1
|
Karagkouni AC, Polemidiotou K, Gkretsi V, Stylianou A. Atomic force microscopy reveals the influence of substrate collagen concentration and TGF-β on lung fibroblast mechanics. Micron 2025; 189:103751. [PMID: 39591758 DOI: 10.1016/j.micron.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Understanding how extracellular matrix (ECM) stiffness and biochemical factors such as TGF-β affect cell behaviour is critical for elucidating mechanisms underlying several pathologic conditions such as tissue fibrosis and cancer metastasis. This study investigates the effects of varying collagen substrate concentration and consequently varying stiffness conditions along with TGF-β treatment on the morphology, nanomechanical properties, and gene expression of normal human lung fibroblasts (NHLF). Our results reveal that increased substrate stiffness leads to more elongated cell morphology, decreased cellular stiffness, and significant alterations in gene expression related to cytoskeletal organization and myofibroblast activation genes. TGF-β treatment further induces myofibroblast differentiation, as evidenced by increased α-SMA and collagen expression, while also reducing cellular stiffness and promoting a more elongated, invasive phenotype. These findings highlight the critical role of both mechanical and biochemical cues in modulating fibroblast behaviour, with significant implications in fibrosis development and cancer progression.
Collapse
Affiliation(s)
- Anna Christina Karagkouni
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus
| | - Katerina Polemidiotou
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Andreas Stylianou
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
2
|
Zanotelli MR, Miller JP, Wang W, Ortiz I, Tahon E, Bordeleau F, Reinhart-King CA. Tension directs cancer cell migration over fiber alignment through energy minimization. Biomaterials 2024; 311:122682. [PMID: 38959532 DOI: 10.1016/j.biomaterials.2024.122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Cell migration during many fundamental biological processes including metastasis requires cells to traverse tissue with heterogeneous mechanical cues that direct migration as well as determine force and energy requirements for motility. However, the influence of discrete structural and mechanical cues on migration remains challenging to determine as they are often coupled. Here, we decouple the pro-invasive cues of collagen fiber alignment and tension to study their individual impact on migration. When presented with both cues, cells preferentially travel in the axis of tension against fiber alignment. Computational and experimental data show applying tension perpendicular to alignment increases potential energy stored within collagen fibers, lowering requirements for cell-induced matrix deformation and energy usage during migration compared to motility in the direction of fiber alignment. Energy minimization directs migration trajectory, and tension can facilitate migration against fiber alignment. These findings provide a conceptual understanding of bioenergetics during migration through a fibrous matrix.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joseph P Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Elise Tahon
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, G1R 3S3, Canada
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, G1R 3S3, Canada; Département de Biologie Moléculaire, de Biochimie Médicale et de Pathologie, Université Laval, Québec, Canada, G1V 0A6.
| | | |
Collapse
|
3
|
Meng J, Xu X, Jiang C, Xia P, Xu P, Tian L, Xu Y, Li D, Tan Y, Ji B. Tensile force field plays a crucial role in local invasion of tumor cells through a mechano-chemical coupling mechanism. SOFT MATTER 2024. [PMID: 39027971 DOI: 10.1039/d4sm00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cancer metastasis starts from early local invasion, during which tumor cells detach from the primary tumor, penetrate the extracellular matrix (ECM), and then invade neighboring tissues. However, the cellular mechanics in the detaching and penetrating processes have not been fully understood, and the underlying mechanisms that influence cell polarization and migration in the 3D matrix during tumor invasion remain largely unknown. In this study, we employed a dual tumor-spheroid model to investigate the cellular mechanisms of the tumor invasion. Our results revealed that the tensional force field developed by the active contraction of cells and tissues played a pivotal role in tumor invasion, acting as the driving force for remodeling the collagen fibers during the invasion process. The remodeled collagen fibers promoted cell polarization and migration because of the stiffening of the fiber matrix. The aligned fibers facilitated tumor cell invasion and directed migration from one spheroid to the other. Inhibiting/shielding the cellular contractility abolished matrix remodeling and re-alignment and significantly decreased tumor cell invasion. By developing a coarse-grained cell model that considers the mutual interaction between cells and fibers, we predicted the tensional force field in the fiber network and the associated cell polarization and cell-matrix interaction during cell invasion, which revealed a mechano-chemical coupling mechanism at the cellular level of the tumor invasion process. Our study highlights the roles of cellular mechanics at the early stage of tumor metastasis and may provide new therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jianfeng Meng
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiangyu Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chaohui Jiang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Peng Xia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Science Institute, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Xu
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Liangfei Tian
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingke Xu
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Robertson BM, Fane ME, Weeraratna AT, Rebecca VW. Determinants of resistance and response to melanoma therapy. NATURE CANCER 2024; 5:964-982. [PMID: 39020103 DOI: 10.1038/s43018-024-00794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Metastatic melanoma is among the most enigmatic advanced cancers to clinically manage despite immense progress in the way of available therapeutic options and historic decreases in the melanoma mortality rate. Most patients with metastatic melanoma treated with modern targeted therapies (for example, BRAFV600E/K inhibitors) and/or immune checkpoint blockade (for example, anti-programmed death 1 therapy) will progress, owing to profound tumor cell plasticity fueled by genetic and nongenetic mechanisms and dichotomous host microenvironmental influences. Here we discuss the determinants of tumor heterogeneity, mechanisms of therapy resistance and effective therapy regimens that hold curative promise.
Collapse
Affiliation(s)
- Bailey M Robertson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Micalet A, Upadhyay A, Javanmardi Y, de Brito CG, Moeendarbary E, Cheema U. Patient-specific colorectal-cancer-associated fibroblasts modulate tumor microenvironment mechanics. iScience 2024; 27:110060. [PMID: 38883829 PMCID: PMC11179580 DOI: 10.1016/j.isci.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a major role in reorganizing the physical tumor micro-environment and changing tissue stiffness. Herein, using an engineered three-dimensional (3D) model that mimics the tumor's native biomechanical environment, we characterized the changes in matrix stiffness caused by six patient-specific colorectal CAF populations. After 21 days of culture, atomic force microscopy (AFM) was performed to precisely measure the local changes in tissue stiffness. Each CAF population exhibited heterogeneity in remodeling capabilities, with some patient-derived cells stiffening the matrix and others softening it. Tissue stiffening was mainly attributed to active contraction of the matrix by the cells, whereas the softening was due to enzymatic activity of matrix-cleaving proteins. This measured heterogeneity was lost when the CAFs were cocultured with colorectal cancer cells, as all samples significantly soften the tissue. The interplay between cancer cells and CAFs was critical as it altered any heterogeneity exhibited by CAFs alone.
Collapse
Affiliation(s)
- Auxtine Micalet
- UCL Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Anuja Upadhyay
- UCL Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- 199 Biotechnologies Ltd, Gloucester Road, London W2 6LD, UK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK
| |
Collapse
|
6
|
Goren S, Ergaz B, Barak D, Sorkin R, Lesman A. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy. Acta Biomater 2024; 181:272-281. [PMID: 38685460 DOI: 10.1016/j.actbio.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Semiflexible fiber gels such as collagen and fibrin have unique nonlinear mechanical properties that play an important role in tissue morphogenesis, wound healing, and cancer metastasis. Optical tweezers microrheology has greatly contributed to the understanding of the mechanics of fibrous gels at the microscale, including its heterogeneity and anisotropy. However, the explicit relationship between micromechanical properties and gel deformation has been largely overlooked. We introduce a unique gel-stretching apparatus and employ it to study the relationship between microscale strain and stiffening in fibrin and collagen gels, focusing on the development of anisotropy in the gel. We find that gels stretched by as much as 15 % stiffen significantly both in parallel and perpendicular to the stretching axis, and that the parallel axis is 2-3 times stiffer than the transverse axis. We also measure the stiffening and anisotropy along bands of aligned fibers created by aggregates of cancer cells, and find similar effects as in gels stretched with the tensile apparatus. Our results illustrate that the extracellular microenvironment is highly sensitive to deformation, with implications for tissue homeostasis and pathology. STATEMENT OF SIGNIFICANCE: The inherent fibrous architecture of the extracellular matrix (ECM) gives rise to unique strain-stiffening mechanics. The micromechanics of fibrous networks has been studied extensively, but the deformations involved in its stiffening at the microscale were not quantified. Here we introduce an apparatus that enables measuring the deformations in the gel as it is being stretched while simultaneously using optical tweezers to measure its microscale anisotropic stiffness. We reveal that fibrin and collagen both stiffen dramatically already at ∼10 % deformation, accompanied by the emergence of significant, yet moderate anisotropy. We measure similar stiffening and anisotropy in the matrix remodeled by the tensile apparatus to those found between cancer cell aggregates. Our results emphasize that small strains are enough to introduce substantial stiffening and anisotropy. These have been shown to result in directional cell migration and enhanced force propagation, and possibly control processes like morphogenesis and cancer metastasis.
Collapse
Affiliation(s)
- Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Bar Ergaz
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Daniel Barak
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| | - Ayelet Lesman
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| |
Collapse
|
7
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Marino-Bravante GE, Carey AE, Hüser L, Dixit A, Wang V, Kaur A, Liu Y, Ding S, Schnellmann R, Gerecht S, Gu L, Eisinger-Mathason TSK, Chhabra Y, Weeraratna AT. Age-dependent loss of HAPLN1 erodes vascular integrity via indirect upregulation of endothelial ICAM1 in melanoma. NATURE AGING 2024; 4:350-363. [PMID: 38472454 DOI: 10.1038/s43587-024-00581-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
Melanoma, the most lethal form of skin cancer, often has worse outcomes in older patients. We previously demonstrated that an age-related decrease in the secreted extracellular matrix (ECM) protein HAPLN1 has a role in slowing melanoma progression. Here we show that HAPLN1 in the dermal ECM is sufficient to maintain the integrity of melanoma-associated blood vessels, as indicated by increased collagen and VE-cadherin expression. Specifically, we show that HAPLN1 in the ECM increases hyaluronic acid and decreases endothelial cell expression of ICAM1. ICAM1 phosphorylates and internalizes VE-cadherin, a critical determinant of vascular integrity, resulting in permeable blood vessels. We found that blocking ICAM1 reduces tumor size and metastasis in older mice. These results suggest that HAPLN1 alters endothelial ICAM1expression in an indirect, matrix-dependent manner. Targeting ICAM1 could be a potential treatment strategy for older patients with melanoma, emphasizing the role of aging in tumorigenesis.
Collapse
Affiliation(s)
- Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanpreet Kaur
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Supeng Ding
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Rahel Schnellmann
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Signaling and Microenvironment, FoxChase Cancer Center, Philadelphia, PA, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Jahin I, Phillips T, Marcotti S, Gorey MA, Cox S, Parsons M. Extracellular matrix stiffness activates mechanosensitive signals but limits breast cancer cell spheroid proliferation and invasion. Front Cell Dev Biol 2023; 11:1292775. [PMID: 38125873 PMCID: PMC10731024 DOI: 10.3389/fcell.2023.1292775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is characterized by physical changes that occur in the tumor microenvironment throughout growth and metastasis of tumors. Extracellular matrix stiffness increases as tumors develop and spread, with stiffer environments thought to correlate with poorer disease prognosis. Changes in extracellular stiffness and other physical characteristics are sensed by integrins which integrate these extracellular cues to intracellular signaling, resulting in modulation of proliferation and invasion. However, the co-ordination of mechano-sensitive signaling with functional changes to groups of tumor cells within 3-dimensional environments remains poorly understood. Here we provide evidence that increasing the stiffness of collagen scaffolds results in increased activation of ERK1/2 and YAP in human breast cancer cell spheroids. We also show that ERK1/2 acts upstream of YAP activation in this context. We further demonstrate that YAP, matrix metalloproteinases and actomyosin contractility are required for collagen remodeling, proliferation and invasion in lower stiffness scaffolds. However, the increased activation of these proteins in higher stiffness 3-dimensional collagen gels is correlated with reduced proliferation and reduced invasion of cancer cell spheroids. Our data collectively provide evidence that higher stiffness 3-dimensional environments induce mechano-signaling but contrary to evidence from 2-dimensional studies, this is not sufficient to promote pro-tumorigenic effects in breast cancer cell spheroids.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Poonja S, Forero Pinto A, Lloyd MC, Damaghi M, Rejniak KA. Dynamics of Fibril Collagen Remodeling by Tumor Cells: A Model of Tumor-Associated Collagen Signatures. Cells 2023; 12:2688. [PMID: 38067116 PMCID: PMC10705683 DOI: 10.3390/cells12232688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Many solid tumors are characterized by a dense extracellular matrix (ECM) composed of various ECM fibril proteins. These proteins provide structural support and a biological context for the residing cells. The reciprocal interactions between growing and migrating tumor cells and the surrounding stroma result in dynamic changes in the ECM architecture and its properties. With the use of advanced imaging techniques, several specific patterns in the collagen surrounding the breast tumor have been identified in both tumor murine models and clinical histology images. These tumor-associated collagen signatures (TACS) include loosely organized fibrils far from the tumor and fibrils aligned either parallel or perpendicular to tumor colonies. They are correlated with tumor behavior, such as benign growth or invasive migration. However, it is not fully understood how one specific fibril pattern can be dynamically remodeled to form another alignment. Here, we present a novel multi-cellular lattice-free (MultiCell-LF) agent-based model of ECM that, in contrast to static histology images, can simulate dynamic changes between TACSs. This model allowed us to identify the rules of cell-ECM physical interplay and feedback that guided the emergence and transition among various TACSs.
Collapse
Affiliation(s)
- Sharan Poonja
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
| | - Ana Forero Pinto
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Mark C. Lloyd
- Fujifilm Healthcare US, Inc., Lexington, MA 02421, USA;
| | - Mehdi Damaghi
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Katarzyna A. Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Asgeirsson DO, Mehta A, Scheeder A, Li F, Wang X, Christiansen MG, Hesse N, Ward R, De Micheli AJ, Ildiz ES, Menghini S, Aceto N, Schuerle S. Magnetically controlled cyclic microscale deformation of in vitro cancer invasion models. Biomater Sci 2023; 11:7541-7555. [PMID: 37855703 DOI: 10.1039/d3bm00583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mechanical cues play an important role in the metastatic cascade of cancer. Three-dimensional (3D) tissue matrices with tunable stiffness have been extensively used as model systems of the tumor microenvironment for physiologically relevant studies. Tumor-associated cells actively deform these matrices, providing mechanical cues to other cancer cells residing in the tissue. Mimicking such dynamic deformation in the surrounding tumor matrix may help clarify the effect of local strain on cancer cell invasion. Remotely controlled microscale magnetic actuation of such 3D in vitro systems is a promising approach, offering a non-invasive means for in situ interrogation. Here, we investigate the influence of cyclic deformation on tumor spheroids embedded in matrices, continuously exerted for days by cell-sized anisotropic magnetic probes, referred to as μRods. Particle velocimetry analysis revealed the spatial extent of matrix deformation produced in response to a magnetic field, which was found to be on the order of 200 μm, resembling strain fields reported to originate from contracting cells. Intracellular calcium influx was observed in response to cyclic actuation, as well as an influence on cancer cell invasion from 3D spheroids, as compared to unactuated controls. Furthermore, RNA sequencing revealed subtle upregulation of certain genes associated with migration and stress, such as induced through mechanical deformation, for spheroids exposed to actuation vs. controls. Localized actuation at one side of a tumor spheroid tended to result in anisotropic invasion toward the μRods causing the deformation. In summary, our approach offers a strategy to test and control the influence of non-invasive micromechanical cues on cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Daphne O Asgeirsson
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Avni Mehta
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anna Scheeder
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Fan Li
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Xiang Wang
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Michael G Christiansen
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nicolas Hesse
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Rachel Ward
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrea J De Micheli
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Ece Su Ildiz
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Stefano Menghini
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Simone Schuerle
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Peng X, Huang Y, Genin GM. The fibrous character of pericellular matrix mediates cell mechanotransduction. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2023; 180:105423. [PMID: 38559448 PMCID: PMC10978028 DOI: 10.1016/j.jmps.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cells in solid tissues sense and respond to mechanical signals that are transmitted through extracellular matrix (ECM) over distances that are many times their size. This long-range force transmission is known to arise from strain-stiffening and buckling in the collagen fiber ECM network, but must also pass through the denser pericellular matrix (PCM) that cells form by secreting and compacting nearby collagen. However, the role of the PCM in the transmission of mechanical signals is still unclear. We therefore studied an idealized computational model of cells embedded within fibrous collagen ECM and PCM. Our results suggest that the smaller network pore sizes associated with PCM attenuates tension-driven collagen-fiber alignment, undermining long-range force transmission and shielding cells from mechanical stress. However, elongation of the cell body or anisotropic cell contraction can compensate for these effects to enable long distance force transmission. Results are consistent with recent experiments that highlight an effect of PCM on shielding cells from high stresses. Results have implications for the transmission of mechanical signaling in development, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Xiangjun Peng
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| | - Yuxuan Huang
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| | - Guy M. Genin
- U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 United States
| |
Collapse
|
13
|
Martínez-Calvo A, Trenado-Yuste C, Lee H, Gore J, Wingreen NS, Datta SS. Interfacial morphodynamics of proliferating microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563665. [PMID: 37961366 PMCID: PMC10634769 DOI: 10.1101/2023.10.23.563665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.
Collapse
|
14
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
15
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
16
|
Micalet A, Pape J, Bakkalci D, Javanmardi Y, Hall C, Cheema U, Moeendarbary E. Evaluating the Impact of a Biomimetic Mechanical Environment on Cancer Invasion and Matrix Remodeling. Adv Healthc Mater 2023; 12:e2201749. [PMID: 36333907 PMCID: PMC11468596 DOI: 10.1002/adhm.202201749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Indexed: 10/13/2024]
Abstract
The stiffness of tumors and their host tissues is much higher than most hydrogels, which are conventionally used to study in vitro cancer progression. The tumoroid assay is an engineered 3D in vitro tumor model that allows investigation of cancer cell invasion in an environment that is biomimetic in terms of extracellular matrix (ECM) composition and stiffness. Using this model, the change in matrix stiffness by epithelial colorectal cancer cells is systematically characterized by atomic force microscopy indentation tests. Less invasive epithelial cancer cells stiffen the tumor microenvironment while highly aggressive epithelial cancer cells show significant softening of the tumor microenvironment. Changes in stiffness are attributed to both cell-generated active forces as well as ECM degradation and remodeling. The degradation is in part attributed to the enzymatic activity of matrix metalloproteinases (MMPs) as demonstrated by the significant expression of MMP-2 and MMP-9 at both gene and protein levels. Targeting MMP activity through broad-spectrum drug inhibition (BB-94) reverses the changes in stiffness and also decreases cancer cell invasion. These results promote the idea of using mechano-based cancer therapies such as MMP inhibition.
Collapse
Affiliation(s)
- Auxtine Micalet
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Judith Pape
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Deniz Bakkalci
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Chloe Hall
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
17
|
Almeida JA, Mathur J, Lee YL, Sarker B, Pathak A. Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Mol Biol Cell 2023; 34:ar54. [PMID: 36696158 PMCID: PMC10208097 DOI: 10.1091/mbc.e22-10-0469] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Cells sense and migrate across mechanically dissimilar environments throughout development and disease progression. However, it remains unclear whether mechanical memory of past environments empowers cells to navigate new, three-dimensional extracellular matrices. Here, we show that cells previously primed on stiff, compared with soft, matrices generate a higher level of forces to remodel collagen fibers and promote invasion. This priming advantage persists in dense or stiffened collagen. We explain this memory-dependent, cross-environment cell invasion through a lattice-based model wherein stiff-primed cellular forces remodel collagen and minimize energy required for future cell invasion. According to our model, cells transfer their mechanical memory to the matrix via collagen alignment and tension, and this remodeled matrix informs future cell invasion. Thus, memory-laden cells overcome mechanosensing of softer or challenging future environments via a cell-matrix transfer of memory. Consistent with model predictions, depletion of yes-associated protein destabilizes the cellular memory required for collagen remodeling before invasion. We release tension in collagen fibers via laser ablation and disable fiber remodeling by lysyl-oxidase inhibition, both of which disrupt cell-to-matrix transfer of memory and hamper cross-environment invasion. These results have implications for cancer, fibrosis, and aging, where a potential cell-to-matrix transfer of mechanical memory of cells may generate a prolonged cellular response.
Collapse
Affiliation(s)
- José A. Almeida
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| | - Ye Lim Lee
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| |
Collapse
|
18
|
Hatlen RR, Rajagopalan P. Investigating Trans-differentiation of Glioblastoma Cells in an In Vitro 3D Model of the Perivascular Niche. ACS Biomater Sci Eng 2023. [PMID: 37129167 DOI: 10.1021/acsbiomaterials.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain cancer, responsible for over 50% of adult brain tumors. A specific region within the GBM environment is known as the perivascular niche (PVN). This area is defined as within approximately 100 μm of vasculature and plays an important role in the interactions between endothelial cells (ECs), astrocytes, GBM cells, and stem cells. We have designed a 3D in vitro model of the PVN comprising either collagen Type 1 or HyStem-C, human umbilical vein ECs (HUVECs), and LN229 (GBM) cells. HUVECs were encapsulated within the hydrogels to form vascular networks. After 7 days, LN229 cells were co-cultured to investigate changes in both cell types. Over a 14 day culture period, we measured alterations in HUVEC networks, the contraction of the hydrogels, trans-differentiation of LN229 cells, and the concentrations of two chemokines; CXCL12 and TGF-β. Increased cellular proliferation ranging from 10- to 16-fold was exhibited in co-cultures from days 8 to 14. This was accompanied with a decrease in the height of hydrogels of up to 68%. These changes in the biomaterial scaffold indicate that LN229-HUVEC interactions promote changes to the matrix. TGF-β and CXCL12 secretion increased approximately 2-2.6-fold each from day 8 to 14 in all co-cultures. The expression of CXCL12 correlated with cell colocalization, indicating a chemotactic role in enabling the migration of LN229 cells toward HUVECs in co-cultures. von Willebrand factor (vWF) was co-expressed with glial fibrillary acidic protein (GFAP) in up to 15% of LN229 cells after 24 h in co-culture. Additionally, when LN229 cells were co-cultured with human brain microvascular ECs, the percentages of GFAP+/vWF+ cells were up to 20% higher than that in co-cultures with HUVECs in collagen (2.2 mg/mL) and HyStem-C gels on day 14. The expression of vWF indicates the early stages of trans-differentiation of LN229 cells to an EC phenotype. Designing in vitro models of trans-differentiation may provide additional insights into how vasculature and cellular phenotypes are altered in GBM.
Collapse
Affiliation(s)
- Rosalyn R Hatlen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
20
|
Kato T, Jenkins RP, Derzsi S, Tozluoglu M, Rullan A, Hooper S, Chaleil RAG, Joyce H, Fu X, Thavaraj S, Bates PA, Sahai E. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 2023; 12:e76520. [PMID: 36892272 PMCID: PMC9998089 DOI: 10.7554/elife.76520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
Collapse
Affiliation(s)
- Takuya Kato
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Pathology, Kitasato UniversitySagamiharaJapan
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefanie Derzsi
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Hoffman La-RocheBaselSwitzerland
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Cancer ResearchLondonUnited Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Holly Joyce
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Xiao Fu
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, King's College LondonLondonUnited Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
21
|
Light-driven biological actuators to probe the rheology of 3D microtissues. Nat Commun 2023; 14:717. [PMID: 36759504 PMCID: PMC9911700 DOI: 10.1038/s41467-023-36371-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The mechanical properties of biological tissues are key to their physical integrity and function. Although external loading or biochemical treatments allow the estimation of these properties globally, it remains difficult to assess how such external stimuli compare with cell-generated contractions. Here we engineer microtissues composed of optogenetically-modified fibroblasts encapsulated within collagen. Using light to control the activity of RhoA, a major regulator of cellular contractility, we induce local contractions within microtissues, while monitoring microtissue stress and strain. We investigate the regulation of these local contractions and their spatio-temporal distribution. We demonstrate the potential of our technique for quantifying tissue elasticity and strain propagation, before examining the possibility of using light to create and map local anisotropies in mechanically heterogeneous microtissues. Altogether, our results open an avenue to guide the formation of tissues while non-destructively charting their rheology in real time, using their own constituting cells as internal actuators.
Collapse
|
22
|
Goren S, Levin M, Brand G, Lesman A, Sorkin R. Probing Local Force Propagation in Tensed Fibrous Gels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202573. [PMID: 36433830 DOI: 10.1002/smll.202202573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Fibrous hydrogels are a key component of soft animal tissues. They support cellular functions and facilitate efficient mechanical communication between cells. Due to their nonlinear mechanical properties, fibrous materials display non-trivial force propagation at the microscale, that is enhanced compared to that of linear-elastic materials. In the body, tissues are constantly subjected to external loads that tense or compress them, modifying their micro-mechanical properties into an anisotropic state. However, it is unknown how force propagation is modified by this isotropic-to-anisotropic transition. Here, force propagation in tensed fibrin hydrogels is directly measured. Local perturbations are induced by oscillating microspheres using optical tweezers. 1-point and 2-point microrheology are combined to simultaneously measure the shear modulus and force propagation. A mathematical framework to quantify anisotropic force propagation trends is suggested. Results show that force propagation becomes anisotropic in tensed gels, with, surprisingly, stronger response to perturbations perpendicular to the axis of tension. Importantly, external tension can also increase the range of force transmission. Possible implications and future directions for research are discussed. These results suggest a mechanism for favored directions of mechanical communication between cells in a tissue under external loads.
Collapse
Affiliation(s)
- Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interactions, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Maayan Levin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Guy Brand
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interactions, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| |
Collapse
|
23
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
24
|
Naylor A, Zheng Y, Jiao Y, Sun B. Micromechanical remodeling of the extracellular matrix by invading tumors: anisotropy and heterogeneity. SOFT MATTER 2022; 19:9-16. [PMID: 36503977 PMCID: PMC9867555 DOI: 10.1039/d2sm01100j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Altered tissue mechanics is an important signature of invasive solid tumors. While the phenomena have been extensively studied by measuring the bulk rheology of the extracellular matrix (ECM) surrounding tumors, micromechanical remodeling at the cellular scale remains poorly understood. By combining holographic optical tweezers and confocal microscopy on in vitro tumor models, we show that the micromechanics of collagen ECM surrounding an invading tumor demonstrate directional anisotropy, spatial heterogeneity and significant variations in time as tumors invade. To test the cellular mechanisms of ECM micromechanical remodeling, we construct a simple computational model and verify its predictions with experiments. We find that collective force generation of a tumor stiffens the ECM and leads to anisotropic local mechanics such that the extension direction is more rigid than the compression direction. ECM degradation by cell-secreted matrix metalloproteinase softens the ECM, and active traction forces from individual disseminated cells re-stiffen the matrix. Together, these results identify plausible biophysical mechanisms responsible for the remodeled ECM micromechanics surrounding an invading tumor.
Collapse
Affiliation(s)
- Austin Naylor
- Department of Physics, Oregon State University, Corvallis, OR, USA.
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ, USA.
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, AZ, USA.
- Materials Science and Engineering, Arizona State University, Tempe, AZ, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
25
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
26
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|
27
|
Popovic A, Tartare-Deckert S. Role of extracellular matrix architecture and signaling in melanoma therapeutic resistance. Front Oncol 2022; 12:924553. [PMID: 36119516 PMCID: PMC9479148 DOI: 10.3389/fonc.2022.924553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is critical for maintaining tissue homeostasis therefore its production, assembly and mechanical stiffness are highly regulated in normal tissues. However, in solid tumors, increased stiffness resulting from abnormal ECM structural changes is associated with disease progression, an increased risk of metastasis and poor survival. As a dynamic and key component of the tumor microenvironment, the ECM is becoming increasingly recognized as an important feature of tumors, as it has been shown to promote several hallmarks of cancer via biochemical and biomechanical signaling. In this regard, melanoma cells are highly sensitive to ECM composition, stiffness and fiber alignment because they interact directly with the ECM in the tumor microenvironment via cell surface receptors, secreted factors or enzymes. Importantly, seeing as the ECM is predominantly deposited and remodeled by myofibroblastic stromal fibroblasts, it is a key avenue facilitating their paracrine interactions with melanoma cells. This review gives an overview of melanoma and further describes the critical roles that ECM properties such as ECM remodeling, ECM-related proteins and stiffness play in cutaneous melanoma progression, tumor cell plasticity and therapeutic resistance. Finally, given the emerging importance of ECM dynamics in melanoma, future perspectives on therapeutic strategies to normalize the ECM in tumors are discussed.
Collapse
Affiliation(s)
- Ana Popovic
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Team Microenvironnement, Signaling and Cancer, Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Team Microenvironnement, Signaling and Cancer, Equipe Labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
28
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
29
|
Senthilkumar I, Howley E, McEvoy E. Thermodynamically-motivated chemo-mechanical models and multicellular simulation to provide new insight into active cell and tumour remodelling. Exp Cell Res 2022; 419:113317. [PMID: 36028058 DOI: 10.1016/j.yexcr.2022.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Computational models can shape our understanding of cell and tissue remodelling, from cell spreading, to active force generation, adhesion, and growth. In this mini-review, we discuss recent progress in modelling of chemo-mechanical cell behaviour and the evolution of multicellular systems. In particular, we highlight recent advances in (i) free-energy based single cell models that can provide new fundamental insight into cell spreading, cancer cell invasion, stem cell differentiation, and remodelling in disease, and (ii) mechanical agent-based models to simulate large numbers of discrete interacting cells in proliferative tumours. We describe how new biological understanding has emerged from such theoretical models, and the trade-offs and constraints associated with current approaches. Ultimately, we aim to make a case for why theory should be integrated with an experimental workflow to optimise new in-vitro studies, to predict feedback between cells and their microenvironment, and to deepen understanding of active cell behaviour.
Collapse
Affiliation(s)
- Irish Senthilkumar
- School of Computer Science, College of Science and Engineering, National University of Ireland Galway, Ireland; Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Enda Howley
- School of Computer Science, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland.
| |
Collapse
|
30
|
Ruiz-Franco J, van Der Gucht J. Force Transmission in Disordered Fibre Networks. Front Cell Dev Biol 2022; 10:931776. [PMID: 35846368 PMCID: PMC9280074 DOI: 10.3389/fcell.2022.931776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 01/23/2023] Open
Abstract
Cells residing in living tissues apply forces to their immediate surroundings to promote the restructuration of the extracellular matrix fibres and to transmit mechanical signals to other cells. Here we use a minimalist model to study how these forces, applied locally by cell contraction, propagate through the fibrous network in the extracellular matrix. In particular, we characterize how the transmission of forces is influenced by the connectivity of the network and by the bending rigidity of the fibers. For highly connected fiber networks the stresses spread out isotropically around the cell over a distance that first increases with increasing contraction of the cell and then saturates at a characteristic length. For lower connectivity, however, the stress pattern is highly asymmetric and is characterised by force chains that can transmit stresses over very long distances. We hope that our analysis of force transmission in fibrous networks can provide a new avenue for future studies on how the mechanical feedback between the cell and the ECM is coupled with the microscopic environment around the cells.
Collapse
|
31
|
Duan Y, Huang W, Zhan B, Li Y, Xu X, Li K, Li X, Liu X, Ding S, Wang S, Guo J, Wang Y, Gu Q. A Bioink Derived From Human Placenta Supporting Angiogenesis. Biomed Mater 2022; 17. [PMID: 35732166 DOI: 10.1088/1748-605x/ac7b5b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
Bioprinting is an emerging approach for constructing sophisticated tissue analogues with detailed architectures such as vascular networks, which requires bioink fulfill the highly printable property and provide a cell-friendly microenvironment mimicking native extracellular matrix (ECM). Here, we developed a human placental ECM-derived bioink (hp-bioink) meeting the requirements of 3D printing for printability and bioactivity. We first decellularized the human placenta, followed by enzymatic digestion, dialysis, lyophilization, and re-solubilization to convert the extracts into hp-bioink. Then, we demonstrated that 3%-5% of hp-bioink can be printed with self-standing and 1%-2% of hp-bioink can be embedded with suspended hydrogels. Moreover, hp-bioink supports HUVEC assembly in vitro and angiogenesis in mice in vivo. Our research enriched the bank of human-derived bioink, and provided a new opportunity to further accelerate bioprinting research and application.
Collapse
Affiliation(s)
- Yongchao Duan
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Wenhui Huang
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Bo Zhan
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Yuanyuan Li
- Shanxi Provincial Peoples Hospital, No 29 Shuangtadong Street, Yinze district, Taiyuan, Taiyuan, Shanxi , 030012, CHINA
| | - Xue Xu
- Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, Beijing, 100044, CHINA
| | - Kai Li
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Xia Li
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Xin Liu
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Shenglong Ding
- Beijing Tongren Hospital, 2 Chongwenmennei Dajie Dongcheng District, Beijing, Beijing, 100730, CHINA
| | - Shuo Wang
- Institute of Zoology Chinese Academy of Sciences, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, CHINA
| | - Jia Guo
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Yukai Wang
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Qi Gu
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District District, Beijing, 100101, CHINA
| |
Collapse
|
32
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
33
|
Palmquist KH, Tiemann SF, Ezzeddine FL, Yang S, Pfeifer CR, Erzberger A, Rodrigues AR, Shyer AE. Reciprocal cell-ECM dynamics generate supracellular fluidity underlying spontaneous follicle patterning. Cell 2022; 185:1960-1973.e11. [DOI: 10.1016/j.cell.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
34
|
Geiger F, Schnitzler LG, Brugger MS, Westerhausen C, Engelke H. Directed invasion of cancer cell spheroids inside 3D collagen matrices oriented by microfluidic flow in experiment and simulation. PLoS One 2022; 17:e0264571. [PMID: 35231060 PMCID: PMC8887745 DOI: 10.1371/journal.pone.0264571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Invasion is strongly influenced by the mechanical properties of the extracellular matrix. Here, we use microfluidics to align fibers of a collagen matrix and study the influence of fiber orientation on invasion from a cancer cell spheroid. The microfluidic setup allows for highly oriented collagen fibers of tangential and radial orientation with respect to the spheroid, which can be described by finite element simulations. In invasion experiments, we observe a strong bias of invasion towards radial as compared to tangential fiber orientation. Simulations of the invasive behavior with a Brownian diffusion model suggest complete blockage of migration perpendicularly to fibers allowing for migration exclusively along fibers. This slows invasion toward areas with tangentially oriented fibers down, but does not prevent it.
Collapse
Affiliation(s)
- Florian Geiger
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas G. Schnitzler
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Manuel S. Brugger
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Stiftung der Deutschen Wirtschaft (sdw) gGmbH, Berlin, Germany
| | - Christoph Westerhausen
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany
- Center for NanoScience (CeNS), Munich, Germany
- * E-mail: (CW); (HE)
| | - Hanna Engelke
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for NanoScience (CeNS), Munich, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- * E-mail: (CW); (HE)
| |
Collapse
|
35
|
Chen X, Chen D, Ban E, Toussaint KC, Janmey PA, Wells RG, Shenoy VB. Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proc Natl Acad Sci U S A 2022; 119:e2116718119. [PMID: 35394874 PMCID: PMC9169665 DOI: 10.1073/pnas.2116718119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen–GAG cogels. We found significantly lower intensities of aligned collagen in collagen–GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.
Collapse
Affiliation(s)
- Xingyu Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Dongning Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | | | - Paul A. Janmey
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Rebecca G. Wells
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vivek B. Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
36
|
Narkar AR, Tong Z, Soman P, Henderson JH. Smart biomaterial platforms: Controlling and being controlled by cells. Biomaterials 2022; 283:121450. [PMID: 35247636 PMCID: PMC8977253 DOI: 10.1016/j.biomaterials.2022.121450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023]
Abstract
Across diverse research and application areas, dynamic functionality-such as programmable changes in biochemical property, in mechanical property, or in microscopic or macroscopic architecture-is an increasingly common biomaterials design criterion, joining long-studied criteria such as cytocompatibility and biocompatibility, drug release kinetics, and controlled degradability or long-term stability in vivo. Despite tremendous effort, achieving dynamic functionality while simultaneously maintaining other desired design criteria remains a significant challenge. Reversible dynamic functionality, rather than one-time or one-way dynamic functionality, is of particular interest but has proven especially challenging. Such reversible functionality could enable studies that address the current gap between the dynamic nature of in vivo biological and biomechanical processes, such as cell traction, cell-extracellular matrix (ECM) interactions, and cell-mediated ECM remodeling, and the static nature of the substrates and ECM constructs used to study the processes. This review assesses dynamic materials that have traditionally been used to control cell activity and static biomaterial constructs, experimental and computational techniques, with features that may inform continued advances in reversible dynamic materials. Taken together, this review presents a perspective on combining the reversibility of smart materials and the in-depth dynamic cell behavior probed by static polymers to design smart bi-directional ECM platforms that can reversibly and repeatedly communicate with cells.
Collapse
Affiliation(s)
- Ameya R Narkar
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Zhuoqi Tong
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Pranav Soman
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - James H Henderson
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
37
|
Esfahani P, Levine H, Mukherjee M, Sun B. Three-dimensional cancer cell migration directed by dual mechanochemical guidance. PHYSICAL REVIEW RESEARCH 2022; 4:L022007. [PMID: 37033157 PMCID: PMC10081505 DOI: 10.1103/physrevresearch.4.l022007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Directed cell migration guided by external cues plays a central role in many physiological and pathophysiological processes. The microenvironment of cells often simultaneously contains various cues and the motility response of cells to multiplexed guidance is poorly understood. Here we combine experiments and mathematical models to study the three-dimensional migration of breast cancer cells in the presence of both contact guidance and a chemoattractant gradient. We find that the chemotaxis of cells is complicated by the presence of contact guidance as the microstructure of extracellular matrix (ECM) vary spatially. In the presence of dual guidance, the impact of ECM alignment is determined externally by the coherence of ECM fibers and internally by cell mechanosensing Rho/Rock pathways. When contact guidance is parallel to the chemical gradient, coherent ECM fibers significantly increase the efficiency of chemotaxis. When contact guidance is perpendicular to the chemical gradient, cells exploit the ECM disorder to locate paths for chemotaxis. Our results underscore the importance of fully characterizing the cancer cell microenvironment in order to better understand invasion and metastasis.
Collapse
Affiliation(s)
- Pedram Esfahani
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Departments of Physics and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Mrinmoy Mukherjee
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
38
|
Yan Z, Xia X, Cho WC, Au DW, Shao X, Fang C, Tian Y, Lin Y. Rapid Plastic Deformation of Cancer Cells Correlates with High Metastatic Potential. Adv Healthc Mater 2022; 11:e2101657. [PMID: 35014196 DOI: 10.1002/adhm.202101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/19/2021] [Indexed: 01/22/2023]
Abstract
Metastasis plays a crucial role in tumor development, however, lack of quantitative methods to characterize the capability of cells to undergo plastic deformations has hindered the understanding of this important process. Here, a microfluidic system capable of imposing precisely controlled cyclic deformation on cells and therefore probing their viscoelastic and plastic characteristics is developed. Interestingly, it is found that significant plastic strain can accumulate rapidly in highly invasive cancer cell lines and circulating tumor cells (CTCs) from late-stage lung cancer patients with a characteristic time of a few seconds. In constrast, very little irreversible deformation is observed in the less invasive cell lines and CTCs from early-stage lung cancer patients, highlighting the potential of using the plastic response of cells as a novel marker in future cancer study. Furthermore, author showed that the observed irreversible deformation should originate mainly from cytoskeleton damage, rather than plasticity of the cell nucleus.
Collapse
Affiliation(s)
- Zishen Yan
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI) Shenzhen Guangdong China
| | - Xingyu Xia
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI) Shenzhen Guangdong China
| | - William C. Cho
- Department of Clinical Oncology Queen Elizabeth Hospital Hong Kong SAR China
| | - Dennis W. Au
- Department of Clinical Oncology Queen Elizabeth Hospital Hong Kong SAR China
| | - Xueying Shao
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
| | - Chao Fang
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI) Shenzhen Guangdong China
| | - Ye Tian
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI) Shenzhen Guangdong China
| | - Yuan Lin
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI) Shenzhen Guangdong China
- Advanced Biomedical Instrumentation Centre Hong Kong Science Park Shatin, New Territories Hong Kong
| |
Collapse
|
39
|
Pretzsch E, Nieß H, Bösch F, Westphalen C, Jacob S, Neumann J, Werner J, Heinemann V, Angele M. Age and metastasis – How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol 2022; 77:102112. [PMID: 35104771 DOI: 10.1016/j.canep.2022.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
40
|
Pamonag M, Hinson A, Burton EJ, Jafari N, Sales D, Babcock S, Basha R, Hu X, Kubow KE. Individual cells generate their own self-reinforcing contact guidance cues through local matrix fiber remodeling. PLoS One 2022; 17:e0265403. [PMID: 35333902 PMCID: PMC8956187 DOI: 10.1371/journal.pone.0265403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Directed cell migration arises from cells following a microenvironmental gradient (e.g. of a chemokine) or polarizing feature (e.g. a linear structure). However cells not only follow, but in many cases, also generate directionality cues by modifying their microenvironment. This bi-directional relationship is seen in the alignment of extracellular matrix (ECM) fibers ahead of invading cell masses. The forces generated by many migrating cells cause fiber alignment, which in turn promotes further migration in the direction of fiber alignment via contact guidance and durotaxis. While this positive-feedback relationship has been widely described for cells invading en masse, single cells are also able to align ECM fibers, as well as respond to contact guidance and durotaxis cues, and should therefore exhibit the same relationship. In this study, we directly tested this hypothesis by studying the migration persistence of individual HT-1080 fibrosarcoma cells migrating in photocrosslinked collagen matrices with limited remodeling potential. Our results demonstrate that this positive-feedback relationship is indeed a fundamental aspect of cell migration in fibrillar environments. We observed that the cells’ inability to align and condense fibers resulted in a decrease in persistence relative to cells in native collagen matrices and even relative to isotropic (glass) substrates. Further experiments involving 2D collagen and electrospun polymer scaffolds suggest that substrates composed of rigid, randomly oriented fibers reduce cells’ ability to follow another directionality cue by forcing them to meander to follow the available adhesive area (i.e. fibers). Finally, our results demonstrate that the bi-directional relationship between cell remodeling and migration is not a “dimensionality” effect, but a fundamental effect of fibrous substrate structure.
Collapse
Affiliation(s)
- Michael Pamonag
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Abigail Hinson
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Elisha J. Burton
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Nojan Jafari
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Dominic Sales
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Sarah Babcock
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Rozlan Basha
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Xiaofeng Hu
- Department of Chemistry & Biochemistry and Center for Materials Science, James Madison University, Harrisonburg, Virginia, United States of America
| | - Kristopher E. Kubow
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Costa BL, Adão RMR, Maibohm C, Accardo A, Cardoso VF, Nieder JB. Cellular Interaction of Bone Marrow Mesenchymal Stem Cells with Polymer and Hydrogel 3D Microscaffold Templates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13013-13024. [PMID: 35282678 PMCID: PMC8949723 DOI: 10.1021/acsami.1c23442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/03/2022] [Indexed: 05/05/2023]
Abstract
Biomimicking biological niches of healthy tissues or tumors can be achieved by means of artificial microenvironments, where structural and mechanical properties are crucial parameters to promote tissue formation and recreate natural conditions. In this work, three-dimensional (3D) scaffolds based on woodpile structures were fabricated by two-photon polymerization (2PP) of different photosensitive polymers (IP-S and SZ2080) and hydrogels (PEGDA 700) using two different 2PP setups, a commercial one and a customized one. The structures' properties were tuned to study the effect of scaffold dimensions (gap size) and their mechanical properties on the adhesion and proliferation of bone marrow mesenchymal stem cells (BM-MSCs), which can serve as a model for leukemic diseases, among other hematological applications. The woodpile structures feature gap sizes of 25, 50, and 100 μm and a fixed beam diameter of 25 μm, to systematically study the optimal cell colonization that promotes healthy cell growth and potential tissue formation. The characterization of the scaffolds involved scanning electron microscopy and mechanical nanoindenting, while their suitability for supporting cell growth was evaluated with live/dead cell assays and multistaining 3D confocal imaging. In the mechanical assays of the hydrogel material, we observed two different stiffness ranges depending on the indentation depth. Larger gap woodpile structures coated with fibronectin were identified as the most promising scaffolds for 3D BM-MSC cellular models, showing higher proliferation rates. The results indicate that both the design and the employed materials are suitable for further assays, where retaining the BM-MSC stemness and original features is crucial, including studies focused on BM disorders such as leukemia and others. Moreover, the combination of 3D scaffold geometry and materials holds great potential for the investigation of cellular behaviors in a co-culture setting, for example, mesenchymal and hematopoietic stem cells, to be further applied in medical research and pharmacological studies.
Collapse
Affiliation(s)
- Beatriz
N. L. Costa
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
- CMEMS-UMinho,
University of Minho, DEI, Campus de Azurém, Guimarães 4800-058, Portugal
- Faculty
of Mechanical, Maritime, and Materials Engineering (3mE), Department
of Precision and Microsystems Engineering (PME), Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Ricardo M. R. Adão
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| | - Christian Maibohm
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| | - Angelo Accardo
- Faculty
of Mechanical, Maritime, and Materials Engineering (3mE), Department
of Precision and Microsystems Engineering (PME), Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Vanessa F. Cardoso
- CMEMS-UMinho,
University of Minho, DEI, Campus de Azurém, Guimarães 4800-058, Portugal
- CF-UM-UP,
Centro de Física das Universidades do Minho e Porto, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jana B. Nieder
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| |
Collapse
|
42
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
43
|
Raghuraman S, Schubert A, Bröker S, Jurado A, Müller A, Brandt M, Vos BE, Hofemeier AD, Abbasi F, Stehling M, Wittkowski R, Ivaska J, Betz T. Pressure Drives Rapid Burst-Like Coordinated Cellular Motion from 3D Cancer Aggregates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104808. [PMID: 34994086 PMCID: PMC8867140 DOI: 10.1002/advs.202104808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 05/04/2023]
Abstract
A key behavior observed during morphogenesis, wound healing, and cancer invasion is that of collective and coordinated cellular motion. Hence, understanding the different aspects of such coordinated migration is fundamental for describing and treating cancer and other pathological defects. In general, individual cells exert forces on their environment in order to move, and collective motion is coordinated by cell-cell adhesion-based forces. However, this notion ignores other mechanisms that encourage cellular movement, such as pressure differences. Here, using model tumors, it is found that increased pressure drove coordinated cellular motion independent of cell-cell adhesion by triggering cell swelling in a soft extracellular matrix (ECM). In the resulting phenotype, a rapid burst-like stream of cervical cancer cells emerged from 3D aggregates embedded in soft collagen matrices (0.5 mg mL-1 ). This fluid-like pushing mechanism, recorded within 8 h after embedding, shows high cell velocities and super-diffusive motion. Because the swelling in this model system critically depends on integrin-mediated cell-ECM adhesions and cellular contractility, the swelling is likely triggered by unsustained mechanotransduction, providing new evidence that pressure-driven effects must be considered to more completely understand the mechanical forces involved in cell and tissue movement as well as invasion.
Collapse
Affiliation(s)
- Swetha Raghuraman
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
| | - Ann‐Sophie Schubert
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
| | - Stephan Bröker
- Institute of Theoretical PhysicsCenter for Soft NanoscienceUniversity of MünsterBusso‐Peus‐Str. 10D‐48149MünsterGermany
| | - Alejandro Jurado
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
- Third Physical InstituteUniversity of GöttingenFriedrich‐Hund‐Platz 1D‐37077GöttingenGermany
| | - Annika Müller
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
| | - Matthias Brandt
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
| | - Bart E. Vos
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
- Third Physical InstituteUniversity of GöttingenFriedrich‐Hund‐Platz 1D‐37077GöttingenGermany
| | - Arne D. Hofemeier
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
| | - Fatemeh Abbasi
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
- Third Physical InstituteUniversity of GöttingenFriedrich‐Hund‐Platz 1D‐37077GöttingenGermany
| | - Martin Stehling
- Max Planck Institute for Molecular BiomedicineRöntgenstraße 20D‐48149MünsterGermany
| | - Raphael Wittkowski
- Institute of Theoretical PhysicsCenter for Soft NanoscienceUniversity of MünsterBusso‐Peus‐Str. 10D‐48149MünsterGermany
| | - Johanna Ivaska
- Turku Biosience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFI‐20520Finland
- Department of Life TechnologiesUniversity of TurkuTurkuFI‐20520Finland
| | - Timo Betz
- Institute of Cell BiologyZMBEUniversity of MünsterVon‐Esmarch‐Straße 56D‐48149MünsterGermany
- Third Physical InstituteUniversity of GöttingenFriedrich‐Hund‐Platz 1D‐37077GöttingenGermany
| |
Collapse
|
44
|
Koorman T, Jansen KA, Khalil A, Haughton PD, Visser D, Rätze MAK, Haakma WE, Sakalauskaitè G, van Diest PJ, de Rooij J, Derksen PWB. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene 2022; 41:2458-2469. [PMID: 35292774 PMCID: PMC9033577 DOI: 10.1038/s41388-022-02258-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 01/29/2023]
Abstract
The tumor micro-environment often contains stiff and irregular-bundled collagen fibers that are used by tumor cells to disseminate. It is still unclear how and to what extent, extracellular matrix (ECM) stiffness versus ECM bundle size and alignment dictate cancer cell invasion. Here, we have uncoupled Collagen-I bundling from stiffness by introducing inter-collagen crosslinks, combined with temperature induced aggregation of collagen bundling. Using organotypic models from mouse invasive ductal and invasive lobular breast cancers, we show that increased collagen bundling in 3D induces a generic increase in breast cancer invasion that is independent of migration mode. However, systemic collagen stiffening using advanced glycation end product (AGE) crosslinking prevents collective invasion, while leaving single cell invasion unaffected. Collective invasion into collagen matrices by ductal breast cancer cells depends on Lysyl oxidase-like 3 (Loxl3), a factor produced by tumor cells that reinforces local collagen stiffness. Finally, we present clinical evidence that collectively invading cancer cells at the invasive front of ductal breast carcinoma upregulate LOXL3. By uncoupling the mechanical, chemical, and structural cues that control invasion of breast cancer in three dimensions, our data reveal that spatial control over stiffness and bundling underlie collective dissemination of ductal-type breast cancers.
Collapse
Affiliation(s)
- Thijs Koorman
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin A. Jansen
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antoine Khalil
- grid.7692.a0000000090126352Molecular Cancer Research/Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D. Haughton
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daan Visser
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max A. K. Rätze
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wisse E. Haakma
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gabrielè Sakalauskaitè
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J. van Diest
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- grid.7692.a0000000090126352Molecular Cancer Research/Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick W. B. Derksen
- grid.7692.a0000000090126352Departments of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Kim J, Mailand E, Ang I, Sakar MS, Bouklas N. A model for 3D deformation and reconstruction of contractile microtissues. SOFT MATTER 2021; 17:10198-10209. [PMID: 33118554 DOI: 10.1039/d0sm01182g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tissue morphogenesis and regeneration are essentially mechanical processes that involve coordination of cellular forces, production and structural remodeling of extracellular matrix (ECM), and cell migration. Discovering the principles of cell-ECM interactions and tissue-scale deformation in mechanically-loaded tissues is instrumental to the development of novel regenerative therapies. The combination of high-throughput three-dimensional (3D) culture systems and experimentally-validated computational models accelerate the study of these principles. In our previous work [E. Mailand, et al., Biophys. J., 2019, 117, 975-986], we showed that prominent surface stresses emerge in constrained fibroblast-populated collagen gels, driving the morphogenesis of fibrous microtissues. Here, we introduce an active material model that allows the embodiment of surface and bulk contractile stresses while maintaining the passive elasticity of the ECM in a 3D setting. Unlike existing models, the stresses are driven by mechanosensing and not by an externally applied signal. The mechanosensing component is incorporated in the model through a direct coupling of the local deformation state with the associated contractile force generation. Further, we propose a finite element implementation to account for large deformations, nonlinear active material response, and surface effects. Simulation results quantitatively capture complex shape changes during tissue formation and as a response to surgical disruption of tissue boundaries, allowing precise calibration of the parameters of the 3D model. The results of this study imply that the organization of the extracellular matrix in the bulk of the tissue may not be a major factor behind the morphogenesis of fibrous tissues at sub-millimeter length scales.
Collapse
Affiliation(s)
- Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Erik Mailand
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ida Ang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Mahmut Selman Sakar
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
46
|
Pach E, Kümper M, Fromme JE, Zamek J, Metzen F, Koch M, Mauch C, Zigrino P. Extracellular Matrix Remodeling by Fibroblast-MMP14 Regulates Melanoma Growth. Int J Mol Sci 2021; 22:12276. [PMID: 34830157 PMCID: PMC8625044 DOI: 10.3390/ijms222212276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Maintaining a balanced state in remodeling the extracellular matrix is crucial for tissue homeostasis, and this process is altered during skin cancer progression. In melanoma, several proteolytic enzymes are expressed in a time and compartmentalized manner to support tumor progression by generating a permissive environment. One of these proteases is the matrix metalloproteinase 14 (MMP14). We could previously show that deletion of MMP14 in dermal fibroblasts results in the generation of a fibrotic-like skin in which melanoma growth is impaired. That was primarily due to collagen I accumulation due to lack of the collagenolytic activity of MMP14. However, as well as collagen I processing, MMP14 can also process several extracellular matrices. We investigated extracellular matrix alterations occurring in the MMP14-deleted fibroblasts that can contribute to the modulation of melanoma growth. The matrix deposited by cultured MMP14-deleted fibroblast displayed an antiproliferative and anti-migratory effect on melanoma cells in vitro. Analysis of the secreted and deposited-decellularized fibroblast's matrix identified a few altered proteins, among which the most significantly changed was collagen XIV. This collagen was increased because of post-translational events, while de novo synthesis was unchanged. Collagen XIV as a substrate was not pro-proliferative, pro-migratory, or adhesive, suggesting a negative regulatory role on melanoma cells. Consistent with that, increasing collagen XIV concentration in wild-type fibroblast-matrix led to reduced melanoma proliferation, migration, and adhesion. In support of its anti-tumor activity, enhanced accumulation of collagen XIV was detected in peritumoral areas of melanoma grown in mice with the fibroblast's deletion of MMP14. In advanced human melanoma samples, we detected reduced expression of collagen XIV compared to benign nevi, which showed a robust expression of this molecule around melanocytic nests. This study shows that loss of fibroblast-MMP14 affects melanoma growth through altering the peritumoral extracellular matrix (ECM) composition, with collagen XIV being a modulator of melanoma progression and a new proteolytic substrate to MMP14.
Collapse
Affiliation(s)
- Elke Pach
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Maike Kümper
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Julia E. Fromme
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), 50937 Cologne, Germany
| | - Jan Zamek
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Fabian Metzen
- Faculty of Medicine and University Hospital, Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50937 Cologne, Germany; (F.M.); (M.K.)
| | - Manuel Koch
- Faculty of Medicine and University Hospital, Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50937 Cologne, Germany; (F.M.); (M.K.)
| | - Cornelia Mauch
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| | - Paola Zigrino
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (E.P.); (M.K.); (J.E.F.); (J.Z.); (C.M.)
| |
Collapse
|
47
|
Rossen NS, Kyrsting A, Giaccia AJ, Erler JT, Oddershede LB. Fiber finding algorithm using stepwise tracing to identify biopolymer fibers in noisy 3D images. Biophys J 2021; 120:3860-3868. [PMID: 34411578 DOI: 10.1016/j.bpj.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/22/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022] Open
Abstract
We present a novel fiber finding algorithm (FFA) that will permit researchers to detect and return traces of individual biopolymers. Determining the biophysical properties and structural cues of biopolymers can permit researchers to assess the progression and severity of disease. Confocal microscopy images are a useful method for observing biopolymer structures in three dimensions, but their utility for identifying individual biopolymers is impaired by noise inherent in the acquisition process, including convolution from the point spread function (PSF). The new, iterative FFA we present here 1) measures a microscope's PSF and uses it as a metric for identifying fibers against the background; 2) traces each fiber within a cone angle; and 3) blots out the identified trace before identifying another fiber. Blotting out the identified traces in each iteration allows the FFA to detect and return traces of single fibers accurately and efficiently-even within fiber bundles. We used the FFA to trace unlabeled collagen type I fibers-a biopolymer used to mimic the extracellular matrix in in vitro cancer assays-imaged by confocal reflectance microscopy in three dimensions, enabling quantification of fiber contour length, persistence length, and three-dimensional (3D) mesh size. Based on 3D confocal reflectance microscopy images and the PSF, we traced and measured the fibers to confirm that colder gelation temperatures increased fiber contour length, persistence length, and 3D mesh size-thereby demonstrating the FFA's use in quantifying biopolymers' structural and physical cues from noisy microscope images.
Collapse
Affiliation(s)
- Ninna Struck Rossen
- Biotech Research & Innovation Center, University of Copenhagen (UCPH), Copenhagen, Denmark; Department of Radiation Oncology, Stanford University, Palo Alto, California; Niels Bohr Institute, University of Copenhagen (UCPH), Copenhagen, Denmark.
| | - Anders Kyrsting
- Niels Bohr Institute, University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Janine Terra Erler
- Biotech Research & Innovation Center, University of Copenhagen (UCPH), Copenhagen, Denmark
| | | |
Collapse
|
48
|
Reye G, Huang X, Haupt LM, Murphy RJ, Northey JJ, Thompson EW, Momot KI, Hugo HJ. Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle? J Mammary Gland Biol Neoplasia 2021; 26:277-296. [PMID: 34449016 PMCID: PMC8566410 DOI: 10.1007/s10911-021-09494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Regions of high mammographic density (MD) in the breast are characterised by a proteoglycan (PG)-rich fibrous stroma, where PGs mediate aligned collagen fibrils to control tissue stiffness and hence the response to mechanical forces. Literature is accumulating to support the notion that mechanical stiffness may drive PG synthesis in the breast contributing to MD. We review emerging patterns in MD and other biological settings, of a positive feedback cycle of force promoting PG synthesis, such as in articular cartilage, due to increased pressure on weight bearing joints. Furthermore, we present evidence to suggest a pro-tumorigenic effect of increased mechanical force on epithelial cells in contexts where PG-mediated, aligned collagen fibrous tissue abounds, with implications for breast cancer development attributable to high MD. Finally, we summarise means through which this positive feedback mechanism of PG synthesis may be intercepted to reduce mechanical force within tissues and thus reduce disease burden.
Collapse
Affiliation(s)
- Gina Reye
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Xuan Huang
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Ryan J Murphy
- School of Mathematical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Jason J Northey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik W Thompson
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Honor J Hugo
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
49
|
The mechanics and dynamics of cancer cells sensing noisy 3D contact guidance. Proc Natl Acad Sci U S A 2021; 118:2024780118. [PMID: 33658384 DOI: 10.1073/pnas.2024780118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance using directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell-ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.
Collapse
|
50
|
Riedl P, Pompe T. Functional label-free assessment of fibroblast differentiation in 3D collagen-I-matrices using particle image velocimetry. Biomater Sci 2021; 9:5917-5927. [PMID: 34291253 DOI: 10.1039/d1bm00638j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fibroblasts are a diverse population of connective tissue cells that are a key component in physiological wound healing. Myofibroblasts are differentiated fibroblasts occurring in various physiological and pathological conditions, like in the healing of wounds or in the tumour microenvironment. They exhibit important functions compared to fibroblasts in terms of proliferation, protein secretion, and contractility. The gold standard to distinguish myofibroblasts is alpha-smooth muscle actin (αSMA) expression and its incorporation in stress fibres, which is only revealed by gene expression analysis and immunostaining. Here, we introduce an approach to functionally determine the myofibroblast status of live fibroblasts directly in in vitro cell culture by analysing their ability to contract the extracellular matrix around them without the need for labelling. It is based on particle image velocimetry algorithms applied to dynamic deformations of the extracellular matrix network structure imaged by phase contrast microscopy. Advanced image analysis allows us to distinguish between various differentiation stages of fibroblasts including the dynamic change over several days. We further apply machine learning classification to automatically evaluate different cell culture conditions. With this new method, we provide a versatile tool to functionally evaluate the dynamic process of fibroblast differentiation. It can be applied for in vitro screening studies in biomimetic 3D cell cultures with options to extend it to other cell systems with contractile phenotypes.
Collapse
Affiliation(s)
- Philipp Riedl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103 Leipzig, Germany.
| | | |
Collapse
|