1
|
Kozmin SG, Dominska M, Zheng DQ, Petes TD. Splitting the yeast centromere by recombination. Nucleic Acids Res 2024; 52:690-707. [PMID: 37994724 PMCID: PMC10810202 DOI: 10.1093/nar/gkad1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Although fusions between the centromeres of different human chromosomes have been observed cytologically in cancer cells, since the centromeres are long arrays of satellite sequences, the details of these fusions have been difficult to investigate. We developed methods of detecting recombination within the centromeres of the yeast Saccharomyces cerevisiae (intercentromere recombination). These events occur at similar rates (about 10-8/cell division) between two active or two inactive centromeres. We mapped the breakpoints of most of the recombination events to a region of 43 base pairs of uninterrupted homology between the two centromeres. By whole-genome DNA sequencing, we showed that most (>90%) of the events occur by non-reciprocal recombination (gene conversion/break-induced replication). We also found that intercentromere recombination can involve non-homologous chromosome, generating whole-arm translocations. In addition, intercentromere recombination is associated with very frequent chromosome missegregation. These observations support the conclusion that intercentromere recombination generally has negative genetic consequences.
Collapse
Affiliation(s)
- Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Zhu YX, He M, Li KJ, Wang YK, Qian N, Wang ZF, Sheng H, Sui Y, Zhang DD, Zhang K, Qi L, Zheng DQ. Novel insights into the effects of 5-hydroxymethfurural on genomic instability and phenotypic evolution using a yeast model. Appl Environ Microbiol 2024; 90:e0164923. [PMID: 38108644 PMCID: PMC10807415 DOI: 10.1128/aem.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
5-Hydroxymethfurural (5-HMF) is naturally found in a variety of foods and beverages and represents a main inhibitor in the lignocellulosic hydrolysates used for fermentation. This study investigated the impact of 5-HMF on the genomic stability and phenotypic plasticity of the yeast Saccharomyces cerevisiae. Using next-generation sequencing technology, we examined the genomic alterations of diploid S. cerevisiae isolates that were subcultured on a medium containing 1.2 g/L 5-HMF. We found that in 5-HMF-treated cells, the rates of chromosome aneuploidy, large deletions/duplications, and loss of heterozygosity were elevated compared with that in untreated cells. 5-HMF exposure had a mild impact on the rate of point mutations but altered the mutation spectrum. Contrary to what was observed in untreated cells, more monosomy than trisomy occurred in 5-HMF-treated cells. The aneuploidy mutant with monosomic chromosome IX was more resistant to 5-HMF than the diploid parent strain because of the enhanced activity of alcohol dehydrogenase. Finally, we found that overexpression of ADH6 and ZWF1 effectively stabilized the yeast genome under 5-HMF stress. Our findings not only elucidated the global effect of 5-HMF on the genomic integrity of yeast but also provided novel insights into how chromosomal instability drives the environmental adaptability of eukaryotic cells.IMPORTANCESingle-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.
Collapse
Affiliation(s)
- Ying-Xuan Zhu
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Min He
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ye-Ke Wang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Ning Qian
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ze-Fei Wang
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Huan Sheng
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, China
| | - Dao-Qiong Zheng
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
3
|
Overton MS, Guy SE, Chen X, Martsul A, Carolino K, Akbari OS, Meyer JR, Kryazhimskiy S. Upper Bound on the Mutational Burden Imposed by a CRISPR-Cas9 Gene-Drive Element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569142. [PMID: 38076841 PMCID: PMC10705488 DOI: 10.1101/2023.11.28.569142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
CRISPR-Cas9 gene drives (CCGDs) are powerful tools for genetic control of wild populations, useful for eradication of disease vectors, conservation of endangered species and other applications. However, Cas9 alone and in a complex with gRNA can cause double-stranded DNA breaks at off-target sites, which could increase the mutational load and lead to loss of heterozygosity (LOH). These undesired effects raise potential concerns about the long-term evolutionary safety of CCGDs, but the magnitude of these effects is unknown. To estimate how the presence of a CCGD or a Cas9 alone in the genome affects the rates of LOH events and de novo mutations, we carried out a mutation accumulation experiment in yeast Saccharomyces cerevisiae. Despite its substantial statistical power, our experiment revealed no detectable effect of CCGD or Cas9 alone on the genome-wide rates of mutations or LOH events, suggesting that these rates are affected by less than 30%. Nevertheless, we found that Cas9 caused a slight but significant shift towards more interstitial and fewer terminal LOH events, and the CCGD caused a significant difference in the distribution of LOH events on Chromosome V. Taken together, our results show that these genetic elements impose a weak and likely localized additional mutational burden in the yeast model. Although the mutagenic effects of CCGDs need to be further evaluated in other systems, our results suggest that the effect of CCGDs on off-target mutation rates and genetic diversity may be acceptable.
Collapse
Affiliation(s)
- Michael S. Overton
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Sean E. Guy
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Current address: Bionano Genomics, San Diego, CA 92121
| | - Xingsen Chen
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Current address: Department of Entomology, University of Arizona, Tucson, Arizona, USA
| | - Alena Martsul
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Current address: Illumina Inc., San Diego, CA 92122
| | - Krypton Carolino
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Shuffling the yeast genome using CRISPR/Cas9-generated DSBs that target the transposable Ty1 elements. PLoS Genet 2023; 19:e1010590. [PMID: 36701275 PMCID: PMC9879454 DOI: 10.1371/journal.pgen.1010590] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Although homologous recombination between transposable elements can drive genomic evolution in yeast by facilitating chromosomal rearrangements, the details of the underlying mechanisms are not fully clarified. In the genome of the yeast Saccharomyces cerevisiae, the most common class of transposon is the retrotransposon Ty1. Here, we explored how Cas9-induced double-strand breaks (DSBs) directed to Ty1 elements produce genomic alterations in this yeast species. Following Cas9 induction, we observed a significant elevation of chromosome rearrangements such as deletions, duplications and translocations. In addition, we found elevated rates of mitotic recombination, resulting in loss of heterozygosity. Using Southern analysis coupled with short- and long-read DNA sequencing, we revealed important features of recombination induced in retrotransposons. Almost all of the chromosomal rearrangements reflect the repair of DSBs at Ty1 elements by non-allelic homologous recombination; clustered Ty elements were hotspots for chromosome rearrangements. In contrast, a large proportion (about three-fourths) of the allelic mitotic recombination events have breakpoints in unique sequences. Our analysis suggests that some of the latter events reflect extensive processing of the broken ends produced in the Ty element that extend into unique sequences resulting in break-induced replication. Finally, we found that haploid and diploid strain have different preferences for the pathways used to repair double-stranded DNA breaks. Our findings demonstrate the importance of DNA lesions in retrotransposons in driving genome evolution.
Collapse
|
5
|
Zhang X, Hooykaas MJG, van Heusden GP, Hooykaas PJJ. The translocated virulence protein VirD5 causes DNA damage and mutation during Agrobacterium-mediated transformation of yeast. SCIENCE ADVANCES 2022; 8:eadd3912. [PMID: 36383666 PMCID: PMC9668295 DOI: 10.1126/sciadv.add3912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The soil bacterium Agrobacterium tumefaciens is a preferred gene vector not only for plants but also for fungi. Agrobacterium delivers a small set of virulence proteins into host cells concomitantly with transferred DNA (T-DNA) to support the transformation process. Here, we find that expression of one of these proteins, called VirD5, in yeast host cells causes replication stress and DNA damage. This can result in both genomic rearrangements and local mutations, especially small deletions. Delivery of VirD5 during cocultivation with Agrobacterium led to mutations in the yeast genome that were unlinked to the integration of T-DNA. This load of mutations can be prevented by using a virD5 mutant for genome engineering, but this leads to a lower transformation frequency.
Collapse
|
6
|
Sui Y, Epstein A, Dominska M, Zheng DQ, Petes T, Klein H. Ribodysgenesis: sudden genome instability in the yeast Saccharomyces cerevisiae arising from RNase H2 cleavage at genomic-embedded ribonucleotides. Nucleic Acids Res 2022; 50:6890-6902. [PMID: 35748861 PMCID: PMC9262587 DOI: 10.1093/nar/gkac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Ribonucleotides can be incorporated into DNA during replication by the replicative DNA polymerases. These aberrant DNA subunits are efficiently recognized and removed by Ribonucleotide Excision Repair, which is initiated by the heterotrimeric enzyme RNase H2. While RNase H2 is essential in higher eukaryotes, the yeast Saccharomyces cerevisiae can survive without RNase H2 enzyme, although the genome undergoes mutation, recombination and other genome instability events at an increased rate. Although RNase H2 can be considered as a protector of the genome from the deleterious events that can ensue from recognition and removal of embedded ribonucleotides, under conditions of high ribonucleotide incorporation and retention in the genome in a RNase H2-negative strain, sudden introduction of active RNase H2 causes massive DNA breaks and genome instability in a condition which we term 'ribodysgenesis'. The DNA breaks and genome instability arise solely from RNase H2 cleavage directed to the ribonucleotide-containing genome. Survivors of ribodysgenesis have massive loss of heterozygosity events stemming from recombinogenic lesions on the ribonucleotide-containing DNA, with increases of over 1000X from wild-type. DNA breaks are produced over one to two divisions and subsequently cells adapt to RNase H2 and ribonucleotides in the genome and grow with normal levels of genome instability.
Collapse
Affiliation(s)
- Yang Sui
- State Key Laboratory of Motor Vehicle Biofuel Technology, Ocean College, Zhejiang University, Zhoushan 316021, China,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasiya Epstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dao-Qiong Zheng
- State Key Laboratory of Motor Vehicle Biofuel Technology, Ocean College, Zhejiang University, Zhoushan 316021, China,Hainan Institute of Zhejiang University, Sanya 572000, China,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hannah L Klein
- To whom correspondence should be addressed. Tel: +1 212 263 5778;
| |
Collapse
|
7
|
Global genomic instability caused by reduced expression of DNA polymerase ε in yeast. Proc Natl Acad Sci U S A 2022; 119:e2119588119. [PMID: 35290114 PMCID: PMC8944251 DOI: 10.1073/pnas.2119588119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.
Collapse
|
8
|
Uncovering bleomycin-induced genomic alterations and underlying mechanisms in yeast. Appl Environ Microbiol 2021; 88:e0170321. [PMID: 34731050 DOI: 10.1128/aem.01703-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bleomycin (BLM) is a widely used chemotherapeutic drug. BLM-treated cells showed an elevated rate of mutations, but the underlying mechanisms remained unclear. In this study, the global genomic alterations in BLM-treated cells were explored in the yeast Saccharomyces cerevisiae. Using genetic assay and whole-genome sequencing, we found that the mutation rate could be greatly elevated in S. cerevisiae cells that underwent ZeocinTM (a BLM member) treatment. One-base deletion and T to G substitution at the 5'-GT-3' motif was the most striking signature of ZeocinTM-induced mutations. This was mainly the result of translesion DNA synthesis involving Rev1 and polymerase ζ. ZeocinTM treatment led to the frequent loss of heterozygosity and chromosomal rearrangements in the diploid strains. The breakpoints of recombination events were significantly associated with certain chromosomal elements. Lastly, we identified multiple genomic alterations that contributed to BLM resistance in the ZeocinTM-treated mutants. Overall, this study provides new insights into the genotoxicity and evolutional effects of BLM. Importance Bleomycin is an antitumor antibiotic that can mutate genomic DNA. Using yeast models in combination with genome sequencing, the mutational signatures of ZeocinTM (a member of the bleomycin family) are disclosed. Translesion-synthesis polymerases are crucial for the viability of ZeocinTM-treated yeast cells at the sacrifice of a higher mutation rate. We also confirmed that multiple genomic alterations were associated with the improved resistance to ZeocinTM, providing novel insights into how bleomycin resistance is developed in cells.
Collapse
|
9
|
Fumasoni M, Murray AW. Ploidy and recombination proficiency shape the evolutionary adaptation to constitutive DNA replication stress. PLoS Genet 2021; 17:e1009875. [PMID: 34752451 PMCID: PMC8604288 DOI: 10.1371/journal.pgen.1009875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/19/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules in strains with different genomic features, revealing a common evolutionary response to constitutive DNA replication stress.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
10
|
Chovanec P, Yin Y. A mapping platform for mitotic crossover by single-cell multi-omics. Methods Enzymol 2021; 661:183-204. [PMID: 34776212 DOI: 10.1016/bs.mie.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mitotic crossovers have the potential to cause large-scale genome rearrangements. Here, we describe high-throughput, single-cell, whole-genome sequencing methods for mapping crossovers genome-wide at scale. The methods are generalizable to various eukaryotes and to other end points requiring high-throughput, high-coverage single cell sequencing.
Collapse
Affiliation(s)
- Peter Chovanec
- Department of Human Genetics, University of California, Los Angeles, CA, Unites States
| | - Yi Yin
- Department of Human Genetics, University of California, Los Angeles, CA, Unites States.
| |
Collapse
|
11
|
Kiktev DA, Dominska M, Zhang T, Dahl J, Stepchenkova EI, Mieczkowski P, Burgers PM, Lujan S, Burkholder A, Kunkel TA, Petes TD. The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe-S cluster in DNA polymerase δ. Nucleic Acids Res 2021; 49:5623-5636. [PMID: 34019669 PMCID: PMC8191807 DOI: 10.1093/nar/gkab371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 05/16/2021] [Indexed: 11/12/2022] Open
Abstract
Iron-sulfur clusters (4Fe–4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol δ) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol δ are the observations that Pol δ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme.
Collapse
Affiliation(s)
- Denis A Kiktev
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony Zhang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joseph Dahl
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elena I Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, St. Petersburg, Russia.,Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russia
| | - Piotr Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Alexandrov ID, Alexandrova MV. The dose-, LET-, and gene-dependent patterns of DNA changes underlying the point mutations in spermatozoa of Drosophila melanogaster. I. Autosomal gene black. Mutat Res 2021; 823:111755. [PMID: 34217017 DOI: 10.1016/j.mrfmmm.2021.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Sequence analysis of 7 spontaneous, 27 γ-ray- and 20 neutron/neutron+γ-ray-induced black (b) point mutants was carried out. All these mutants were isolated as non-mosaic transmissible recessive visibles in the progeny of irradiated males from the wild-type high-inbred laboratory D32 strain of Drosophila melanogaster. Among spontaneous mutants, there were two (28.5 %) mutants with copia insertion in intron 1 and exon 2, three (42.8 %) with replacement of b+D32 paternal sequence with maternal b1 sequence (gene conversion), one (14.3 %) with 142-bp-long insertion in exon 2, and one (14.3 %) with a short deletion and two single-base substitutions in exon 3. Among γ-ray-induced mutants, there were 1 (3.7 %) with copia insertion in intron 2, 6 (22.2 %) with gene conversion, and the remaining 20 (74.1 %) mutants had 37 different small-scale DNA changes. There were 20 (54.1 %) single- or double-base substitutions, 7 (18.9 %) frameshifts (indels), 9 (24.3 %) extended deletions or insertions, and 1(2.7 %) mutant with a short insertion instead of a short deletion. Remarkably, clusters of independent small-scale changes inside the gene or within one DNA helical turn were recovered. The spectrum of DNA changes in 20 neutron/ neutron+γ-ray-induced mutants was drastically different from that induced by γ-rays in that 18 (90.0 %) mutants had the b1sequence. In addition, 2 (10.0 %) with gene conversion had 600- or 19-bp-long deletion in exon 3 and 1 (5.0 %) mutant with a short insertion instead of a short deletion. Analysis of all 27 mutants with gene conversion events shows that 20 (74.1 %) had full b1 sequence whereas 7 others (25.9 %) contained a partial b1 sequence. These data are the first experimental evidence for gene conversion in the early stages of animal embryogenesis in the first diploid cleavage nucleus after male and female pronuclei have united. The gene conversion, frameshifts (indels), and deletions between short repeats were considered as products of a relevant DNA repair pathways described in the literature. As the first step, the gametic doubling doses for phenotypic black point mutations and for intragenic base substitution mutations in mature sperm cells irradiated by 40 Gy of γ-rays were estimated as 5.8 and 1.2 Gy, respectively, showing that doubling dose for mutations at the molecular level is about 5 times lower than that at the phenotypic level.
Collapse
Affiliation(s)
- I D Alexandrov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia.
| | - M V Alexandrova
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia
| |
Collapse
|
13
|
Koussa NC, Smith DJ. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair. PLoS Genet 2021; 17:e1009322. [PMID: 33493195 PMCID: PMC7861531 DOI: 10.1371/journal.pgen.1009322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 02/04/2021] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase delta (Pol δ) plays several essential roles in eukaryotic DNA replication and repair. At the replication fork, Pol δ is responsible for the synthesis and processing of the lagging-strand. At replication origins, Pol δ has been proposed to initiate leading-strand synthesis by extending the first Okazaki fragment. Destabilizing mutations in human Pol δ subunits cause replication stress and syndromic immunodeficiency. Analogously, reduced levels of Pol δ in Saccharomyces cerevisiae lead to pervasive genome instability. Here, we analyze how the depletion of Pol δ impacts replication origin firing and lagging-strand synthesis during replication elongation in vivo in S. cerevisiae. By analyzing nascent lagging-strand products, we observe a genome-wide change in both the establishment and progression of replication. S-phase progression is slowed in Pol δ depletion, with both globally reduced origin firing and slower replication progression. We find that no polymerase other than Pol δ is capable of synthesizing a substantial amount of lagging-strand DNA, even when Pol δ is severely limiting. We also characterize the impact of impaired lagging-strand synthesis on genome integrity and find increased ssDNA and DNA damage when Pol δ is limiting; these defects lead to a strict dependence on checkpoint signaling and resection-mediated repair pathways for cellular viability.
Collapse
Affiliation(s)
- Natasha C. Koussa
- Department of Biology, New York University, New York City, New York, United State of America
| | - Duncan J. Smith
- Department of Biology, New York University, New York City, New York, United State of America
- * E-mail:
| |
Collapse
|
14
|
Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22020786. [PMID: 33466757 PMCID: PMC7830279 DOI: 10.3390/ijms22020786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal rearrangements comprise unbalanced structural variations resulting in gain or loss of DNA copy numbers, as well as balanced events including translocation and inversion that are copy number neutral, both of which contribute to phenotypic evolution in organisms. The exquisite genetic assay and gene editing tools available for the model organism Saccharomyces cerevisiae facilitate deep exploration of the mechanisms underlying chromosomal rearrangements. We discuss here the pathways and influential factors of chromosomal rearrangements in S. cerevisiae. Several methods have been developed to generate on-demand chromosomal rearrangements and map the breakpoints of rearrangement events. Finally, we highlight the contributions of chromosomal rearrangements to drive phenotypic evolution in various S. cerevisiae strains. Given the evolutionary conservation of DNA replication and recombination in organisms, the knowledge gathered in the small genome of yeast can be extended to the genomes of higher eukaryotes.
Collapse
|
15
|
Abstract
DNA break lesions pose a serious threat to the integrity of the genome. Eukaryotic cells can repair these lesions using the homologous recombination pathway that guides the repair reaction by using a homologous DNA template. The budding yeast Saccharomyces cerevisiae is an excellent model system with which to study this repair mechanism and the resulting patterns of genomic change resulting from it. In this chapter, we describe an approach that utilizes whole-genome sequencing data to support the analysis of tracts of loss-of-heterozygosity (LOH) that can arise from mitotic recombination in the context of the entire diploid yeast genome. The workflow and the discussion in this chapter are intended to enable classically trained molecular biologists and geneticists with limited experience in computational methods to conceptually understand and execute the steps of genome-wide LOH analysis as well as to adapt and apply them to their own specific studies and experimental models.
Collapse
Affiliation(s)
- Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nadia M V Sampaio
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
16
|
Sui Y, Qi L, Wu JK, Wen XP, Tang XX, Ma ZJ, Wu XC, Zhang K, Kokoska RJ, Zheng DQ, Petes TD. Genome-wide mapping of spontaneous genetic alterations in diploid yeast cells. Proc Natl Acad Sci U S A 2020; 117:28191-28200. [PMID: 33106417 PMCID: PMC7668089 DOI: 10.1073/pnas.2018633117] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genomic alterations including single-base mutations, deletions and duplications, translocations, mitotic recombination events, and chromosome aneuploidy generate genetic diversity. We examined the rates of all of these genetic changes in a diploid strain of Saccharomyces cerevisiae by whole-genome sequencing of many independent isolates (n = 93) subcloned about 100 times in unstressed growth conditions. The most common alterations were point mutations and small (<100 bp) insertion/deletions (n = 1,337) and mitotic recombination events (n = 1,215). The diploid cells of most eukaryotes are heterozygous for many single-nucleotide polymorphisms (SNPs). During mitotic cell divisions, recombination can produce derivatives of these cells that have become homozygous for the polymorphisms, termed loss-of-heterozygosity (LOH) events. LOH events can change the phenotype of the cells and contribute to tumor formation in humans. We observed two types of LOH events: interstitial events (conversions) resulting in a short LOH tract (usually less than 15 kb) and terminal events (mostly cross-overs) in which the LOH tract extends to the end of the chromosome. These two types of LOH events had different distributions, suggesting that they may have initiated by different mechanisms. Based on our results, we present a method of calculating the probability of an LOH event for individual SNPs located throughout the genome. We also identified several hotspots for chromosomal rearrangements (large deletions and duplications). Our results provide insights into the relative importance of different types of genetic alterations produced during vegetative growth.
Collapse
Affiliation(s)
- Yang Sui
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705
| | - Lei Qi
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705
| | - Jian-Kun Wu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xue-Ping Wen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xing-Xing Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Zhong-Jun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Science, Zhejiang University, 310058 Hangzhou, China
| | - Ke Zhang
- Institute of Microbiology, College of Life Science, Zhejiang University, 310058 Hangzhou, China;
| | - Robert J Kokoska
- Physical Sciences Directorate, United States Army Research Office, Research Triangle Park, NC 27709
| | - Dao-Qiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China;
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705;
| |
Collapse
|
17
|
Heat shock drives genomic instability and phenotypic variations in yeast. AMB Express 2020; 10:146. [PMID: 32804300 PMCID: PMC7431486 DOI: 10.1186/s13568-020-01091-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
High temperature causes ubiquitous environmental stress to microorganisms, but studies have not fully explained whether and to what extent heat shock would affect genome stability. Hence, this study explored heat-shock-induced genomic alterations in the yeast Saccharomyces cerevisiae. Using genetic screening systems and customized single nucleotide polymorphism (SNP) microarrays, we found that heat shock (52 °C) for several minutes could heighten mitotic recombination by at least one order of magnitude. More than half of heat-shock-induced mitotic recombinations were likely to be initiated by DNA breaks in the S/G2 phase of the cell cycle. Chromosomal aberration, mainly trisomy, was elevated hundreds of times in heat-shock-treated cells than in untreated cells. Distinct chromosomal instability patterns were also observed between heat-treated and carbendazim-treated yeast cells. Finally, we demonstrated that heat shock stimulates fast phenotypic evolutions (such as tolerance to ethanol, vanillin, fluconazole, and tunicamycin) in the yeast population. This study not only provided novel insights into the effect of temperature fluctuations on genomic integrity but also developed a simple protocol to generate an aneuploidy mutant of yeast.
Collapse
|
18
|
Ethanol exposure increases mutation rate through error-prone polymerases. Nat Commun 2020; 11:3664. [PMID: 32694532 PMCID: PMC7374746 DOI: 10.1038/s41467-020-17447-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate. Specifically, we find that ethanol slows down replication and affects localization of Mrc1, a conserved protein that helps stabilize the replisome. In addition, ethanol exposure also results in the recruitment of error-prone DNA polymerases to the replication fork. Interestingly, preventing this recruitment through mutagenesis of the PCNA/Pol30 polymerase clamp or deleting specific error-prone polymerases abolishes the mutagenic effect of ethanol. Taken together, this suggests that the mutagenic effect depends on a complex mechanism, where dysfunctional replication forks lead to recruitment of error-prone polymerases. Apart from providing a general mechanistic framework for the mutagenic effect of ethanol, our findings may also provide a route to better understand and prevent ethanol-associated carcinogenesis in higher eukaryotes. Whereas the toxic effects of ethanol are well-documented, the underlying mechanism is obscure. This study uses the eukaryotic model S. cerevisiae to reveal how exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate.
Collapse
|
19
|
Tamayo-Orrego L, Gallo D, Racicot F, Bemmo A, Mohan S, Ho B, Salameh S, Hoang T, Jackson AP, Brown GW, Charron F. Sonic hedgehog accelerates DNA replication to cause replication stress promoting cancer initiation in medulloblastoma. ACTA ACUST UNITED AC 2020; 1:840-854. [DOI: 10.1038/s43018-020-0094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/12/2020] [Indexed: 01/02/2023]
|
20
|
|
21
|
Sui Y, Qi L, Zhang K, Saini N, Klimczak LJ, Sakofsky CJ, Gordenin DA, Petes TD, Zheng DQ. Analysis of APOBEC-induced mutations in yeast strains with low levels of replicative DNA polymerases. Proc Natl Acad Sci U S A 2020; 117:9440-9450. [PMID: 32277034 PMCID: PMC7196835 DOI: 10.1073/pnas.1922472117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast strains with low levels of the replicative DNA polymerases (alpha, delta, and epsilon) have high levels of chromosome deletions, duplications, and translocations. By examining the patterns of mutations induced in strains with low levels of DNA polymerase by the human protein APOBEC3B (a protein that deaminates cytosine in single-stranded DNA), we show dramatically elevated amounts of single-stranded DNA relative to a wild-type strain. During DNA replication, one strand (defined as the leading strand) is replicated processively by DNA polymerase epsilon and the other (the lagging strand) is replicated as short fragments initiated by DNA polymerase alpha and extended by DNA polymerase delta. In the low DNA polymerase alpha and delta strains, the APOBEC-induced mutations are concentrated on the lagging-strand template, whereas in the low DNA polymerase epsilon strain, mutations occur on the leading- and lagging-strand templates with similar frequencies. In addition, for most genes, the transcribed strand is mutagenized more frequently than the nontranscribed strand. Lastly, some of the APOBEC-induced clusters in strains with low levels of DNA polymerase alpha or delta are greater than 10 kb in length.
Collapse
Affiliation(s)
- Yang Sui
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Lei Qi
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Ke Zhang
- Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Cynthia J Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710;
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, 316021 Zhoushan, China;
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
22
|
Fumasoni M, Murray AW. The evolutionary plasticity of chromosome metabolism allows adaptation to constitutive DNA replication stress. eLife 2020; 9:e51963. [PMID: 32043971 PMCID: PMC7069727 DOI: 10.7554/elife.51963] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Many biological features are conserved and thus considered to be resistant to evolutionary change. While rapid genetic adaptation following the removal of conserved genes has been observed, we often lack a mechanistic understanding of how adaptation happens. We used the budding yeast, Saccharomyces cerevisiae, to investigate the evolutionary plasticity of chromosome metabolism, a network of evolutionary conserved modules. We experimentally evolved cells constitutively experiencing DNA replication stress caused by the absence of Ctf4, a protein that coordinates the enzymatic activities at replication forks. Parallel populations adapted to replication stress, over 1000 generations, by acquiring multiple, concerted mutations. These mutations altered conserved features of two chromosome metabolism modules, DNA replication and sister chromatid cohesion, and inactivated a third, the DNA damage checkpoint. The selected mutations define a functionally reproducible evolutionary trajectory. We suggest that the evolutionary plasticity of chromosome metabolism has implications for genome evolution in natural populations and cancer.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
23
|
Garbacz MA, Cox PB, Sharma S, Lujan SA, Chabes A, Kunkel TA. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res 2019; 47:3986-3995. [PMID: 30698744 DOI: 10.1093/nar/gkz048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
24
|
Bacolla A, Ye Z, Ahmed Z, Tainer JA. Cancer mutational burden is shaped by G4 DNA, replication stress and mitochondrial dysfunction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:47-61. [PMID: 30880007 PMCID: PMC6745008 DOI: 10.1016/j.pbiomolbio.2019.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/01/2023]
Abstract
A hallmark of cancer is genomic instability, which can enable cancer cells to evade therapeutic strategies. Here we employed a computational approach to uncover mechanisms underlying cancer mutational burden by focusing upon relationships between 1) translocation breakpoints and the thousands of G4 DNA-forming sequences within retrotransposons impacting transcription and exemplifying probable non-B DNA structures and 2) transcriptome profiling and cancer mutations. We determined the location and number of G4 DNA-forming sequences in the Genome Reference Consortium Human Build 38 and found a total of 358,605 covering ∼13.4 million bases. By analyzing >97,000 unique translocation breakpoints from the Catalogue Of Somatic Mutations In Cancer (COSMIC), we found that breakpoints are overrepresented at G4 DNA-forming sequences within hominid-specific SVA retrotransposons, and generally occur in tumors with mutations in tumor suppressor genes, such as TP53. Furthermore, correlation analyses between mRNA levels and exome mutational loads from The Cancer Genome Atlas (TCGA) encompassing >450,000 gene-mutation regressions revealed strong positive and negative associations, which depended upon tissue of origin. The strongest positive correlations originated from genes not listed as cancer genes in COSMIC; yet, these show strong predictive power for survival in most tumor types by Kaplan-Meier estimation. Thus, correlation analyses of DNA structure and gene expression with mutation loads complement and extend more traditional approaches to elucidate processes shaping genomic instability in cancer. The combined results point to G4 DNA, activation of cell cycle/DNA repair pathways, and mitochondrial dysfunction as three major factors driving the accumulation of somatic mutations in cancer cells.
Collapse
Affiliation(s)
- Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Global Analysis of Furfural-Induced Genomic Instability Using a Yeast Model. Appl Environ Microbiol 2019; 85:AEM.01237-19. [PMID: 31300396 DOI: 10.1128/aem.01237-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Furfural is an important renewable precursor for multiple commercial chemicals and fuels; a main inhibitor existing in cellulosic hydrolysate, which is used for bioethanol fermentation; and a potential carcinogen, as well. Using a genetic system in Saccharomyces cerevisiae that allows detection of crossover events, we observed that the frequency of mitotic recombination was elevated by 1.5- to 40-fold when cells were treated with 0.1 g/liter to 20 g/liter furfural. Analysis of the gene conversion tracts associated with crossover events suggested that most furfural-induced recombination resulted from repair of DNA double-strand breaks (DSBs) that occurred in the G1 phase. Furfural was incapable of breaking DNA directly in vitro but could trigger DSBs in vivo related to reactive oxygen species accumulation. By whole-genome single nucleotide polymorphism (SNP) microarray and sequencing, furfural-induced genomic alterations that range from single base substitutions, loss of heterozygosity, and chromosomal rearrangements to aneuploidy were explored. At the whole-genome level, furfural-induced events were evenly distributed across 16 chromosomes but were enriched in high-GC-content regions. Point mutations, particularly the C-to-T/G-to-A transitions, were significantly elevated in furfural-treated cells compared to wild-type cells. This study provided multiple novel insights into the global effects of furfural on genomic stability.IMPORTANCE Whether and how furfural affects genome integrity have not been clarified. Using a Saccharomyces cerevisiae model, we found that furfural exposure leads to in vivo DSBs and elevation in mitotic recombination by orders of magnitude. Gross chromosomal rearrangements and aneuploidy events also occurred at a higher frequency in furfural-treated cells. In a genome-wide analysis, we show that the patterns of mitotic recombination and point mutations differed dramatically in furfural-treated cells and wild-type cells.
Collapse
|
26
|
Zaher MS, Rashid F, Song B, Joudeh LI, Sobhy MA, Tehseen M, Hingorani MM, Hamdan SM. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway. Nucleic Acids Res 2019; 46:2956-2974. [PMID: 29420814 PMCID: PMC5888579 DOI: 10.1093/nar/gky082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/27/2018] [Indexed: 12/11/2022] Open
Abstract
RNA–DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5′-single-stranded flap is cleaved by structure-specific 5′-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.
Collapse
Affiliation(s)
- Manal S Zaher
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Fahad Rashid
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Bo Song
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Luay I Joudeh
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Mohamed A Sobhy
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Muhammad Tehseen
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Manju M Hingorani
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Samir M Hamdan
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| |
Collapse
|
27
|
Mapping chromosomal instability induced by small-molecular therapeutics in a yeast model. Appl Microbiol Biotechnol 2019; 103:4869-4880. [PMID: 31053912 DOI: 10.1007/s00253-019-09845-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
The yeast Saccharomyces cerevisiae has been widely used as a model system for studying the physiological and pharmacological action of small-molecular drugs. Here, a heterozygous diploid S. cerevisiae strain QSS4 was generated to determine whether drugs could induce chromosomal instability by determining the frequency of mitotic recombination. Using the combination of a custom SNP microarray and yeast screening system, the patterns of chromosomal instability induced by drugs were explored at the whole genome level in QSS4. We found that Zeocin (a member of the bleomycin family) treatment increased the rate of genomic alterations, including aneuploidy, loss of heterozygosity (LOH), and chromosomal rearrangement over a hundred-fold. Most recombination events are likely to be initiated by DNA double-stand breaks directly generated by Zeocin. Another remarkable finding is that G4-motifs and low GC regions were significantly underrepresented within the gene conversion tracts of Zeocin-induced LOH events, indicating that certain DNA regions are less preferred Zeocin-binding sites in vivo. This study provides a novel paradigm for evaluating genetic toxicity of small-molecular drugs using yeast models.
Collapse
|
28
|
Kawamura K, Qi F, Meng Q, Hayashi I, Kobayashi J. Nucleolar protein nucleolin functions in replication stress-induced DNA damage responses. JOURNAL OF RADIATION RESEARCH 2019; 60:281-288. [PMID: 30839063 PMCID: PMC6530621 DOI: 10.1093/jrr/rry114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/23/2018] [Indexed: 05/05/2023]
Abstract
The nucleolus contains multiple copies of ribosomal (r)DNA, which indicate sites of frequent replication stress and suggest the existence of a mechanism to prevent replication stress-related rDNA instability and the possibility that such a mechanism contributes to the whole genomic stability against replication stress. We have previously reported that nucleolin, a major nucleolar protein, is involved in ionizing radiation-induced DNA damage responses (DDRs) such as ataxia telangiectasia mutated (ATM)-dependent cell cycle checkpoints and homologous recombination (HR) repair. Here, we investigated the role of nucleolin in DDR due to replication stress. The results indicate that following replication stress, nucleolin interacted with the histone γH2AX, proliferating cell nuclear antigen (PCNA), and replication protein A (RPA)32, suggesting that it may be recruited to DNA damage sites on the replication fork. Furthermore, the knockdown of nucleolin by siRNA reduced the activation of ATM and RAD3-related (ATR) kinase and the formation of RAD51 and RPA32 foci after replication stress due to UV or camptothecin exposure, whereas nucleolin overexpression augmented ATR-dependent phosphorylation and RAD51 and RPA accumulation on chromatin. Moreover, these overexpressing cells seemed to increase repair activity and resistance to replication stress. Our results indicate that nucleolin plays an important role in replication stress-induced DDRs such as ATR activation and HR repair. Given that nucleolin overexpression is often observed in many types of cancer cells, our findings suggest that nucleolin is involved in the regulation of resistance to replication stress that may otherwise lead to tumorigenesis and it could be a possible target for chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Kasumi Kawamura
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto, Japan
| | - Fei Qi
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto, Japan
| | - Qingmei Meng
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto, Japan
| | - Ikue Hayashi
- Graduate School of Biomedical Sciences, Hiroshima University, Kasumi1-2-3, Minamiku, Hiroshima, Japan
| | - Junya Kobayashi
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshidakonoecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
29
|
Zhang K, Zheng DQ, Sui Y, Qi L, Petes T. Genome-wide analysis of genomic alterations induced by oxidative DNA damage in yeast. Nucleic Acids Res 2019; 47:3521-3535. [PMID: 30668788 PMCID: PMC6468167 DOI: 10.1093/nar/gkz027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Oxidative DNA damage is a threat to genome stability. Using a genetic system in yeast that allows detection of mitotic recombination, we found that the frequency of crossovers is greatly elevated when cells are treated with hydrogen peroxide (H2O2). Using a combination of microarray analysis and genomic sequencing, we mapped the breakpoints of mitotic recombination events and other chromosome rearrangements at a resolution of about 1 kb. Gene conversions and crossovers were the two most common types of events, but we also observed deletions, duplications, and chromosome aneuploidy. In addition, H2O2-treated cells had elevated rates of point mutations (particularly A to T/T to A and C to G/G to C transversions) and small insertions/deletions (in/dels). In cells that underwent multiple rounds of H2O2 treatments, we identified a genetic alteration that resulted in improved H2O2 tolerance by amplification of the CTT1 gene that encodes cytosolic catalase T. Lastly, we showed that cells grown in the absence of oxygen have reduced levels of recombination. This study provided multiple novel insights into how oxidative stress affects genomic instability and phenotypic evolution in aerobic cells.
Collapse
Affiliation(s)
- Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
30
|
Qi L, Wu XC, Zheng DQ. Hydrogen peroxide, a potent inducer of global genomic instability. Curr Genet 2019; 65:913-917. [PMID: 30963245 DOI: 10.1007/s00294-019-00969-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Oxidative stress has been implicated in a variety of human diseases. One plausible mechanism is that reactive active species can induce DNA damages and jeopardize genome integrity. To explore how oxidative stress results in global genomic instability in cells, our current study examined the genomic alterations caused by H2O2 exposure at the whole genome level in yeast. Using SNP microarrays and genome sequencing, we mapped H2O2-induced genomic alterations in the yeast genome ranging from point mutations and mitotic recombination to chromosomal aneuploidy. Our results suggested most H2O2-induced mitotic recombination events were the result of DNA double-stand breaks generated by hydroxyl radicals. Moreover, the mutagenic effect of H2O2 was shown to be largely dependent on DNA polymerase ζ. Lastly, we showed that H2O2 exposure allows rapid phenotypic evolution in yeast strains. Our findings indicate DNA lesions resulting from H2O2 may be general factors that drive genome instability and phenotypic evolution in organisms.
Collapse
Affiliation(s)
- Lei Qi
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Xue-Chang Wu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
31
|
Cooperation between non-essential DNA polymerases contributes to genome stability in Saccharomyces cerevisiae. DNA Repair (Amst) 2019; 76:40-49. [PMID: 30818168 DOI: 10.1016/j.dnarep.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 11/21/2022]
Abstract
DNA polymerases influence genome stability through their involvement in DNA replication, response to DNA damage, and DNA repair processes. Saccharomyces cerevisiae possess four non-essential DNA polymerases, Pol λ, Pol η, Pol ζ, and Rev1, which have varying roles in genome stability. In order to assess the contribution of the non-essential DNA polymerases in genome stability, we analyzed the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant in microhomology mediated repair, due to recent studies linking some of these DNA polymerases to this repair pathway. Our results suggest that the length and quality of microhomology influence both the overall efficiency of repair and the involvement of DNA polymerases. Furthermore, the non-essential DNA polymerases demonstrate overlapping and redundant functions when repairing double-strand breaks using short microhomologies containing mismatches. Then, we examined genome-wide mutation accumulation in the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant compared to wild type cells. We found a significant decrease in the overall rate of mutation accumulation in the quadruple mutant cells compared to wildtype, but an increase in frameshift mutations and a shift towards transversion base-substitution with a preference for G:C to T:A or C:G. Thus, the non-essential DNA polymerases have an impact on the nature of the mutational spectrum. The sequence and functional homology shared between human and S. cerevisiae non-essential DNA polymerases suggest these DNA polymerases may have a similar role in human cells.
Collapse
|
32
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
33
|
Zheng DQ, Petes TD. Genome Instability Induced by Low Levels of Replicative DNA Polymerases in Yeast. Genes (Basel) 2018; 9:genes9110539. [PMID: 30405078 PMCID: PMC6267110 DOI: 10.3390/genes9110539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022] Open
Abstract
Most cells of solid tumors have very high levels of genome instability of several different types, including deletions, duplications, translocations, and aneuploidy. Much of this instability appears induced by DNA replication stress. As a model for understanding this type of instability, we have examined genome instability in yeast strains that have low levels of two of the replicative DNA polymerases: DNA polymerase α and DNA polymerase δ (Polα and Polδ). We show that low levels of either of these DNA polymerases results in greatly elevated levels of mitotic recombination, chromosome rearrangements, and deletions/duplications. The spectrum of events in the two types of strains, however, differs in a variety of ways. For example, a reduced level of Polδ elevates single-base alterations and small deletions considerably more than a reduced level of Polα. In this review, we will summarize the methods used to monitor genome instability in yeast, and how this analysis contributes to understanding the linkage between genome instability and DNA replication stress.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
34
|
GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2018; 115:E7109-E7118. [PMID: 29987035 PMCID: PMC6064992 DOI: 10.1073/pnas.1807334115] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The chromosomes of many eukaryotes have regions of high GC content interspersed with regions of low GC content. In the yeast Saccharomyces cerevisiae, high-GC regions are often associated with high levels of meiotic recombination. In this study, we constructed URA3 genes that differ substantially in their base composition [URA3-AT (31% GC), URA3-WT (43% GC), and URA3-GC (63% GC)] but encode proteins with the same amino acid sequence. The strain with URA3-GC had an approximately sevenfold elevated rate of ura3 mutations compared with the strains with URA3-WT or URA3-AT About half of these mutations were single-base substitutions and were dependent on the error-prone DNA polymerase ζ. About 30% were deletions or duplications between short (5-10 base) direct repeats resulting from DNA polymerase slippage. The URA3-GC gene also had elevated rates of meiotic and mitotic recombination relative to the URA3-AT or URA3-WT genes. Thus, base composition has a substantial effect on the basic parameters of genome stability and evolution.
Collapse
|
35
|
Zhang K, Di YN, Qi L, Sui Y, Wang TY, Fan L, Lv ZM, Wu XC, Wang PM, Zheng DQ. Genetic characterization and modification of a bioethanol-producing yeast strain. Appl Microbiol Biotechnol 2018; 102:2213-2223. [PMID: 29333587 DOI: 10.1007/s00253-017-8727-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Yeast Saccharomyces cerevisiae strains isolated from different sources generally show extensive genetic and phenotypic diversity. Understanding how genomic variations influence phenotypes is important for developing strategies with improved economic traits. The diploid S. cerevisiae strain NY1308 is used for cellulosic bioethanol production. Whole genome sequencing identified an extensive amount of single nucleotide variations and small insertions/deletions in the genome of NY1308 compared with the S288c genome. Gene annotation of the assembled NY1308 genome showed that 43 unique genes are absent in the S288c genome. Phylogenetic analysis suggested most of the unique genes were obtained through horizontal gene transfer from other species. RNA-Seq revealed that some unique genes were not functional in NY1308 due to unidentified intron sequences. During bioethanol fermentation, NY1308 tends to flocculate when certain inhibitors (derived from the pretreatment of cellulosic feedstock) are present in the fermentation medium. qRT-PCR and genetic manipulation confirmed that the novel gene, NYn43, contributed to the flocculation ability of NY1308. Deletion of NYn43 resulted in a faster fermentation rate for NY1308. This work disclosed the genetic characterization of a bioethanol-producing S. cerevisiae strain and provided a useful paradigm showing how the genetic diversity of the yeast population would facilitate the personalized development of desirable traits.
Collapse
Affiliation(s)
- Ke Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ya-Nan Di
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Ting-Yu Wang
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Li Fan
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Zhen-Mei Lv
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Pin-Mei Wang
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China.
| |
Collapse
|
36
|
Azevedo L, Nofal R, Jay A, Lorenzana A, Keel S, Abraham RS, Horwitz M, van Hee M, Sawaf H. Case Report of an Adolescent Male With Unexplained Pancytopenia: GATA2-Associated Bone Marrow Failure and Genetic Testing. Glob Pediatr Health 2017; 4:2333794X17744947. [PMID: 29230432 PMCID: PMC5718303 DOI: 10.1177/2333794x17744947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Lauren Azevedo
- St John Providence Children's Hospital, Detroit, MI, USA
| | | | - Allison Jay
- St John Providence Children's Hospital, Detroit, MI, USA
| | | | | | | | | | | | - Hadi Sawaf
- St John Providence Children's Hospital, Detroit, MI, USA
| |
Collapse
|
37
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
38
|
DNA replication stress restricts ribosomal DNA copy number. PLoS Genet 2017; 13:e1007006. [PMID: 28915237 PMCID: PMC5617229 DOI: 10.1371/journal.pgen.1007006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/27/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. Eukaryotic genomes contain many copies of ribosomal DNA (rDNA) genes, usually far in excess of the requirement for cellular ribosome biogenesis. rDNA array size is highly variable, both within and across species. Although it is becoming increasingly evident that the rDNA locus serves extra-coding functions, and several pathways that contribute to maintenance of normal rDNA copy number have been discovered, the mechanisms that determine optimal rDNA array size in a cell remain unknown. Here we identify DNA replication stress as one factor that restricts rDNA copy number. We present evidence suggesting that DNA replication stress selects for cells with smaller rDNA arrays, and that contraction of the rDNA array provides a selective advantage to cells under conditions of DNA replication stress. Loss of rDNA copies may be a useful indicator of a history of replication stress, as observed in a mouse model for cancer.
Collapse
|
39
|
Yin Y, Dominska M, Yim E, Petes TD. High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast. eLife 2017; 6. [PMID: 28714850 PMCID: PMC5531827 DOI: 10.7554/elife.28069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination. DOI:http://dx.doi.org/10.7554/eLife.28069.001
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Eunice Yim
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| |
Collapse
|
40
|
Blumenfeld B, Ben-Zimra M, Simon I. Perturbations in the Replication Program Contribute to Genomic Instability in Cancer. Int J Mol Sci 2017; 18:E1138. [PMID: 28587102 PMCID: PMC5485962 DOI: 10.3390/ijms18061138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer and genomic instability are highly impacted by the deoxyribonucleic acid (DNA) replication program. Inaccuracies in DNA replication lead to the increased acquisition of mutations and structural variations. These inaccuracies mainly stem from loss of DNA fidelity due to replication stress or due to aberrations in the temporal organization of the replication process. Here we review the mechanisms and impact of these major sources of error to the replication program.
Collapse
Affiliation(s)
- Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Micha Ben-Zimra
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|