1
|
Mohammadi A, Deroo S, Leitner A, Stengel F, Krammer EM, Aebersold R, Prévost M, Raussens V. Characterization of the N- and C-terminal domain interface of the three main apoE isoforms: A combined quantitative cross-linking mass spectrometry and molecular modeling study. Biochim Biophys Acta Gen Subj 2025:130768. [PMID: 39880049 DOI: 10.1016/j.bbagen.2025.130768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Apolipoprotein E (apoE) polymorphism is associated with different pathologies such as atherosclerosis and Alzheimer's disease. Knowledge of the three-dimensional structure of apoE and isoform-specific structural differences are prerequisites for the rational design of small molecule structure modulators that correct the detrimental effects of pathological isoforms. In this study, cross-linking mass spectrometry (XL-MS) targeting Asp, Glu and Lys residues was used to explore the intramolecular interactions in the E2, E3 and E4 isoforms of apoE. The resulting quantitative XL-MS data combined with molecular modeling revealed isoform-specific characteristics of the N- and C-terminal domain interfaces as well as the isoform-dependent dynamic equilibrium of these interfaces. Finally, the data identified a network of salt bridges formed by R61-R112-E109 residues in the N-terminal helical bundle as a modulator of the interaction with the C-terminal domain making this network a potential drug target.
Collapse
Affiliation(s)
- Azadeh Mohammadi
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Currently at Puratos NV, Industrialaan 25, 1702 Groot-Bijgaarden, Belgium.
| | - Stéphanie Deroo
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; University of Konstanz, Department of Biology, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Eva-Maria Krammer
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium; currently at Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University Lille, CNRS, UMR, 8576, Lille, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Martine Prévost
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Raussens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Dolai S, Pal S, Deepa S, Garai K. Quantitative Assessment of Conformational Heterogeneity in Apolipoprotein E4 Using Hydrogen-Deuterium Exchange Mass Spectrometry. J Phys Chem B 2024; 128:10075-10085. [PMID: 39360975 DOI: 10.1021/acs.jpcb.4c04738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Apolipoprotein E4 (apoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). However, structural differences between apoE4 and the AD-neutral isoform, apoE3, still remain unclear. Recent studies suggest that apoE4 harbors intermediates. However, the biophysical properties and isoform specificity of these intermediates are not known. Here, we use the kinetics of hydrogen-deuterium exchange by mass spectrometry (HDX-MS) to examine the conformational heterogeneities in apoE3 and apoE4. First, we use numerical simulations to compute the HDX-mass spectra of a protein following mixed EX1/EX2 kinetics. The results indicate that in the presence of EX1 kinetics, which is an indicator of conformational heterogeneity, time evolution of the standard deviation (σ(t)) of the spectra exhibits a clear peak, which is dependent on the number of residues (NEX1) and the rate constant of EX1 kinetics (kEX1). Then, we performed experiments with several variants of the apoE proteins and compared them with simulation to estimate NEX1 and kEX1. Kinetics of the mean deuteration is found to be faster for apoE4, consistent with its poorer stability than apoE3. Importantly, in the case of apoE4, σ(t) exhibits a clear peak at t ∼ 60 s, but apoE3 shows only a small peak at 1800 s. Therefore, both NEX1 and kEX1 are larger for apoE4, indicating greater conformational heterogeneity. Notably, the partial EX1 kinetics is observed in both the isolated N-terminal fragment and the full-length form of apoE4, although it is more pronounced in the full-length protein. Moreover, it is enhanced at higher pH and in the presence of bis-ANS. Mutations such as R61T and R112I diminish the EX1 kinetics, making apoE4 behave more like apoE3. Thus, the amino acid substitution at position 112 alters the structural dynamics of the N-terminal domain of apoE4; the changes are further propagated and amplified in the full-length protein. We conclude that HDX-MS is a label-free and robust methodology to characterize structural heterogeneities of proteins even under native conditions. This opens opportunities for screening of the "structure corrector" drug molecules that could convert apoE4 to apoE3-like.
Collapse
Affiliation(s)
- Subhrajyoti Dolai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Sudip Pal
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - S Deepa
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Hyderabad 500046, India
| |
Collapse
|
3
|
de Lima Pizzico F, Beatriz Máximo R, Hirata MH, Monteiro Ferreira G. Mapping the APOE structurally on missense variants in elderly Brazilians. J Biomol Struct Dyn 2024:1-9. [PMID: 38520131 DOI: 10.1080/07391102.2024.2328743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat, with familial hypercholesterolemia (FH) being a key genetic contributor. The apolipoprotein E (APOE) gene plays a vital role in lipid metabolism, and its variants are associated with CVD risk. This study explores prevalent APOE variants (p.R163C, p.R176C, p.R246C and p.V254E) using genetic and structural analyses. The research, initiated by identifying high-frequency APOE variants through the ABraOM database, utilizes homology modeling and molecular dynamics (MD) simulations to understand the structural consequences. The major lipid-binding region, a critical domain for lipid metabolism, was a focal point. Structural dynamics, including principal component analyses and domain movement analyses, highlighted distinct patterns in APOE variants compared to the wild type (WT). Results revealed significant differences in the structural behavior of variants, particularly in the Major lipid-binding region. The identification of an 'elbow' structure with two states (Elbow I and Elbow II) provided insights into conformational changes. Notably, variants exhibited unique patterns in hydrogen bonding (hb) and hydrophobic interactions, indicating potential functional consequences. The study further associated APOE variants with clinical outcomes, including cognitive impairment and cholesterol levels. Specific variants demonstrated correlations with cognitive decline and variations in lipid profiles, emphasizing their relevance to cardiovascular and neurobiological health. In conclusion, this integrated approach enhances our understanding of APOE variants, shedding light on their role in lipid metabolism and cardiovascular health. The identified structural 'elbows' and their association with clinical outcomes offer a nuanced perspective, guiding future research toward targeted interventions for diseases linked to lipid metabolism and neurobiology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Filipe de Lima Pizzico
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rebeca Beatriz Máximo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Jung M, Jung JS, Pfeifer J, Hartmann C, Ehrhardt T, Abid CL, Kintzel J, Puls A, Navarrete Santos A, Hollemann T, Riemann D, Rujescu D. Neuronal Stem Cells from Late-Onset Alzheimer Patients Show Altered Regulation of Sirtuin 1 Depending on Apolipoprotein E Indicating Disturbed Stem Cell Plasticity. Mol Neurobiol 2024; 61:1562-1579. [PMID: 37728850 PMCID: PMC10896791 DOI: 10.1007/s12035-023-03633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Late-onset Alzheimer's disease (AD) is a complex multifactorial disease. The greatest known risk factor for late-onset AD is the E4 allele of the apolipoprotein E (APOE), while increasing age is the greatest known non-genetic risk factor. The cell type-specific functions of neural stem cells (NSCs), in particular their stem cell plasticity, remain poorly explored in the context of AD pathology. Here, we describe a new model that employs late-onset AD patient-derived induced pluripotent stem cells (iPSCs) to generate NSCs and to examine the role played by APOE4 in the expression of aging markers such as sirtuin 1 (SIRT1) in comparison to healthy subjects carrying APOE3. The effect of aging was investigated by using iPSC-derived NSCs from old age subjects as healthy matched controls. Transcript and protein analysis revealed that genes were expressed differently in NSCs from late-onset AD patients, e.g., exhibiting reduced autophagy-related protein 7 (ATG7), phosphatase and tensin homolog (PTEN), and fibroblast growth factor 2 (FGF2). Since SIRT1 expression differed between APOE3 and APOE4 NSCs, the suppression of APOE function in NSCs also repressed the expression of SIRT1. However, the forced expression of APOE3 by plasmids did not recover differently expressed genes. The altered aging markers indicate decreased plasticity of NSCs. Our study provides a suitable in vitro model to investigate changes in human NSCs associated with aging, APOE4, and late-onset AD.
Collapse
Affiliation(s)
- Matthias Jung
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Juliane-Susanne Jung
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Jenny Pfeifer
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Carla Hartmann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Toni Ehrhardt
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jenny Kintzel
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Puls
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Dagmar Riemann
- Department Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 2, 06112, Halle (Saale), Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
5
|
Fahmy EM, Rabah AM, Hashem SE, Rashed LA, Deraz HA, Ismail RS. Serum Apo Lipoprotein E, Apo Lipoprotein E Gene Polymorphisms, and Parkinson's Disease. Neurol India 2024; 72:319-325. [PMID: 38691476 DOI: 10.4103/ni.ni_940_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/18/2023] [Indexed: 05/03/2024]
Abstract
BACKGROUND A central role for apolipoprotein E (APOE) has been suggested in modulating processes of neurodegeneration. OBJECTIVE To study the association between serum APOE levels, APOE gene polymorphisms, and Parkinson's disease (PD). MATERIAL AND METHODS Fifty-five patients with PD and 30 healthy subjects were enrolled. PD patients were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS), Modified Hoehn and Yahr scale, and Schwab-England Activities of Daily Living scale. Serum APOE level and genotyping for APOE polymorphisms were done for PD patients and controls using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. RESULTS Mean serum APOE level was significantly higher in PD patients compared with healthy controls. APOE ε2/4 genotype was present in a significantly higher proportion of patients compared with controls. APOE ε4 allele was significantly associated with a higher score on the "mentation, behavior, and mood section" of UPDRS compared with ε2 allele. APOE ε2 allele was significantly associated with a shorter disease duration compared with ε3 and ε4 alleles. Mean serum APOE level was significantly higher in patients presenting predominantly by rigidity and bradykinesia compared with those presenting predominantly by tremors. Serum APOE level was positively correlated with mean scores of "mentation, behavior, and mood section" of UPDRS and disease duration. Serum APOE level was a significant predictor for the scores of "mentation, behavior, and mood section" of UPDRS. CONCLUSION APOE ε2/4 genotype might be a susceptibility variant for PD. There may be a possible role for APOE in modulating the process of neurodegeneration in PD.
Collapse
Affiliation(s)
- Ebtesam M Fahmy
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amany M Rabah
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saher E Hashem
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba A Deraz
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania S Ismail
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
7
|
Allen P, Smith AC, Benedicto V, Abdulhasan A, Narayanaswami V, Tapavicza E. Molecular dynamics simulation of apolipoprotein E3 lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184230. [PMID: 37704040 PMCID: PMC11318356 DOI: 10.1016/j.bbamem.2023.184230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Nanodiscs are binary discoidal complexes of a phospholipid bilayer circumscribed by belt-like helical scaffold proteins. Using coarse-grained and all-atom molecular dynamics simulations, we explore the stability, size, and structure of nanodiscs formed between the N-terminal domain of apolipoprotein E3 (apoE3-NT) and variable number of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) molecules. We study both parallel and antiparallel double-belt configurations, consisting of four proteins per nanodisc. Our simulations predict nanodiscs containing between 240 and 420 DMPC molecules to be stable. The antiparallel configurations exhibit an average of 1.6 times more amino acid interactions between protein chains and 2 times more ionic contacts, compared to the parallel configuration. With one exception, DMPC order parameters are consistently larger in the antiparallel configuration than in the parallel one. In most cases, the root mean square deviation of the positions of the protein backbone atoms is smaller in the antiparallel configuration. We further report nanodisc size, thickness, radius of gyration, and solvent accessible surface area. Combining all investigated parameters, we hypothesize the antiparallel protein configuration leading to more stable and more rigid nanodiscs than the parallel one.
Collapse
Affiliation(s)
- Patrick Allen
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Adam C Smith
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Vernon Benedicto
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Abbas Abdulhasan
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA.
| |
Collapse
|
8
|
Vitali C, Pavanello C, Turri M, Lund-Katz S, Phillips MC, Catapano AL, Baragetti A, Norata GD, Veglia F, Calabresi L. Apolipoprotein E isoforms differentially affect LCAT-dependent cholesterol esterification. Atherosclerosis 2023; 382:117266. [PMID: 37725860 DOI: 10.1016/j.atherosclerosis.2023.117266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIMS LCAT esterifies cholesterol in both HDL (α-activity) and apoB-containing lipoproteins (β-activity). The main activator of LCAT β-activity is apoE, which in humans exists in 3 main different isoforms (E2, E3 and E4). Here, to gather insights into the potential role of LCAT in apoB-containing lipoprotein metabolism, we investigated the ability of apoE isoforms to promote LCAT-mediated cholesterol esterification. METHODS We evaluated the plasma cholesterol esterification rate (CER) in 311 individuals who express functional LCAT and either apoE2, apoE3, or apoE4 and in 28 individuals who also carried LCAT mutations causing selective loss of LCAT α-activity (Fish-Eye Disease (FED)-causing mutations). The association of carrier status with CER was determined using an adjusted linear regression model. The kinetic of LCAT activity towards reconstituted HDLs (rHDLs) containing each apoE isoform was determined using the Michaelis-Menten model. RESULTS Plasma CER was ∼20% higher in apoE2 carriers compared to apoE3 carriers, and ∼30% higher in apoE2 carriers compared to apoE4 carriers. After adjusting for age, sex, total cholesterol, HDL-C, apoA-I, apoB, chronic kidney disease diagnosis, zygosity, and LCAT concentration, CER remained significantly different among carriers of the three apoE isoforms. The same trend was observed in carriers of FED-causing mutations. rHDLs containing apoE2 were associated with a lower affinity but higher maximal esterification rate, compared to particles containing apoE3 or apoE4. CONCLUSION The present results suggest that the apoE2 isoform is associated with a higher LCAT-mediated cholesterol esterification. This observation may contribute to the characterization of the peculiar functional properties of apoE2.
Collapse
Affiliation(s)
- Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Marta Turri
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Sissel Lund-Katz
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Phillips
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Baragetti
- IRCCS Multimedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
9
|
Allen P, Smith AC, Benedicto V, Abdulhassan A, Narayanaswami V, Tapavicza E. Molecular Dynamics Simulation of Apolipoprotein E3 Lipid Nanodiscs. ARXIV 2023:arXiv:2308.10164v1. [PMID: 37645042 PMCID: PMC10462174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nanodiscs are binary discoidal complexes of a phospholipid bilayer circumscribed by belt-like helical scaffold proteins. Using coarse-grained and all-atom molecular dynamics simulations, we explore the stability, size, and structure of nanodiscs formed between the N-terminal domain of apolipoprotein E3 (apoE3-NT) and variable number of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) molecules. We study both parallel and antiparallel double-belt configurations, consisting of four proteins per nanodisc. Our simulations predict nanodiscs containing between 240 and 420 DMPC molecules to be stable. The antiparallel configurations exhibit an average of 1.6 times more amino acid interactions between protein chains and 2 times more ionic contacts, compared to the parallel configuration. With one exception, DMPC order parameters are consistently larger in the antiparallel configuration than in the parallel one. In most cases, the root mean square deviation of the positions of the protein backbone atoms is smaller in the antiparallel configuration. We further report nanodisc size, thickness, radius of gyration, and solvent accessible surface area. Combining all investigated parameters, we hypothesize the antiparallel protein configuration leading to more stable and more rigid nanodiscs than the parallel one.
Collapse
Affiliation(s)
- Patrick Allen
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Adam C. Smith
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Vernon Benedicto
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Abbas Abdulhassan
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| |
Collapse
|
10
|
Nemergut M, Marques SM, Uhrik L, Vanova T, Nezvedova M, Gadara DC, Jha D, Tulis J, Novakova V, Planas-Iglesias J, Kunka A, Legrand A, Hribkova H, Pospisilova V, Sedmik J, Raska J, Prokop Z, Damborsky J, Bohaciakova D, Spacil Z, Hernychova L, Bednar D, Marek M. Domino-like effect of C112R mutation on ApoE4 aggregation and its reduction by Alzheimer's Disease drug candidate. Mol Neurodegener 2023; 18:38. [PMID: 37280636 DOI: 10.1186/s13024-023-00620-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Apolipoprotein E (ApoE) ε4 genotype is the most prevalent risk factor for late-onset Alzheimer's Disease (AD). Although ApoE4 differs from its non-pathological ApoE3 isoform only by the C112R mutation, the molecular mechanism of its proteinopathy is unknown. METHODS Here, we reveal the molecular mechanism of ApoE4 aggregation using a combination of experimental and computational techniques, including X-ray crystallography, site-directed mutagenesis, hydrogen-deuterium mass spectrometry (HDX-MS), static light scattering and molecular dynamics simulations. Treatment of ApoE ε3/ε3 and ε4/ε4 cerebral organoids with tramiprosate was used to compare the effect of tramiprosate on ApoE4 aggregation at the cellular level. RESULTS We found that C112R substitution in ApoE4 induces long-distance (> 15 Å) conformational changes leading to the formation of a V-shaped dimeric unit that is geometrically different and more aggregation-prone than the ApoE3 structure. AD drug candidate tramiprosate and its metabolite 3-sulfopropanoic acid induce ApoE3-like conformational behavior in ApoE4 and reduce its aggregation propensity. Analysis of ApoE ε4/ε4 cerebral organoids treated with tramiprosate revealed its effect on cholesteryl esters, the storage products of excess cholesterol. CONCLUSIONS Our results connect the ApoE4 structure with its aggregation propensity, providing a new druggable target for neurodegeneration and ageing.
Collapse
Affiliation(s)
- Michal Nemergut
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Kosice, Trieda SNP 1, Kosice, 04011, Slovakia
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Tereza Vanova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | | | - Durga Jha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Tulis
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Novakova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Anthony Legrand
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Pospisilova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiri Sedmik
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Raska
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Dasa Bohaciakova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| |
Collapse
|
11
|
Li C, Hou I, Ma M, Wang G, Bai Y, Liu X. Orthogonal analysis of variants in APOE gene using in-silico approaches reveals novel disrupting variants. FRONTIERS IN BIOINFORMATICS 2023; 3:1122559. [PMID: 37091907 PMCID: PMC10117898 DOI: 10.3389/fbinf.2023.1122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: Alzheimer's disease (AD) is one of the most prominent medical conditions in the world. Understanding the genetic component of the disease can greatly advance our knowledge regarding its progression, treatment and prognosis. Single amino-acid variants (SAVs) in the APOE gene have been widely investigated as a risk factor for AD Studies, including genome-wide association studies, meta-analysis based studies, and in-vivo animal studies, were carried out to investigate the functional importance and pathogenesis potential of APOE SAVs. However, given the high cost of such large-scale or experimental studies, there are only a handful of variants being reported that have definite explanations. The recent development of in-silico analytical approaches, especially large-scale deep learning models, has opened new opportunities for us to probe the structural and functional importance of APOE variants extensively. Method: In this study, we are taking an ensemble approach that simultaneously uses large-scale protein sequence-based models, including Evolutionary Scale Model and AlphaFold, together with a few in-silico functional prediction web services to investigate the known and possibly disease-causing SAVs in APOE and evaluate their likelihood of being functional and structurally disruptive. Results: As a result, using an ensemble approach with little to no prior field-specific knowledge, we reported 5 SAVs in APOE gene to be potentially disruptive, one of which (C112R) was classificed by previous studies as a key risk factor for AD. Discussion: Our study provided a novel framework to analyze and prioritize the functional and structural importance of SAVs for future experimental and functional validation.
Collapse
Affiliation(s)
- Chang Li
- USF Genomics and College of Public Health, University of South Florida, Tampa, FL, United States
| | - Ian Hou
- The John Cooper School, The Woodlands, TX, United States
| | - Mingjia Ma
- Novi High School, Novi, MI, United States
| | - Grace Wang
- Del Norte High School, San Diego, CA, United States
| | - Yongsheng Bai
- Next-Gen Intelligent Science Training, Ann Arbor, MI, United States
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States
| | - Xiaoming Liu
- USF Genomics and College of Public Health, University of South Florida, Tampa, FL, United States
| |
Collapse
|
12
|
Abondio P, Bruno F, Luiselli D. Apolipoprotein E (APOE) Haplotypes in Healthy Subjects from Worldwide Macroareas: A Population Genetics Perspective for Cardiovascular Disease, Neurodegeneration, and Dementia. Curr Issues Mol Biol 2023; 45:2817-2831. [PMID: 37185708 PMCID: PMC10137191 DOI: 10.3390/cimb45040184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Human APOE is a 299-amino acid long protein expressed and secreted in several tissues and body districts, where it exerts different functions mainly related to lipid metabolism, with specific activities around cholesterol transport and absorption/elimination. It has three main isoforms, determined by the pair of mutations rs7412-C/T and rs429358-C/T, which gives rise to the functionally different APOE variants ε2, ε3, and ε4. These have a distinct impact on lipid metabolism and are differentially implicated in Alzheimer’s disease and neurodegeneration, cardiovascular disease, and dyslipidemia. A plethora of other single nucleotide variants along the sequence of the APOE gene have been studied in cohorts of affected individuals, where they also modulate the influence of the three main isoforms to determine the risk of developing the disease. However, no contextual analysis of gene-long haplotypes has been carried out so far, and never extensively in cohorts of healthy individuals from different worldwide populations. Leveraging a rich population genomics dataset, this study elucidates the distribution of APOE variants and haplotypes that are shared across populations and to specific macroareas, revealing a variety of risk-allele associations that distinguish specific ancestral backgrounds and can be leveraged for specific ancestry-informed screenings in medicine and public health.
Collapse
|
13
|
Stankov S, Vitali C, Park J, Nguyen D, Mayne L, Englander SW, Levin MG, Vujkovic M, Hand NJ, Phillips MC, Rader DJ. Comparison of the structure-function properties of wild-type human apoA-V and a C-terminal truncation associated with elevated plasma triglycerides. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.21.23286268. [PMID: 36865344 PMCID: PMC9980232 DOI: 10.1101/2023.02.21.23286268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Plasma triglycerides (TGs) are causally associated with coronary artery disease and acute pancreatitis. Apolipoprotein A-V (apoA-V, gene APOA5) is a liver-secreted protein that is carried on triglyceride-rich lipoproteins and promotes the enzymatic activity of lipoprotein lipase (LPL), thereby reducing TG levels. Little is known about apoA-V structure-function; naturally occurring human APOA5 variants can provide novel insights. Methods We used hydrogen-deuterium exchange mass spectrometry to determine the secondary structure of human apoA-V in lipid-free and lipid-associated conditions and identified a C-terminal hydrophobic face. Then, we used genomic data in the Penn Medicine Biobank to identify a rare variant, Q252X, predicted to specifically eliminate this region. We interrogated the function of apoA-V Q252X using recombinant protein in vitro and in vivo in apoa5 knockout mice. Results Human apoA-V Q252X carriers exhibited elevated plasma TG levels consistent with loss of function. Apoa5 knockout mice injected with AAV vectors expressing wildtype and variant APOA5-AAV recapitulated this phenotype. Part of the loss of function is due to reduced mRNA expression. Functionally, recombinant apoA-V Q252X was more readily soluble in aqueous solutions and more exchangeable with lipoproteins than WT apoA-V. Despite lacking the C-terminal hydrophobic region (a putative lipid binding domain) this protein also decreased plasma TG in vivo. Conclusions Deletion of apoA-V's C-terminus leads to reduced apoA-V bioavailability in vivo and higher TG levels. However, the C-terminus is not required for lipoprotein binding or enhancement of intravascular lipolytic activity. WT apoA-V is highly prone to aggregation, and this property is markedly reduced in recombinant apoA-V lacking the C-terminus.
Collapse
Affiliation(s)
- Sylvia Stankov
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Park
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Nguyen
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leland Mayne
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S. Walter Englander
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael G. Levin
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Marijana Vujkovic
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Nicholas J. Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C. Phillips
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 2022; 13:20406223221081605. [PMID: 35321401 PMCID: PMC8935560 DOI: 10.1177/20406223221081605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein E (ApoE) is a 299-amino acid secreted glycoprotein that binds cholesterol and phospholipids. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4) and heterozygous carriers of the ε4 allele of the gene encoding ApoE (APOE) have a fourfold greater risk of developing Alzheimer’s disease (AD). The enzymes thrombin, cathepsin D, α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 are responsible for ApoE proteolytic processing resulting in bioactive C-terminal-truncated fragments that vary depending on ApoE isoforms, brain region, aging, and neural injury. The objectives of the present narrative review were to describe ApoE processing, discussing current hypotheses about the potential role of various ApoE fragments in AD pathophysiology, and reviewing the current development status of different anti-ApoE drugs. The exact mechanism by which APOE gene variants increase/decrease AD risk and the role of ApoE fragments in the deposition are not fully understood, but APOE is known to directly affect tau-mediated neurodegeneration. ApoE fragments co-localize with neurofibrillary tangles and amyloid β (Aβ) plaques, and may cause neurodegeneration. Among anti-ApoE approaches, a fascinating strategy may be to therapeutically overexpress ApoE2 in APOE ε4/ε4 carriers through vector administration or liposomal delivery systems. Another approach involves reducing ApoE4 expression by intracerebroventricular antisense oligonucleotides that significantly decreased Aβ pathology in transgenic mice. Differences in the proteolytic processing of distinct ApoE isoforms and the use of ApoE fragments as mimetic peptides in AD treatment are also under investigation. Treatment with peptides that mimic the structural and biological properties of native ApoE may reduce Aβ deposition, tau hyperphosphorylation, and glial activation in mouse models of Aβ pathology. Alternative strategies involve the use of ApoE4 structure correctors, passive immunization to target a certain form of ApoE, conversion of the ApoE4 aminoacid sequence into that of ApoE3 or ApoE2, and inhibition of the ApoE-Aβ interaction.
Collapse
Affiliation(s)
- Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Resta
- Translational Medicine and Management of Health Systems, University of Foggia, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Solfrizzi
- ‘Cesare Frugoni’ Internal and Geriatric Medicine and Memory Unit, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Antonio Greco
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy; Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Francesco Panza
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Population Health Unit, Healthy Aging Phenotypes Research Unit, ‘Salus in Apulia Study’, National Institute of Gastroenterology ‘Saverio de Bellis’, Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Hematology and Stem Cell Transplant Unit, ‘Vito Fazzi’ Hospital, Lecce, Italy
| |
Collapse
|
15
|
Basavaraju P, Balasubramani R, Kathiresan DS, Devaraj I, Babu K, Alagarsamy V, Puthamohan VM. Genetic Regulatory Networks of Apolipoproteins and Associated Medical Risks. Front Cardiovasc Med 2022; 8:788852. [PMID: 35071357 PMCID: PMC8770923 DOI: 10.3389/fcvm.2021.788852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Apolipoproteins (APO proteins) are the lipoprotein family proteins that play key roles in transporting lipoproteins all over the body. There are nearly more than twenty members reported in the APO protein family, among which the A, B, C, E, and L play major roles in contributing genetic risks to several disorders. Among these genetic risks, the single nucleotide polymorphisms (SNPs), involving the variation of single nucleotide base pairs, and their contributing polymorphisms play crucial roles in the apolipoprotein family and its concordant disease heterogeneity that have predominantly recurred through the years. In this review, we have contributed a handful of information on such genetic polymorphisms that include APOE, ApoA1/B ratio, and A1/C3/A4/A5 gene cluster-based population genetic studies carried throughout the world, to elaborately discuss the effects of various genetic polymorphisms in imparting various medical conditions, such as obesity, cardiovascular, stroke, Alzheimer's disease, diabetes, vascular complications, and other associated risks.
Collapse
Affiliation(s)
- Preethi Basavaraju
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Rubadevi Balasubramani
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Divya Sri Kathiresan
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Ilakkiyapavai Devaraj
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Kavipriya Babu
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vasanthakumar Alagarsamy
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
- *Correspondence: Vinayaga Moorthi Puthamohan
| |
Collapse
|
16
|
Amponsah AE, Feng B, Guo R, Zhang W, He J, Kong D, Dong T, Ma J, Cui H. Fragmentation of brain apolipoprotein E (ApoE) and its relevance in Alzheimer's disease. Rev Neurosci 2021; 31:589-603. [PMID: 32364519 DOI: 10.1515/revneuro-2019-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a very common cause of dementia in the elderly. It is characterized by progressive amnesia and accretions of neurofibrillary tangles (NFTs) of neurons and senile plaques in the neuropil. After aging, the inheritance of the apolipoprotein E (ApoE) epsilon 4 (ε4) allele is the greatest risk factor for late-onset AD. The ApoE protein is the translated product of the ApoE gene. This protein undergoes proteolysis, and the resulting fragments colocalize with neurofibrillary tangles and amyloid plaques, and for that matter may be involved in AD onset and/or progression. Previous studies have reported the pathogenic potential of various ApoE fragments in AD pathophysiology. However, the pathways activated by the fragments are not fully understood. In this review, ApoE fragments obtained from post-mortem brains and body fluids, cerebrospinal fluid (CSF) and plasma, are discussed. Additionally, current knowledge about the process of fragmentation is summarized. Finally, the mechanisms by which these fragments are involved in AD pathogenesis and pathophysiology are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Tianyu Dong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| |
Collapse
|
17
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The functions, genetic variations and impact of apolipoprotein E on lipoprotein metabolism in general are placed in the context of clinical practice dealing with moderate dyslipidaemia as well as dysbetalipoproteinemia, a highly atherogenic disorder and lipoprotein glomerulopathy. RECENT FINDINGS Additional variants of apolipoprotein E and participation of apolipoprotein E in inflammation are of interest. The mostly favourable effects of apolipoprotein E2 as well as the atherogenic nature of apolipoproteinE4, which has an association with cognitive impairment, are confirmed. The contribution of remnant lipoproteins of triglyceride-rich lipoproteins, of which dysbetalipoproteinemia represents an extreme, is explored in atherosclerosis. Mimetic peptides may present new therapeutic approaches. Apolipoprotein E is an important determinant of the lipid profile and cardiovascular health in the population at large and can precipitate dysbetalipoproteinemia and glomerulopathy. Awareness of apolipoprotein E polymorphisms should improve medical care.
Collapse
|
19
|
Waldie S, Sebastiani F, Moulin M, Del Giudice R, Paracini N, Roosen-Runge F, Gerelli Y, Prevost S, Voss JC, Darwish TA, Yepuri N, Pichler H, Maric S, Forsyth VT, Haertlein M, Cárdenas M. ApoE and ApoE Nascent-Like HDL Particles at Model Cellular Membranes: Effect of Protein Isoform and Membrane Composition. Front Chem 2021; 9:630152. [PMID: 33996741 PMCID: PMC8117676 DOI: 10.3389/fchem.2021.630152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Apolipoprotein E (ApoE), an important mediator of lipid transportation in plasma and the nervous system, plays a large role in diseases such as atherosclerosis and Alzheimer's. The major allele variants ApoE3 and ApoE4 differ only by one amino acid. However, this difference has major consequences for the physiological behaviour of each variant. In this paper, we follow (i) the initial interaction of lipid-free ApoE variants with model membranes as a function of lipid saturation, (ii) the formation of reconstituted High-Density Lipoprotein-like particles (rHDL) and their structural characterisation, and (iii) the rHDL ability to exchange lipids with model membranes made of saturated lipids in the presence and absence of cholesterol [1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) with and without 20 mol% cholesterol]. Our neutron reflection results demonstrate that the protein variants interact differently with the model membranes, adopting different protein conformations. Moreover, the ApoE3 structure at the model membrane is sensitive to the level of lipid unsaturation. Small-angle neutron scattering shows that the ApoE containing lipid particles form elliptical disc-like structures, similar in shape but larger than nascent or discoidal HDL based on Apolipoprotein A1 (ApoA1). Neutron reflection shows that ApoE-rHDL do not remove cholesterol but rather exchange saturated lipids, as occurs in the brain. In contrast, ApoA1-containing particles remove and exchange lipids to a greater extent as occurs elsewhere in the body.
Collapse
Affiliation(s)
- Sarah Waldie
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden.,Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Martine Moulin
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Rita Del Giudice
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Nicolò Paracini
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble, France.,Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - John C Voss
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Nageshwar Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz, Austria
| | | | - V Trevor Forsyth
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France.,Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Michael Haertlein
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
20
|
Chen H, Chen F, Zhang M, Chen Y, Cui L, Liang C. A Review of APOE Genotype-Dependent Autophagic Flux Regulation in Alzheimer's Disease. J Alzheimers Dis 2021; 84:535-555. [PMID: 34569952 DOI: 10.3233/jad-210602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a basic physiological process maintaining cell renewal, the degradation of dysfunctional organelles, and the clearance of abnormal proteins and has recently been identified as a main mechanism underlying the onset and progression of Alzheimer's disease (AD). The APOE ɛ4 genotype is the strongest genetic determinant of AD pathogenesis and initiates autophagic flux at different times. This review synthesizes the current knowledge about the potential pathogenic effects of ApoE4 on autophagy and describes its associations with the biological hallmarks of autophagy and AD from a novel perspective. Via a remarkable variety of widely accepted signaling pathway markers, such as mTOR, TFEB, SIRT1, LC3, p62, LAMP1, LAMP2, CTSD, Rabs, and V-ATPase, ApoE isoforms differentially modulate autophagy initiation; membrane expansion, recruitment, and enclosure; autophagosome and lysosome fusion; and lysosomal degradation. Although the precise pathogenic mechanism varies for different genes and proteins, the dysregulation of autophagic flux is a key mechanism on which multiple pathogenic processes converge.
Collapse
Affiliation(s)
- Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
21
|
Leszek J, Mikhaylenko EV, Belousov DM, Koutsouraki E, Szczechowiak K, Kobusiak-Prokopowicz M, Mysiak A, Diniz BS, Somasundaram SG, Kirkland CE, Aliev G. The Links between Cardiovascular Diseases and Alzheimer's Disease. Curr Neuropharmacol 2021; 19:152-169. [PMID: 32727331 PMCID: PMC8033981 DOI: 10.2174/1570159x18666200729093724] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The root cause of non-inherited Alzheimer's disease (AD) remains unknown despite hundreds of research studies performed to attempt to solve this problem. Since proper prophylaxis remains the best strategy, many scientists have studied the risk factors that may affect AD development. There is robust evidence supporting the hypothesis that cardiovascular diseases (CVD) may contribute to AD progression, as the diseases often coexist. Therefore, a lack of well-defined diagnostic criteria makes studying the relationship between AD and CVD complicated. Additionally, inflammation accompanies the pathogenesis of AD and CVD, and is not only a consequence but also implicated as a significant contributor to the course of the diseases. Of note, АроЕε4 is found to be one of the major risk factors affecting both the cardiovascular and nervous systems. According to genome wide association and epidemiological studies, numerous common risk factors have been associated with the development of AD-related pathology. Furthermore, the risk of developing AD and CVDs appears to be increased by a wide range of conditions and lifestyle factors: hypertension, dyslipidemia, hypercholesterolemia, hyperhomocysteinemia, gut/oral microbiota, physical activity, and diet. This review summarizes the literature and provides possible mechanistic links between CVDs and AD.
Collapse
Affiliation(s)
- Jerzy Leszek
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| |
Collapse
|
22
|
Larsen AH, Johansen NT, Gajhede M, Arleth L, Midtgaard SR. Lipid-bound ApoE3 self-assemble into elliptical disc-shaped particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183495. [PMID: 33189719 DOI: 10.1016/j.bbamem.2020.183495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
Apolipoproteins are vital to lipid metabolism and cholesterol transport in the human body. Here we present a structural study of the lipid-bound particles formed by ApoE3 in a full-length and a truncated version. The particles are formed with, respectively, POPC and DMPC and investigated by small-angle X-ray scattering and negative stain electron microscopy. We find that lipid-bound ApoE3 particles are elliptical, disc-shaped particles composed of a central lipid bilayer encircled by two amphipathic ApoE3 proteins. We went on to investigate a truncated form of ApoE3 containing only residue 80 to 255 (ApoE380-255), which is the central helical repeat segment of ApoE3. The lipid-bound ApoE380-255 particles are found to have the same morphology as the particles with full-length ApoE3. However, they are larger, and form more heterogeneous discoidal structures with four proteins per particle. This behavior is in contrast to ApoA1 where the highly similar helical repeat domain determines the size and stoichiometry of the formed particles both in the case of full-length and truncated ApoA1. Our data hence points towards different mechanisms for lipid bilayer structural modulation by ApoA1 and ApoE3 due to different roles of the non-repeat segments.
Collapse
Affiliation(s)
- Andreas Haahr Larsen
- University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark; University of Oxford, Department of Biochemistry, Oxford, United Kingdom.
| | | | - Michael Gajhede
- University of Copenhagen, Department of Drug Design and Pharmacology, Copenhagen, Denmark
| | - Lise Arleth
- University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark.
| | - Søren Roi Midtgaard
- University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark; Boston University School of Medicine, Department of Physiology and Biophysics, Boston, USA
| |
Collapse
|
23
|
Apolipoprotein E4 exhibits intermediates with domain interaction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140535. [PMID: 32882410 DOI: 10.1016/j.bbapap.2020.140535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
ApoE4(C112R) is the strongest risk factor for Alzheimer's disease, while apoE3(C112) is considered normal. The C112R substitution is believed to alter the interactions between the N-terminal (NTD) and the C-terminal domain (CTD) leading to major functional differences. Here we investigate how the molecular property of the residue at position 112 affects domain interaction using an array of C112X substitutions with arginine, alanine, threonine, valine, leucine and isoleucine as 'X'. We attempt to determine the free energy of domain interaction (∆GINT) from stabilities of the NTD (∆GNTD) and CTD (∆GCTD) in the full-length apoE, and the stabilities of fragments of the NTD (∆GNTF) and CTD (∆GCTF), using the relationship, ∆GINT = ∆GNTD + ∆GCTD - ∆GNTF - ∆GCTF. We find that although ∆GNTD is strongly dependent on the C112X substitutions, ∆GNTD - ∆GNTF is small. Furthermore, ∆GCTD remains nearly the same as ∆GCTF. Therefore, ∆GINT is estimated to be small and similar for the apoE isoforms. However, stability of domain interaction monitored by urea dependent changes in interdomain Forster Resonance Energy Transfer (FRET) is found to be strongly dependent on C112X substitutions. ApoE4 exhibits the highest mid-point of denaturation of interdomain FRET. To resolve the apparently contradictory observations, we hypothesize that higher interdomain FRET in apoE4 in urea may involve 'intermediate' states. Enhanced fluorescence of bis-ANS and susceptibility to proteolytic cleavage support that apoE4, specifically, the NTD of apoE4 harbor 'intermediates' in both native and mildly denaturing conditions. The intermediates could hold key to the pathological functions of apoE4.
Collapse
|
24
|
Park SJ. Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int J Nanomedicine 2020; 15:5783-5802. [PMID: 32821101 PMCID: PMC7418457 DOI: 10.2147/ijn.s254808] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon21936, Korea
| |
Collapse
|
25
|
Huang L, So PK, Chen YW, Leung YC, Yao ZP. Conformational Dynamics of the Helix 10 Region as an Allosteric Site in Class A β-Lactamase Inhibitory Binding. J Am Chem Soc 2020; 142:13756-13767. [PMID: 32686406 DOI: 10.1021/jacs.0c04088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-Lactamase inhibitory protein (BLIP) can effectively inactivate class A β-lactamases, but with very different degrees of potency. Understanding the different roles of BLIP in class A β-lactamases inhibition can provide insights for inhibitor design. However, this problem was poorly solved on the basis of the static structures obtained by X-ray crystallography. In this work, ion mobility mass spectrometry, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation revealed the conformational dynamics of three class A β-lactamases with varying inhibition efficiencies by BLIP. A more extended conformation of PC1 was shown compared to those of TEM1 and SHV1. Localized dynamics differed in several important loop regions, that is, the protruding loop, H10 loop, Ω loop, and SDN loop. Upon binding with BLIP, these loops cooperatively rearranged to enhance the binding interface and to inactivate the catalytic sites. In particular, unfavorable changes in conformational dynamics were found in the protruding loop of SHV1 and PC1, showing less effective binding. Intriguingly, the single mutation on BLIP could compensate for the unfavored changes in this region, and thus exhibit enhanced inhibition toward SHV1 and PC1. Additionally, the H10 region was revealed as an important allosteric site that could modulate the inhibition of class A β-lactamases. It was suggested that the rigid protruding loop and flexible H10 region might be determinants for the effective inhibition of TEM1. Our findings provided unique and explicit insights into the conformational dynamics of β-lactamases and their bindings with BLIP. This work can be extended to other β-lactamases of interest and inspire the design of novel inhibitors.
Collapse
Affiliation(s)
- Liwen Huang
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Food Safety and Technology Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Pui-Kin So
- The University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Food Safety and Technology Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
| |
Collapse
|
26
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
27
|
APOE in the normal brain. Neurobiol Dis 2020; 136:104724. [PMID: 31911114 DOI: 10.1016/j.nbd.2019.104724] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
The APOE4 protein affects the primary neuropathological markers of Alzheimer's disease (AD): amyloid plaques, neurofibrillary tangles, and gliosis. These interactions have been investigated to understand the strong effect of APOE genotype on risk of AD. However, APOE genotype has strong effects on processes in normal brains, in the absence of the hallmarks of AD. We propose that CNS APOE is involved in processes in the normal brains that in later years apply specifically to processes of AD pathogenesis. We review the differences of the APOE protein found in the CNS compared to the plasma, including post-translational modifications (glycosylation, lipidation, multimer formation), focusing on ways that the common APOE isoforms differ from each other. We also review structural and functional studies of young human brains and control APOE knock-in mouse brains. These approaches demonstrate the effects of APOE genotype on microscopic neuron structure, gross brain structure, and behavior, primarily related to the hippocampal areas. By focusing on the effects of APOE genotype on normal brain function, approaches can be pursued to identify biomarkers of APOE dysfunction, to promote normal functions of the APOE4 isoform, and to prevent the accumulation of the pathologic hallmarks of AD with aging.
Collapse
|
28
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
29
|
Katsarou M, Stratikos E, Chroni A. Thermodynamic destabilization and aggregation propensity as the mechanism behind the association of apoE3 mutants and lipoprotein glomerulopathy. J Lipid Res 2018; 59:2339-2348. [PMID: 30309894 PMCID: PMC6277168 DOI: 10.1194/jlr.m088732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Lipoprotein glomerulopathy (LPG) is a rare renal disease, characterized by lipoprotein thrombi in glomerular capillaries. A series of apoE mutations have been associated with LPG development. We previously showed that three mutants based on apoE3 sequence, in which an arginine was substituted by proline, are thermodynamically destabilized and aggregation-prone. To examine whether other LPG-associated apoE3 mutations induce similar effects, we characterized three nonproline LPG-associated apoE3 mutations, namely, R25C (apoEKyoto), R114C (apoETsukuba), and A152D (apoELasVegas). All three apoE3 variants are found to have significantly reduced helical content and to be thermodynamically destabilized, both in lipid-free and lipoprotein-associated form, and to expose a larger portion of hydrophobic surface to the solvent compared with WT apoE3. Furthermore, all three apoE3 variants are aggregation-prone, as shown by dynamic light-scattering measurements and by their enhanced capacity to bind the amyloid probe thioflavin T. Overall, our data suggest that the LPG-associated apoE3 mutations R25C, R114C, and A152D induce protein misfolding, which may contribute to protein aggregation in glomerular capillaries. The similar effects of both LPG-associated proline and nonproline mutations on apoE3 structure suggest that the thermodynamic destabilization and enhanced aggregation of apoE3 may constitute a common underlying mechanism behind the pathogenesis of LPG.
Collapse
Affiliation(s)
- Maria Katsarou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Agia Paraskevi, Athens 15341, Greece
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRaSTES), National Centre for Scientific Research "Demokritos," Agia Paraskevi, Athens 15341, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Agia Paraskevi, Athens 15341, Greece
| |
Collapse
|
30
|
Dafnis I, Argyri L, Chroni A. Amyloid-peptide β 42 Enhances the Oligomerization and Neurotoxicity of apoE4: The C-terminal Residues Leu279, Lys282 and Gln284 Modulate the Structural and Functional Properties of apoE4. Neuroscience 2018; 394:144-155. [PMID: 30367942 DOI: 10.1016/j.neuroscience.2018.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E4 (apoE4), one of the three apoE isoforms, is the strongest factor for raising the risk for late-onset Alzheimer's disease (AD) and has been proposed to play a major role in AD pathogenesis. Amyloid-peptide β 42 (Aβ42) has also been proposed to affect neuronal degeneration and AD pathogenesis, possibly by interacting with apoE. Previous studies have shown that the functions of apoE forms can be dictated by their structural and biophysical properties. Here we show that apoE4 can form SDS-stable oligomers, possibly reflecting aggregated forms, which increase following incubation of apoE4 with Aβ42. In addition, extracellular apoE4 is cytotoxic for human neuroblastoma SK-N-SH cells, while Aβ42 enhances the cytotoxicity of apoE4. Carboxyl-terminal point mutations L279Q, K282A or Q284A reduced the capacity of apoE4 to form SDS-stable oligomers, as well as its cytotoxicity, both in the absence and presence of Aβ42. Structural and thermodynamic analyses showed that all three apoE4 mutants have significantly increased α-helical and decreased β-sheet content, have reduced portion of hydrophobic surfaces exposed to the solvent and have a reduced conformational stability during chemical denaturation. Overall, our data highlight a pathogenic role of apoE4 that could be linked to the capacity of the protein to form oligomeric species especially in the presence of Aβ42 and to induce cytotoxicity. Carboxyl-terminal residues L279, K282 or Q284 appear to be involved in the conformation of apoE4 that may underlie the protein's functional properties related to neurotoxicity.
Collapse
Affiliation(s)
- Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15341, Greece
| | - Letta Argyri
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15341, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15341, Greece.
| |
Collapse
|
31
|
Nelson TJ, Sen A. Apolipoprotein E particle size is increased in Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 11:10-18. [PMID: 30581971 PMCID: PMC6293020 DOI: 10.1016/j.dadm.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction Apolipoprotein E4 (apoE4) is the predominant risk factor for late-onset Alzheimer's disease (AD), but the question of which structural differences might explain its effect remains unclear. Methods We compared high-density lipoprotein–like apoE particles from 12 AD and 10 control patients using size-exclusion chromatography. Results ApoE particles from patients genotyped as ε4/ε4 were 2.2 ± 0.3 times as massive as particles from ε3/ε3 control subjects and 1.4 ± 0.1 times as massive as particles from ε3/ε3 AD patients. The increased particle size was not because of incorporation of amyloid β or apoE proteolysis products. Particles from AD patients genotyped as ε3/ε3 were 1.59 ± 0.27 times as massive as ε3/ε3 control subjects. Discussion Increased particle size in AD is affected by APOE genotype and by disease-related differences in assembly or stability. These differences suggest that lipoprotein assembly or stability in AD brain plays an important role in determining apoE4 pathogenicity.
Collapse
Affiliation(s)
- Thomas J. Nelson
- Center for Neurodegenerative Diseases, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Corresponding author. Tel.: +1-301-529-3859.
| | - Abhik Sen
- George & Anne Ryan Institute For Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
32
|
Morgado I, Panahi A, Burwash AG, Das M, Straub JE, Gursky O. Molecular Insights into Human Hereditary Apolipoprotein A-I Amyloidosis Caused by the Glu34Lys Mutation. Biochemistry 2018; 57:5738-5747. [PMID: 30184436 PMCID: PMC11259198 DOI: 10.1021/acs.biochem.8b00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary apolipoprotein A-I (apoA-I) amyloidosis is a life-threatening incurable genetic disorder whose molecular underpinnings are unclear. In this disease, variant apoA-I, the major structural and functional protein of high-density lipoprotein, is released in a free form, undergoes an α-helix to intermolecular cross-β-sheet conversion along with a proteolytic cleavage, and is deposited as amyloid fibrils in various organs, which can cause organ damage and death. Glu34Lys is the only known charge inversion mutation in apoA-I that causes human amyloidosis. To elucidate the structural underpinnings of the amyloidogenic behavior of Glu34Lys apoA-I, we generated its recombinant globular N-terminal domain (residues 1-184) and compared the conformation and dynamics of its lipid-free form with those of two other naturally occurring apoA-I variants, Phe71Tyr (amyloidogenic) and Leu159Arg (non-amyloidogenic). All variants showed reduced structural stability and altered aromatic residue packing. The greatest decrease in stability was observed in the non-amyloidogenic variant, suggesting that amyloid formation is driven by local structural perturbations at sensitive sites. Molecular dynamics simulations revealed local helical unfolding and suggested that transient opening of the Trp72 side chain induced mutation-dependent structural perturbations in a sensitive region, including the major amyloid hot spot residues Leu14-Leu22. We posit that a shift from the "closed" to the "open" orientation of the Trp72 side chain modulates structural protection of amyloid hot spots, suggesting a previously unknown early step in the protein misfolding pathway.
Collapse
Affiliation(s)
- Isabel Morgado
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - Afra Panahi
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Andrew G. Burwash
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Madhurima Das
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
- Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
33
|
Ordered opening of LDL receptor binding domain of human apolipoprotein E3 revealed by hydrogen/deuterium exchange mass spectrometry and fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1165-1173. [PMID: 30282614 DOI: 10.1016/j.bbapap.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/31/2018] [Accepted: 08/18/2018] [Indexed: 01/18/2023]
Abstract
Apolipoprotein E3 (apoE3) is an exchangeable apolipoprotein that plays a critical role in cholesterol homeostasis. The N-terminal (NT) domain of apoE3 (residues 1-191) is folded into a helix bundle comprised of 4 amphipathic α-helices: H1, H2, H3 and H4, flanked by flexible helices N1 and N2, and Hinge Helix 1 (Hinge H1), at the N-and C-terminal sides of the helix bundle, respectively. The NT domain plays a critical role in binding to the low density lipoprotein receptor (LDLR), which eventually leads to lowering of plasma cholesterol levels. In order to be recognized by the LDLR, the helix bundle has to open and undergo a conformational change. The objective of the study was to understand the mechanism of opening of the helix bundle. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) revealed that apoE3 NT domain adopts several disordered and unfolded regions, with H2 exhibiting relatively little protection against exchange-in compared to H1, H3, and H4. Site-directed fluorescence labeling indicated that H2 not only has the highest degree of solvent exposure but also the most flexibility in the helix bundle. It also indicated that the lipoprotein behavior of H1 was significnatly different from that of H2, H3 and H4. These results suggest that the opening of the helix bundle is likely initiated at the flexible end of H2 and the loop linking H2/H3, and involves movement of H2/H3 away from H1/H4. Together, these observations offer mechanistic insight suggesting a regulated helix bundle opening of apoE3 NT domain can be triggered by lipid binding.
Collapse
|
34
|
Jefcoate CR, Lee J. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. J Mol Endocrinol 2018; 60:R213-R235. [PMID: 29691317 PMCID: PMC6324173 DOI: 10.1530/jme-17-0281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022]
Abstract
Cholesterol is an important regulator of cell signaling, both through direct impacts on cell membranes and through oxy-metabolites that activate specific receptors (steroids, hydroxy-cholesterols, bile acids). Cholesterol moves slowly through and between cell membranes with the assistance of specific binding proteins and transfer processes. The prototype cholesterol regulator is the Steroidogenesis Acute Regulatory (STAR), which moves cholesterol into mitochondria, where steroid synthesis is initiated by cytochrome P450 11A1 in multiple endocrine cell types. CYP27A1 generates hydroxyl cholesterol metabolites that activate LXR nuclear receptors to control cholesterol homeostatic and transport mechanisms. LXR regulation of cholesterol transport and storage as cholesterol ester droplets is shared by both steroid-producing cells and macrophage. This cholesterol signaling is crucial to brain neuron regulation by astrocytes and microglial macrophage, mediated by ApoE and sensitive to disruption by β-amyloid plaques. sm-FISH delivers appreciable insights into signaling in single cells, by resolving single RNA molecules as mRNA and by quantifying pre-mRNA at gene loci. sm-FISH has been applied to problems in physiology, embryo development and cancer biology, where single cell features have critical impacts. sm-FISH identifies novel features of STAR transcription in adrenal and testis cells, including asymmetric expression at individual gene loci, delayed splicing and 1:1 association of mRNA with mitochondria. This may represent a functional unit for the translation-dependent cholesterol transfer directed by STAR, which integrates into mitochondrial fusion dynamics. Similar cholesterol dynamics repeat with different players in the cycling of cholesterol between astrocytes and neurons in the brain, which may be abnormal in neurodegenerative diseases.
Collapse
Affiliation(s)
- Colin R Jefcoate
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Ray A, Ahalawat N, Mondal J. Atomistic Insights into Structural Differences between E3 and E4 Isoforms of Apolipoprotein E. Biophys J 2018; 113:2682-2694. [PMID: 29262361 DOI: 10.1016/j.bpj.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
Among various isoforms of Apolipoprotein E (ApoE), the E4 isoform (ApoE4) is considered to be the strongest risk factor for Alzheimer's disease, whereas the E3 isoform (ApoE3) is neutral to the disease. Interestingly, the sequence of ApoE4 differs from its wild-type ApoE3 by a single amino acid C112R in the 299-amino-acid-long sequence. Hence, the puzzle remains: how a single-amino-acid difference between the ApoE3 and ApoE4 sequences can give rise to structural dissimilarities between the two isoforms, which can potentially lead to functional differences with significant pathological consequences. The major obstacle in addressing this question has been the lack of a 3D atomistic structure of ApoE4 to date. In this work, we resolve the issue by computationally modeling a plausible atomistic 3D structure of ApoE4. Our microsecond-long atomistic simulations elucidate key structural differences between monomeric ApoE3 and ApoE4, which renders ApoE4 thermodynamically less stable, less structured, and topologically less rigid compared to ApoE3. Consistent with an experimental report of the molten globule state of ApoE4, simulations identify multiple partially folded intermediates for ApoE4, which are implicated in the stronger aggregation propensity of ApoE4.
Collapse
Affiliation(s)
- Angana Ray
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Navjeet Ahalawat
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India.
| |
Collapse
|
36
|
Williams B, Convertino M, Das J, Dokholyan NV. Molecular Mechanisms of the R61T Mutation in Apolipoprotein E4: A Dynamic Rescue. Biophys J 2017; 113:2192-2198. [PMID: 28916386 PMCID: PMC5700245 DOI: 10.1016/j.bpj.2017.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
The apolipoprotein E4 (ApoE4) gene is the strongest genetic risk factor for Alzheimer's disease (AD). With respect to the other common isoforms of this protein (ApoE2 and ApoE3), ApoE4 is characterized by lower stability that underlies the formation of a stable interaction between the protein's N- and C-terminal domains. AD-related cellular dysfunctions have been linked to this ApoE4 misfolded state. In this regard, it has been reported that the mutation R61T is able to rescue the deleterious cellular effects of ApoE4 by preventing the formation of the misfolded intermediate state. However, a clear description of the structural features at the basis of the R61T-ApoE4 mutant's protective effect is still missing. Recently, using extensive molecular dynamics simulations, we have identified a structural model of an ApoE4 misfolded intermediate state. Building on our previous work, here we explore the dynamical changes induced by the R61T mutation in the ApoE4 native and misfolded states. Notably, we do not observe any local changes in the domains in the R61T-ApoE4 system, rather a general loss of correlated movements in the entire protein structure. More specifically, we detect increased dynamics in the hinge region, which is essential for ApoE4 domain-domain interaction. Consistent with previously reported data on altered phospholipid and receptor binding, we hypothesize that mutations destabilizing the ApoE4 intermediate state change hinge region dynamics, which propagates to distal functional regions of the protein and modifies ApoE4's functional properties. This unique behavior of the ApoE4 hinge region provides, to our knowledge, a novel understanding of ApoE4's role in AD.
Collapse
Affiliation(s)
- Benfeard Williams
- Biochemistry and Biophysics Department, University of North Carolina, Chapel Hill, North Carolina
| | - Marino Convertino
- Biochemistry and Biophysics Department, University of North Carolina, Chapel Hill, North Carolina
| | - Jhuma Das
- Biochemistry and Biophysics Department, University of North Carolina, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Biochemistry and Biophysics Department, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
37
|
Conformational dynamics of 1-deoxy-d-xylulose 5-phosphate synthase on ligand binding revealed by H/D exchange MS. Proc Natl Acad Sci U S A 2017; 114:9355-9360. [PMID: 28808005 DOI: 10.1073/pnas.1619981114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) is a key enzyme in the methylerythritol 4-phosphate pathway and is a target for the development of antibiotics, herbicides, and antimalarial drugs. DXPS catalyzes the formation of 1-deoxy-d-xylulose 5-phosphate (DXP), a branch point metabolite in isoprenoid biosynthesis, and is also used in the biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6). Previously, we found that DXPS is unique among the superfamily of thiamin diphosphate (ThDP)-dependent enzymes in stabilizing the predecarboxylation intermediate, C2-alpha-lactyl-thiamin diphosphate (LThDP), which has subsequent decarboxylation that is triggered by d-glyceraldehyde 3-phosphate (GAP). Herein, we applied hydrogen-deuterium (H/D) exchange MS (HDX-MS) of full-length Escherichia coli DXPS to provide a snapshot of the conformational dynamics of this enzyme, leading to the following conclusions. (i) The high sequence coverage of DXPS allowed us to monitor structural changes throughout the entire enzyme, including two segments (spanning residues 183-238 and 292-317) not observed by X-ray crystallography. (ii) Three regions of DXPS (spanning residues 42-58, 183-199, and 278-298) near the active center displayed both EX1 (monomolecular) and EX2 (bimolecuar) H/D exchange (HDX) kinetic behavior in both ligand-free and ligand-bound states. All other peptides behaved according to the common EX2 kinetic mechanism. (iii) The observation of conformational changes on DXPS provides support for the role of conformational dynamics in the DXPS mechanism: The closed conformation of DXPS is critical for stabilization of LThDP, whereas addition of GAP converts DXPS to the open conformation that coincides with decarboxylation of LThDP and DXP release.
Collapse
|
38
|
Frieden C, Wang H, Ho CMW. A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions. Proc Natl Acad Sci U S A 2017; 114:6292-6297. [PMID: 28559318 PMCID: PMC5474821 DOI: 10.1073/pnas.1705080114] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relative to the apolipoprotein E (apoE) E3 allele of the APOE gene, apoE4 strongly increases the risk for the development of late-onset Alzheimer's disease. However, apoE4 differs from apoE3 by only a single amino acid at position 112, which is arginine in apoE4 and cysteine in apoE3. It remains unclear why apoE3 and apoE4 are functionally different. Described here is a proposal for understanding the functional differences between these two isoforms with respect to lipid binding. A mechanism is proposed that is based on the full-length monomeric structure of the protein, on hydrogen-deuterium exchange mass spectrometry data, and on the role of intrinsically disordered regions to control protein motions. It is proposed that lipid binds between the N-terminal and C-terminal domains and that separation of the two domains, along with the presence of intrinsically disordered regions, controls this process. The mechanism explains why apoE3 differs from apoE4 with respect to different lipid-binding specificities, why lipid increases the binding of apoE to its receptor, and why specific residues are conserved.
Collapse
Affiliation(s)
- Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110;
| | - Hanliu Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Chris M W Ho
- Drug Design Methodologies LLC, St. Louis, MO 63103
| |
Collapse
|