1
|
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtai AA, Fisman D, Kunasekaran M, Kvalsvig A, Lupton D, Oliver M, Tawfiq E, Ungrin M, Vipond J. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37:e0012423. [PMID: 38775460 PMCID: PMC11326136 DOI: 10.1128/cmr.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Abrar A Chughtai
- School of Population Health, University of New South Wales, Sydney, Australia
| | - David Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Amanda Kvalsvig
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah Lupton
- Centre for Social Research in Health and Social Policy Research Centre, Faculty of Arts, Design and Architecture, University of New South Wales, Sydney, Australia
| | - Matt Oliver
- Professional Standards Advocate, Edmonton, Canada
| | - Essa Tawfiq
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Ungrin
- Faculty of Veterinary Medicine; Department of Biomedical Engineering, Schulich School of Engineering; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joe Vipond
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Bonomo S, Marchetti P, Fasola S, Vesentini R, Marcon A, Ferrante G, Antonicelli L, Battaglia S, Bono R, Squillacioti G, Murgia N, Pirina P, Villani S, La Grutta S, Verlato G, Viegi G. Asthma incidence can be influenced by climate change in Italy: findings from the GEIRD study-a climatological and epidemiological assessment. Sci Rep 2023; 13:19047. [PMID: 37923929 PMCID: PMC10624678 DOI: 10.1038/s41598-023-46423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
An association between climatic conditions and asthma incidence has been widely assumed. However, it is unclear whether climatic variations have a fingerprint on asthma dynamics over long time intervals. The aim of this study is to detect a possible correlation of the Summer North Atlantic Oscillation (S-NAO) index and the self-calibrated palmer drought severity index (scPDSI) with asthma incidence over the period from 1957 to 2006 in Italy. To this aim, an analysis of non-stationary and non-linear signals was performed on the time series of the Italian databases on respiratory health (ISAYA and GEIRD) including 36,255 individuals overall, S-NAO, and scPDSI indices to search for characteristic periodicities. The ISAYA (Italian Study on Asthma in Young Adults) and GEIRD (Gene Environment Interactions in Respiratory Diseases) studies collected information on respiratory health in general population samples, born between 1925 and 1989 and aged 20-84 years at the time of the interview, from 13 Italian centres. We found that annual asthma total incidence shared the same periodicity throughout the 1957-2006 time interval. Asthma incidence turned out to be correlated with the dynamics of the scPDSI, modulated by the S-NAO, sharing the same averaged 6 year-periodicity. Since climate patterns appear to influence asthma incidence, future studies aimed at elucidating the complex relationships between climate and asthma incidence are warranted.
Collapse
Affiliation(s)
- S Bonomo
- CNR Institute of Environmental Geology and Geo-Engineering (CNR-IGAG), Montelibretti, Rome, Italy.
| | - P Marchetti
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - S Fasola
- CNR Institute of Translational Pharmacology (CNR-IFT), Palermo, Italy
| | - R Vesentini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - A Marcon
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - G Ferrante
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | | | - S Battaglia
- Dipartimento PROMISE, University of Palermo, Palermo, Italy
| | - R Bono
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - G Squillacioti
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - N Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - P Pirina
- Respiratory Unit, Sassari University, Sassari, Italy
| | - S Villani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - S La Grutta
- CNR Institute of Translational Pharmacology (CNR-IFT), Palermo, Italy
| | - G Verlato
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - G Viegi
- CNR Institute of Clinical Physiology (CNR-IFC), Pisa, Italy
| |
Collapse
|
3
|
Chen D, Sun X, Cheke RA. Inferring a Causal Relationship between Environmental Factors and Respiratory Infections Using Convergent Cross-Mapping. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050807. [PMID: 37238562 DOI: 10.3390/e25050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The incidence of respiratory infections in the population is related to many factors, among which environmental factors such as air quality, temperature, and humidity have attracted much attention. In particular, air pollution has caused widespread discomfort and concern in developing countries. Although the correlation between respiratory infections and air pollution is well known, establishing causality between them remains elusive. In this study, by conducting theoretical analysis, we updated the procedure of performing the extended convergent cross-mapping (CCM, a method of causal inference) to infer the causality between periodic variables. Consistently, we validated this new procedure on the synthetic data generated by a mathematical model. For real data in Shaanxi province of China in the period of 1 January 2010 to 15 November 2016, we first confirmed that the refined method is applicable by investigating the periodicity of influenza-like illness cases, an air quality index, temperature, and humidity through wavelet analysis. We next illustrated that air quality (quantified by AQI), temperature, and humidity affect the daily influenza-like illness cases, and, in particular, the respiratory infection cases increased progressively with increased AQI with a time delay of 11 days.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
- Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| | - Xiaodan Sun
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham ME4 4TB, Kent, UK
| |
Collapse
|
4
|
Yang F, Servadio JL, Le Thanh NT, Lam HM, Choisy M, Thai PQ, Nhu Thao TT, Thao Vy NH, Phuong HT, Nguyen TD, Hoai Tam DT, Hanks EM, Vinh H, Bjornstad ON, Van Vinh Chau N, Boni MF. A combination of annual and nonannual forces drive respiratory disease in the tropics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287862. [PMID: 37034752 PMCID: PMC10081429 DOI: 10.1101/2023.03.28.23287862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Background It is well known that influenza and other respiratory viruses are wintertime-seasonal in temperate regions. However, respiratory disease seasonality in the tropics remains elusive. In this study, we aimed to characterize the seasonality of influenza-like illness (ILI) and influenza virus in Ho Chi Minh City (HCMC), Vietnam. Methods We monitored the daily number of ILI patients in 89 outpatient clinics from January 2010 to December 2019. We collected nasal swabs and tested for influenza from a subset of clinics from May 2012 to December 2019. We used spectral analysis to describe the periodicities in the system. We evaluated the contribution of these periodicities to predicting ILI and influenza patterns through lognormal and gamma hurdle models. Findings During ten years of community surveillance, 66,799 ILI reports were collected covering 2.9 million patient visits; 2604 nasal swabs were collected 559 of which were PCR-positive for influenza virus. Both annual and nonannual cycles were detected in the ILI time series, with the annual cycle showing 8.9% lower ILI activity (95% CI: 8.8%-9.0%) from February 24 to May 15. Nonannual cycles had substantial explanatory power for ILI trends (ΔAIC = 183) compared to all annual covariates (ΔAIC = 263). Near-annual signals were observed for PCR-confirmed influenza but were not consistent along in time or across influenza (sub)types. Interpretation Our study reveals a unique pattern of respiratory disease dynamics in a tropical setting influenced by both annual and nonannual drivers. Timing of vaccination campaigns and hospital capacity planning may require a complex forecasting approach.
Collapse
Affiliation(s)
- Fuhan Yang
- Department of Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, United States
| | - Joseph L Servadio
- Department of Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, United States
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ha Minh Lam
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Marc Choisy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Tran Thi Nhu Thao
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, United States
| | - Nguyen Ha Thao Vy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Thi Phuong
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Dang Nguyen
- Department of Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, United States
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Dong Thi Hoai Tam
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ephraim M Hanks
- Department of Statistics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, United States
| | - Ha Vinh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ottar N Bjornstad
- Department of Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, United States
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Maciej F Boni
- Department of Biology and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, United States
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Using real-time data to guide decision-making during an influenza pandemic: A modelling analysis. PLoS Comput Biol 2023; 19:e1010893. [PMID: 36848387 PMCID: PMC9997955 DOI: 10.1371/journal.pcbi.1010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/09/2023] [Accepted: 01/24/2023] [Indexed: 03/01/2023] Open
Abstract
Influenza pandemics typically occur in multiple waves of infection, often associated with initial emergence of a novel virus, followed (in temperate regions) by a resurgence accompanying the onset of the annual influenza season. Here, we examined whether data collected from an initial pandemic wave could be informative, for the need to implement non-pharmaceutical measures in any resurgent wave. Drawing from the 2009 H1N1 pandemic in 10 states in the USA, we calibrated simple mathematical models of influenza transmission dynamics to data for laboratory confirmed hospitalisations during the initial 'spring' wave. We then projected pandemic outcomes (cumulative hospitalisations) during the fall wave, and compared these projections with data. Model results showed reasonable agreement for all states that reported a substantial number of cases in the spring wave. Using this model we propose a probabilistic decision framework that can be used to determine the need for preemptive measures such as postponing school openings, in advance of a fall wave. This work illustrates how model-based evidence synthesis, in real-time during an early pandemic wave, could be used to inform timely decisions for pandemic response.
Collapse
|
6
|
Lofgren E, Naumova EN, Gorski J, Naumov Y, Fefferman NH. How Drivers of Seasonality in Respiratory Infections May Impact Vaccine Strategy: A Case Study in How Coronavirus Disease 2019 (COVID-19) May Help Us Solve One of Influenza's Biggest Challenges. Clin Infect Dis 2022; 75:S121-S129. [PMID: 35607766 PMCID: PMC9213832 DOI: 10.1093/cid/ciac400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Vaccines against seasonal infections like influenza offer a recurring testbed, encompassing challenges in design, implementation, and uptake to combat a both familiar and ever-shifting threat. One of the pervading mysteries of influenza epidemiology is what causes the distinctive seasonal outbreak pattern. Proposed theories each suggest different paths forward in being able to tailor precision vaccines and/or deploy them most effectively. One of the greatest challenges in contrasting and supporting these theories is, of course, that there is no means by which to actually test them. In this communication we revisit theories and explore how the ongoing coronavirus disease 2019 (COVID-19) pandemic might provide a unique opportunity to better understand the global circulation of respiratory infections. We discuss how vaccine strategies may be targeted and improved by both isolating drivers and understanding the immunological consequences of seasonality, and how these insights about influenza vaccines may generalize to vaccines for other seasonal respiratory infections.
Collapse
Affiliation(s)
- Eric Lofgren
- WSU Paul G. Allen School for Global Health Allen Center PO Box 647090 240 SE Ott Road Pullman, WA 99164, USA
| | - Elena N. Naumova
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy Jaharis Family Center for Biomedical and Nutrition Sciences Tufts University 150 Harrison Avenue Boston, MA 02111, USA
| | - Jack Gorski
- Blood Research Institute Versiti Milwaukee WI, 53226, USA
| | - Yuri Naumov
- Chief Science Officer Back Bay Group 10 Post Office Square – Suite 1300N Boston, MA 02109, USA
| | - Nina H. Fefferman
- Ecology and Evolutionary Biology National Institute for Mathematical and Biological Synthesis University of Tennessee 447 Hesler Biology Building Knoxville, TN, 37966, USA,Corresponding Author: Nina H. Fefferman
| |
Collapse
|
7
|
Caetano-Anollés K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anollés G. The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike. METHODS IN MICROBIOLOGY 2021; 50:27-81. [PMID: 38620818 PMCID: PMC8590929 DOI: 10.1016/bs.mim.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.
Collapse
Affiliation(s)
| | - Nicolas Hernandez
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Tre Tomaszewski
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
8
|
Temte JL, Barlow S, Goss M, Temte E, Bell C, He C, Hamer C, Schemmel A, Maerz B, Comp L, Arnold M, Breunig K, Clifford S, Reisdorf E, Shult P, Wedig M, Haupt T, Conway J, Gangnon R, Fowlkes A, Uzicanin A. The Oregon Child Absenteeism Due to Respiratory Disease Study (ORCHARDS): Rationale, objectives, and design. Influenza Other Respir Viruses 2021; 16:340-350. [PMID: 34623760 PMCID: PMC8818813 DOI: 10.1111/irv.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Influenza viruses pose significant disease burdens through seasonal outbreaks and unpredictable pandemics. Existing surveillance programs rely heavily on reporting of medically attended influenza (MAI). Continuously monitoring cause-specific school absenteeism may identify local acceleration of seasonal influenza activity. The Oregon Child Absenteeism Due to Respiratory Disease Study (ORCHARDS; Oregon, WI) implements daily school-based monitoring of influenza-like illness-specific student absenteeism (a-ILI) in kindergarten through Grade 12 schools and assesses this approach for early detection of accelerated influenza and other respiratory pathogen transmission in schools and surrounding communities. METHODS Starting in September 2014, ORCHARDS combines automated reporting of daily absenteeism within six schools and home visits to school children with acute respiratory infection (ARI). Demographic, epidemiological, and symptom data are collected along with respiratory specimens. Specimens are tested for influenza and other respiratory viruses. Household members can opt into a supplementary household transmission study. Community comparisons are possible using a pre-existing and highly effective influenza surveillance program, based on MAI at five family medicine clinics in the same geographical area. RESULTS Over the first 5 years, a-ILI occurred on 6634 (0.20%) of 3,260,461 student school days. Viral pathogens were detected in 64.5% of 1728 children with ARI who received a home visit. Influenza was the most commonly detected virus, noted in 23.3% of ill students. CONCLUSION ORCHARDS uses a community-based design to detect influenza trends over multiple seasons and to evaluate the utility of absenteeism for early detection of accelerated influenza and other respiratory pathogen transmission in schools and surrounding communities.
Collapse
Affiliation(s)
- Jonathan L Temte
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shari Barlow
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Maureen Goss
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emily Temte
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cristalyne Bell
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cecilia He
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Caroline Hamer
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amber Schemmel
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bradley Maerz
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lily Comp
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mitchell Arnold
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kimberly Breunig
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sarah Clifford
- Wisconsin Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA
| | - Erik Reisdorf
- Communicable Disease Division, Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Peter Shult
- Communicable Disease Division, Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Mary Wedig
- Communicable Disease Division, Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Thomas Haupt
- Wisconsin Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA
| | - James Conway
- Department of Pediatrics, Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ronald Gangnon
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ashley Fowlkes
- Division of Global Migration and Quarantine, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amra Uzicanin
- Division of Global Migration and Quarantine, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Rella SA, Kulikova YA, Dermitzakis ET, Kondrashov FA. Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains. Sci Rep 2021; 11:15729. [PMID: 34330988 PMCID: PMC8324827 DOI: 10.1038/s41598-021-95025-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Vaccines are thought to be the best available solution for controlling the ongoing SARS-CoV-2 pandemic. However, the emergence of vaccine-resistant strains may come too rapidly for current vaccine developments to alleviate the health, economic and social consequences of the pandemic. To quantify and characterize the risk of such a scenario, we created a SIR-derived model with initial stochastic dynamics of the vaccine-resistant strain to study the probability of its emergence and establishment. Using parameters realistically resembling SARS-CoV-2 transmission, we model a wave-like pattern of the pandemic and consider the impact of the rate of vaccination and the strength of non-pharmaceutical intervention measures on the probability of emergence of a resistant strain. As expected, we found that a fast rate of vaccination decreases the probability of emergence of a resistant strain. Counterintuitively, when a relaxation of non-pharmaceutical interventions happened at a time when most individuals of the population have already been vaccinated the probability of emergence of a resistant strain was greatly increased. Consequently, we show that a period of transmission reduction close to the end of the vaccination campaign can substantially reduce the probability of resistant strain establishment. Our results suggest that policymakers and individuals should consider maintaining non-pharmaceutical interventions and transmission-reducing behaviours throughout the entire vaccination period.
Collapse
Affiliation(s)
- Simon A Rella
- Institute of Science and Technology Austria, 1 Am Campus, 3400, Klosterneuburg, Austria
| | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | - Fyodor A Kondrashov
- Institute of Science and Technology Austria, 1 Am Campus, 3400, Klosterneuburg, Austria.
| |
Collapse
|
10
|
Stegmaier T, Oellingrath E, Himmel M, Fraas S. Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology. Sci Rep 2020; 10:14125. [PMID: 32839522 PMCID: PMC7445178 DOI: 10.1038/s41598-020-70973-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
This analysis presents data from a new perspective offering key insights into the spread patterns of norovirus and influenza epidemic events. We utilize optic flow analysis to gain an informed overview of a wealth of statistical epidemiological data and identify trends in movement of influenza waves throughout Germany on the NUTS 3 level (413 locations) which maps municipalities on European level. We show that Influenza and norovirus seasonal outbreak events have a highly distinct pattern. We investigate the quantitative statistical properties of the epidemic patterns and find a shifted distribution in the time between influenza and norovirus seasonal peaks of reported infections over one decade. These findings align with key biological features of both pathogens as shown in the course of this analysis.
Collapse
Affiliation(s)
- Tabea Stegmaier
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany
| | - Eva Oellingrath
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany
- Department for Microbiology and Biotechnology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Mirko Himmel
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany
- Department for Microbiology and Biotechnology, Institute for Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Simon Fraas
- BMBF Junior Research Group BIGAUGE, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Hamburg, Germany.
| |
Collapse
|
11
|
Google trends identifying seasons of religious gathering: applied to investigate the correlation between crowding and flu outbreak. Inf Process Manag 2020. [DOI: 10.1016/j.ipm.2020.102208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Matsuki A, Tanaka G. Intervention threshold for epidemic control in susceptible-infected-recovered metapopulation models. Phys Rev E 2020; 100:022302. [PMID: 31574659 PMCID: PMC7217496 DOI: 10.1103/physreve.100.022302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Metapopulation epidemic models describe epidemic dynamics in networks of spatially distant patches connected via pathways for migration of individuals. In the present study, we deal with a susceptible-infected-recovered (SIR) metapopulation model where the epidemic process in each patch is represented by an SIR model and the mobility of individuals is assumed to be a homogeneous diffusion. We consider two types of patches including high-risk and low-risk ones under the assumption that a local patch is changed from a high-risk one to a low-risk one by an intervention. We theoretically analyze the intervention threshold which indicates the critical fraction of low-risk patches for preventing a global epidemic outbreak. We show that an intervention targeted to high-degree patches is more effective for epidemic control than a random intervention. The theoretical results are validated by Monte Carlo simulations for synthetic and realistic scale-free patch networks. The theoretical results also reveal that the intervention threshold depends on the human mobility network and the mobility rate. Our approach is useful for exploring better local interventions aimed at containment of epidemics.
Collapse
Affiliation(s)
- Akari Matsuki
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Gouhei Tanaka
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan.,Institute for Innovation in International Engineering Education, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Lin K, Marr LC. Humidity-Dependent Decay of Viruses, but Not Bacteria, in Aerosols and Droplets Follows Disinfection Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1024-1032. [PMID: 31886650 DOI: 10.1021/acs.est.9b04959] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The transmission of some infectious diseases requires that pathogens can survive (i.e., remain infectious) in the environment, outside the host. Relative humidity (RH) is known to affect the survival of some microorganisms in the environment; however, the mechanism underlying the relationship has not been explained, particularly for viruses. We investigated the effects of RH on the viability of bacteria and viruses in both suspended aerosols and stationary droplets using traditional culture-based approaches. Results showed that viability of bacteria generally decreased with decreasing RH. Viruses survived well at RHs lower than 33% and at 100%, whereas their viability was reduced at intermediate RHs. We then explored the evaporation rate of droplets consisting of culture media and the resulting changes in solute concentrations over time; as water evaporates from the droplets, solutes such as sodium chloride in the media become more concentrated. Based on the results, we suggest that inactivation of bacteria is influenced by osmotic pressure resulting from elevated concentrations of salts as droplets evaporate. We propose that the inactivation of viruses is governed by the cumulative dose of solutes or the product of concentration and time, as in disinfection kinetics. These findings emphasize that evaporation kinetics play a role in modulating the survival of microorganisms in droplets.
Collapse
Affiliation(s)
- Kaisen Lin
- Department of Civil and Environmental Engineering , Virginia Tech , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering , Virginia Tech , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
14
|
Bonomo S, Ferrante G, Palazzi E, Pelosi N, Lirer F, Viegi G, La Grutta S. Evidence for a link between the Atlantic Multidecadal Oscillation and annual asthma mortality rates in the US. Sci Rep 2019; 9:11683. [PMID: 31406172 PMCID: PMC6690970 DOI: 10.1038/s41598-019-48178-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
An association between climatic conditions and asthma mortality has been widely assumed. However, it is unclear whether climatic variations have a fingerprint on asthma dynamics over long time intervals. The aim of this study is to detect a possible correlation between climatic indices, namely the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation, and asthma mortality rates over the period from 1950 to 2015 in the contiguous US. To this aim, an analysis of non-stationary and non-linear signals was performed on time series of US annual asthma mortality rates, AMO and PDO indices to search for characteristic periodicities. Results revealed that asthma death rates evaluated for four different age groups (5-14 yr; 15-24 yr; 25-34 yr; 35-44 yr) share the same pattern of fluctuation throughout the 1950-2015 time interval, but different trends, i.e. a positive (negative) trend for the two youngest (oldest) categories. Annual asthma death rates turned out to be correlated with the dynamics of the AMO, and also modulated by the PDO, sharing the same averaged ∼44 year-periodicity. The results of the current study suggest that, since climate patterns have proved to influence asthma mortality rates, they could be advisable in future studies aimed at elucidating the complex relationships between climate and asthma mortality.
Collapse
Affiliation(s)
- Sergio Bonomo
- Istituto per la Ricerca e l'Innovazione Biomedica, National Research Council (CNR-IRIB), Via Ugo La Malfa 153, 90146, Palermo, Italy
- Institute for Marine Sciences, National Research Council (CNR-ISMAR), Calata Porta di Massa, 80133, Napoli, Italy
- National Institute of Geophysics and Volcanology (INGV), Via della Faggiola 32, 52126, Pisa, Italy
| | - Giuliana Ferrante
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Elisa Palazzi
- Institute of Atmospheric Sciences and Climate, National Research Council (CNR-ISAC), Corso Fiume 4, I-10133, Torino, Italy
| | - Nicola Pelosi
- Institute for Marine Sciences, National Research Council (CNR-ISMAR), Calata Porta di Massa, 80133, Napoli, Italy
| | - Fabrizio Lirer
- Institute for Marine Sciences, National Research Council (CNR-ISMAR), Calata Porta di Massa, 80133, Napoli, Italy
| | - Giovanni Viegi
- Istituto per la Ricerca e l'Innovazione Biomedica, National Research Council (CNR-IRIB), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Stefania La Grutta
- Istituto per la Ricerca e l'Innovazione Biomedica, National Research Council (CNR-IRIB), Via Ugo La Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
15
|
|