporal selection would thus enable endogenous and motor entrainment to emerge with substantial flexibility and invariance with respect to the rhythmic input in humans in contrast with non-human animals.
Collapse
Affiliation(s)
- Sylvie Nozaradan
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia.,Institute of Neuroscience (IONS), Université catholique de Louvain (UCL), Louvain, Belgium.,International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada
| | - Marc Schönwiesner
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Center for Research on Brain, Language and Music (CRBLM), Montreal, QC, Canada.,Faculty of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Tomas Lenc
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Alexandre Lehmann
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Center for Research on Brain, Language and Music (CRBLM), Montreal, QC, Canada.,Faculty of Psychology, Université de Montréal, Montreal, QC, Canada.,Otolaryngology Department, Faculty of Medicine, McGill University Hospital, Montreal, QC, Canada
| |
Collapse
|