1
|
Milholland KL, Waddey BT, Velázquez-Marrero KG, Lihon MV, Danzeisen EL, Naughton NH, Adams TJ, Schwartz JL, Liu X, Hall MC. Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis. J Biol Chem 2024; 300:107644. [PMID: 39122012 PMCID: PMC11407943 DOI: 10.1016/j.jbc.2024.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14, we discovered a short sequence in the disordered C terminus, distal to the catalytic domain, which mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it "substrate-like catalytic enhancer" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.
Collapse
Affiliation(s)
| | - Benjamin T Waddey
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Michelle V Lihon
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Emily L Danzeisen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Noelle H Naughton
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Timothy J Adams
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jack L Schwartz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Lindell E, Zhang X. Exploring the Enigma: The Role of the Epithelial Protein Lost in Neoplasm in Normal Physiology and Cancer Pathogenesis. Int J Mol Sci 2024; 25:4970. [PMID: 38732188 PMCID: PMC11084159 DOI: 10.3390/ijms25094970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies.
Collapse
Affiliation(s)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden;
| |
Collapse
|
4
|
Al-Ghabkari A, Carlson DA, Haystead TAJ, MacDonald JA. Cooperative involvement of zipper-interacting protein kinase (ZIPK) and the dual-specificity cell-division cycle 14A phosphatase (CDC14A) in vascular smooth muscle cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583600. [PMID: 38496458 PMCID: PMC10942413 DOI: 10.1101/2024.03.06.583600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Zipper-interacting protein kinase (ZIPK) is a Ser/Thr protein kinase with regulatory involvement in vascular smooth muscle cell (VSMC) actin polymerization and focal adhesion assembly dynamics. ZIPK silencing can induce cytoskeletal remodeling with disassembly of actin stress fiber networks and coincident loss of focal adhesion kinase (FAK)-pY397 phosphorylation. The link between ZIPK inhibition and FAK phosphorylation is unknown, and critical interactor(s) and regulator(s) are not yet defined. In this study, we further analyzed the ZIPK-FAK relationship in VSMCs. The application of HS38, a selective ZIPK inhibitor, to coronary artery vascular smooth muscle cells (CASMCs) suppressed cell migration, myosin light chain phosphorylation (pT18&pS19) and FAK-pY397 phosphorylation as well. This was associated with the translocation of cytoplasmic FAK to the nucleus. ZIPK inhibition with HS38 was consistently found to suppress the activation of FAK and attenuate the phosphorylation of other focal adhesion protein components (i.e., pCas130, paxillin, ERK). In addition, our study showed a decrease in human cell-division cycle 14A phosphatase (CDC14A) levels with ZIPK-siRNA treatment and increased CDC14A with transient transfection of ZIPK. Proximity ligation assays (PLA) revealed CDC14A localized with ZIPK and FAK. Silencing CDC14A showed an increase of FAK-pY397 phosphorylation. Ultimately, the data presented herein strongly support a regulatory mechanism of FAK in CASMCs by a ZIPK-CDC14A partnership; ZIPK may act as a key signal integrator to control CDC14A and FAK during VSMC migration.
Collapse
|
5
|
Partscht P, Schiebel E. The diverging role of CDC14B: from mitotic exit in yeast to cell fate control in humans. EMBO J 2023; 42:e114364. [PMID: 37493185 PMCID: PMC10425841 DOI: 10.15252/embj.2023114364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
CDC14, originally identified as crucial mediator of mitotic exit in budding yeast, belongs to the family of dual-specificity phosphatases (DUSPs) that are present in most eukaryotes. Contradicting data have sparked a contentious discussion whether a cell cycle role is conserved in the human paralogs CDC14A and CDC14B but possibly masked due to redundancy. Subsequent studies on CDC14A and CDC14B double knockouts in human and mouse demonstrated that CDC14 activity is dispensable for mitotic progression in higher eukaryotes and instead suggested functional specialization. In this review, we provide a comprehensive overview of our current understanding of how faithful cell division is linked to phosphorylation and dephosphorylation and compare functional similarities and divergences between the mitotic phosphatases CDC14, PP2A, and PP1 from yeast and higher eukaryotes. Furthermore, we review the latest discoveries on CDC14B, which identify this nuclear phosphatase as a key regulator of gene expression and reveal its role in neuronal development. Finally, we discuss CDC14B functions in meiosis and possible implications in other developmental processes.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| |
Collapse
|
6
|
Wang X, Zhang C, Song H, Yuan J, Zhang X, Yuan Y, Zhang L, He J. Characterization of LIMA1 and its emerging roles and potential therapeutic prospects in cancers. Front Oncol 2023; 13:1115943. [PMID: 37274282 PMCID: PMC10235525 DOI: 10.3389/fonc.2023.1115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Actin is the most abundant and highly conserved cytoskeletal protein present in all eukaryotic cells. Remodeling of the actin cytoskeleton is controlled by a variety of actin-binding proteins that are extensively involved in biological processes such as cell motility and maintenance of cell shape. LIM domain and actin-binding protein 1 (LIMA1), as an important actin cytoskeletal regulator, was initially thought to be a tumor suppressor frequently downregulated in epithelial tumors. Importantly, the deficiency of LIMA1 may be responsible for dysregulated cytoskeletal dynamics, altered cell motility and disrupted cell-cell adhesion, which promote tumor proliferation, invasion and migration. As research progresses, the roles of LIMA1 extend from cytoskeletal dynamics and cell motility to cell division, gene regulation, apical extrusion, angiogenesis, cellular metabolism and lipid metabolism. However, the expression of LIMA1 in malignant tumors and its mechanism of action have not yet been elucidated, and many problems and challenges remain to be addressed. Therefore, this review systematically describes the structure and biological functions of LIMA1 and explores its expression and regulatory mechanism in malignant tumors, and further discusses its clinical value and therapeutic prospects.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiran Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Jiang P, Liang B, Zhang Z, Fan B, Zeng L, Zhou Z, Mao Z, Lin Q, Yao W, Shen Q. MicroRNA-146a-5p induces cell cycle arrest and enhances apoptosis in gastric cancer via targeting CDC14A. Front Cell Dev Biol 2023; 11:1181628. [PMID: 37274736 PMCID: PMC10232853 DOI: 10.3389/fcell.2023.1181628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Objective: The present study was designed to investigate the expression of miRNA-146a-5p in gastric cancer (GC) tissues and the paired nonmalignant counterparts, to explore the influences of miRNA-146a-5p on the cell biological behavior of MKN-28 cells (highly metastatic human gastric cancer cells), and to identify the function of abnormal expression of its target gene cell division cycle 14 homolog A (CDC14A) in GC. Methods: We detected the expression of miRNA-146a-5p in formalin-fixed and paraffin-embedded (FFPE) GC tissues through microarray and quantitative real-time polymerase chain reaction (qRT-PCR). Then, we employed cell counting kit-8 (CCK-8) assays, cell cycle assays, and apoptosis analysis to uncover the latent function of miRNA-146a-5p in MKN-28 human GC cells. We also validated the target of miRNA-146a-5p via luciferase reporter assays. Results: miRNA-146a-5p levels were examined in the majority of primary GC tissues and several GC cell lines. As a result, miRNA-146a-5p levels were significantly declined in the GC tissues and cells. In addition, miRNA-146a-5p demonstrated a straight act on its 3'-untranslated region (3'-UTR) of CDC14A mRNA, accordingly decreasing the contents of CDC14A mRNA as well as its protein expression. An inverse correlation between CDC14A and miRNA-146a-5p was observed. Conclusion: The data suggest miRNA-146a-5p may contribute to inducing cell cycle arrest as well as prompting GC cell apoptosis via directly targeting CDC14A. Therefore, miRNA-146a-5p may be a potential indicator of the occurrence and development of GC.
Collapse
Affiliation(s)
- Piao Jiang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Bin Liang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhen Zhang
- The First Affiliated Hospital of Nanchang Medical College, Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Qing Lin
- Department of Thoracic Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- The First Affiliated Hospital of Nanchang Medical College, Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, Nanchang, China
| |
Collapse
|
8
|
Partscht P, Simon A, Chen NP, Erhardt S, Schiebel E. The HIPK2/CDC14B-MeCP2 axis enhances the spindle assembly checkpoint block by promoting cyclin B translation. SCIENCE ADVANCES 2023; 9:eadd6982. [PMID: 36662865 PMCID: PMC9858502 DOI: 10.1126/sciadv.add6982] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/16/2022] [Indexed: 05/12/2023]
Abstract
Mitotic perturbations activate the spindle assembly checkpoint (SAC) that keeps cells in prometaphase with high CDK1 activity. Prolonged mitotic arrest is eventually bypassed by gradual cyclin B decline followed by slippage of cells into G1 without chromosome segregation, a process that promotes cell transformation and drug resistance. Hitherto, the cyclin B1 decay is exclusively defined by mechanisms that involve its proteasomal degradation. Here, we report that hyperphosphorylated HIPK2 kinase accumulates in mitotic cells and phosphorylates the Rett syndrome protein MeCP2 at Ser92, a regulation that is counteracted by CDC14B phosphatase. MeCP2S92 phosphorylation leads to the enhanced translation of cyclin B1, which is important for cells with persistent SAC activation to counteract the proteolytic decline of cyclin B1 and therefore to suspend mitotic slippage. Hence, the HIPK2/CDC14B-MeCP2 axis functions as an enhancer of the SAC-induced mitotic block. Collectively, our study revises the prevailing view of how cells confer a sustainable SAC.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Alexander Simon
- Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Nan-Peng Chen
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| | - Sylvia Erhardt
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| |
Collapse
|
9
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Wu D, Osunkoya AO, Kucuk O. Epithelial protein lost in neoplasm (EPLIN) and prostate cancer: lessons learned from the ARCaP model. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:264-276. [PMID: 34541025 PMCID: PMC8446762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Confucius said, "Good tools are prerequisite to the successful execution of a job". Among his many groundbreaking achievements, Dr. Leland W. K. Chung established several widely used prostate cancer (PCa) cell lines, including C4-2, C4-2B, and ARCaP. These cellular models have been pivotal tools to enhance our understanding of the biology of PCa progression and assist in the discovery of new strategies to treat metastatic, castration-resistant PCa. Recent studies in the ARCaP PCa progression model uncovered epithelial protein lost in neoplasm (EPLIN), an actin-binding protein with an indispensable role in the maintenance of epithelial structures, as a negative regulator of epithelial-mesenchymal transition. Clinical evidence further supports the potential role of EPLIN in controlling metastasis in PCa and other solid tumors. In this article, we review the current understanding of the biology of EPLIN and the ARCaP model in the discovery of new agents for the prevention and treatment of PCa metastasis.
Collapse
Affiliation(s)
- Daqing Wu
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta UniversityAtlanta, GA, USA
- Department of Urology, Emory University School of MedicineAtlanta, GA, USA
- MetCure Therapeutics LLCAtlanta, GA, USA
| | - Adeboye O Osunkoya
- Department of Urology, Emory University School of MedicineAtlanta, GA, USA
- Department of Pathology, Emory University School of MedicineAtlanta, GA, USA
- Department of Pathology, Veterans Affairs Medical CenterDecatur, GA, USA
| | - Omer Kucuk
- Department of Urology, Emory University School of MedicineAtlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
11
|
Zeng J, Jiang WG, Sanders AJ. Epithelial Protein Lost in Neoplasm, EPLIN, the Cellular and Molecular Prospects in Cancers. Biomolecules 2021; 11:biom11071038. [PMID: 34356662 PMCID: PMC8301816 DOI: 10.3390/biom11071038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial Protein Lost In Neoplasm (EPLIN), also known as LIMA1 (LIM Domain And Actin Binding 1), was first discovered as a protein differentially expressed in normal and cancerous cell lines. It is now known to be key to the progression and metastasis of certain solid tumours. Despite a slow pace in understanding the biological role in cells and body systems, as well as its clinical implications in the early years since its discovery, recent years have witnessed a rapid progress in understanding the mechanisms of this protein in cells, diseases and indeed the body. EPLIN has drawn more attention over the past few years with its roles expanding from cell migration and cytoskeletal dynamics, to cell cycle, gene regulation, angiogenesis/lymphangiogenesis and lipid metabolism. This concise review summarises and discusses the recent progress in understanding EPLIN in biological processes and its implications in cancer.
Collapse
|
12
|
Tangeman JA, Luz-Madrigal A, Sreeskandarajan S, Grajales-Esquivel E, Liu L, Liang C, Tsonis PA, Del Rio-Tsonis K. Transcriptome Profiling of Embryonic Retinal Pigment Epithelium Reprogramming. Genes (Basel) 2021; 12:genes12060840. [PMID: 34072522 PMCID: PMC8226911 DOI: 10.3390/genes12060840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
The plasticity of human retinal pigment epithelium (RPE) has been observed during proliferative vitreoretinopathy, a defective repair process during which injured RPE gives rise to fibrosis. In contrast, following injury, the RPE of the embryonic chicken can be reprogrammed to regenerate neural retina in a fibroblast growth factor 2 (FGF2)-dependent manner. To better explore the mechanisms underlying embryonic RPE reprogramming, we used laser capture microdissection to isolate RNA from (1) intact RPE, (2) transiently reprogrammed RPE (t-rRPE) 6 h post-retinectomy, and (3) reprogrammed RPE (rRPE) 6 h post-retinectomy with FGF2 treatment. Using RNA-seq, we observed the acute repression of genes related to cell cycle progression in the injured t-rRPE, as well as up-regulation of genes associated with injury. In contrast, the rRPE was strongly enriched for mitogen-activated protein kinase (MAPK)-responsive genes and retina development factors, confirming that FGF2 and the downstream MAPK cascade are the main drivers of embryonic RPE reprogramming. Clustering and pathway enrichment analysis was used to create an integrated network of the core processes associated with RPE reprogramming, including key terms pertaining to injury response, migration, actin dynamics, and cell cycle progression. Finally, we employed gene set enrichment analysis to suggest a previously uncovered role for epithelial-mesenchymal transition (EMT) machinery in the initiation of embryonic chick RPE reprogramming. The EMT program is accompanied by extensive, coordinated regulation of extracellular matrix (ECM) associated factors, and these observations together suggest an early role for ECM and EMT-like dynamics during reprogramming. Our study provides for the first time an in-depth transcriptomic analysis of embryonic RPE reprogramming and will prove useful in guiding future efforts to understand proliferative disorders of the RPE and to promote retinal regeneration.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sutharzan Sreeskandarajan
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA;
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Correspondence: ; Tel.: +513-529-3128; Fax: +513-529-6900
| |
Collapse
|
13
|
Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, Ding J, Han F, Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188562. [PMID: 33964330 DOI: 10.1016/j.bbcan.2021.188562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Reversible phosphorylation of proteins, controlled by kinases and phosphatases, is involved in various cellular processes. Dual-specificity phosphatases (DUSPs) can dephosphorylate phosphorylated serine, threonine and tyrosine residues. This family consists of 61 members, 44 of which have been identified in human, and these 44 members are classified into six subgroups, the phosphatase and tensin homolog (PTEN) protein phosphatases (PTENs), mitogen-activated protein kinase phosphatases (MKPs), atypical DUSPs, cell division cycle 14 (CDC14) phosphatases (CDC14s), slingshot protein phosphatases (SSHs), and phosphatases of the regenerating liver (PRLs). Growing evidence has revealed dysregulation of DUSPs as one of the common phenomenons and highlighted their key roles in human cancers. Furthermore, their differential expression may be a potential biomarker for tumor prognosis. Despite this, there are still many unstudied members of DUSPs need to further explore their precise roles and mechanism in cancers. Most importantly, the systematic review is very limited on the functional/mechanistic characteristics and clinical application of DUSPs at present. In this review, the structures, functions and underlying mechanisms of DUSPs are systematically reviewed, and the molecular and functional characteristics of DUSPs in different tumor types according to the current researches are summarized. In addition, the potential roles of the unstudied members and the possible different mechanisms of DUSPs in cancer are discussed and classified based on homology alignment and structural domain analyses. Moreover, the specific characteristics of their expression and prognosis are further determined in more than 30 types of human cancers by using the online databases. Finally, their potential application in precise diagnosis, prognosis and treatment of different types of cancers, and the main possible problems for the clinical application at present are prospected.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Na Sun
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan-Yuan Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130023, China
| | - Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
14
|
Gonçalves J, Sharma A, Coyaud É, Laurent EMN, Raught B, Pelletier L. LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation. J Cell Biol 2021; 219:151837. [PMID: 32496561 PMCID: PMC7337498 DOI: 10.1083/jcb.201908132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cilia and flagella are microtubule-based cellular projections with important sensory and motility functions. Their absence or malfunction is associated with a growing number of human diseases collectively referred to as ciliopathies. However, the fundamental mechanisms underpinning cilia biogenesis and functions remain only partly understood. Here, we show that depleting LUZP1 or its interacting protein, EPLIN, increases the levels of MyosinVa at the centrosome and primary cilia formation. We further show that LUZP1 localizes to both actin filaments and the centrosome/basal body. Like EPLIN, LUZP1 is an actin-stabilizing protein that regulates actin dynamics, at least in part, by mobilizing ARP2 to the centrosomes. Both LUZP1 and EPLIN interact with known ciliogenesis and cilia-length regulators and as such represent novel players in actin-dependent centrosome to basal body conversion. Ciliogenesis deregulation caused by LUZP1 or EPLIN loss may thus contribute to the pathology of their associated disease states.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Partscht P, Uddin B, Schiebel E. Human cells lacking CDC14A and CDC14B show differences in ciliogenesis but not in mitotic progression. J Cell Sci 2021; 134:224108. [PMID: 33328327 DOI: 10.1242/jcs.255950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The budding yeast phosphatase Cdc14 has a central role in mitotic exit and cytokinesis. Puzzlingly, a uniform picture for the three human CDC14 paralogues CDC14A, CDC14B and CDC14C in cell cycle control has not emerged to date. Redundant functions between the three CDC14 phosphatases could explain this unclear picture. To address the possibility of redundancy, we tested expression of CDC14 and analysed cell cycle progression of cells with single and double deletions in CDC14 genes. Our data suggest that CDC14C is not expressed in human RPE1 cells, excluding a function in this cell line. Single- and double-knockouts (KO) of CDC14A and CDC14B in RPE1 cells indicate that both phosphatases are not important for the timing of mitotic phases, cytokinesis and cell proliferation. However, cycling CDC14A KO and CDC14B KO cells show altered ciliogenesis compared to wild-type cells. The cilia of cycling CDC14A KO cells are longer, whereas CDC14B KO cilia are more frequent and disassemble faster. In conclusion, this study demonstrates that the cell cycle functions of CDC14 proteins are not conserved between yeast and human cells.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Borhan Uddin
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| |
Collapse
|
16
|
Wen Z, Zhu H, Zhang A, Lin J, Zhang G, Liu D, Xiao Y, Ye C, Sun D, Wu B, Zhang J, Gao J. Cdc14a has a role in spermatogenesis, sperm maturation and male fertility. Exp Cell Res 2020; 395:112178. [PMID: 32679235 DOI: 10.1016/j.yexcr.2020.112178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 11/29/2022]
Abstract
Cdc14a is an evolutionarily conserved dual-specific protein phosphatase, and it plays different roles in different organisms. Cdc14a mutations in human have been reported to cause male infertility, while the specific role of Cdc14a in regulation of the male reproductive system remains elusive. In the present study, we established a knockout mouse model to study the function of Cdc14a in male reproductive system. Cdc14a-/- male mice were subfertile and they could only produce very few offspring. The number of sperm was decreased, the sperm motility was impaired, and the proportion of sperm with abnormal morphology was elevated in Cdc14a-/- mice. When we mated Cdc14a-/- male mice with wild-type (WT) female mice, fertilized eggs could be found in female fallopian tubes, however, the majority of these embryos died during development. Some empty spaces were observed in seminiferous tubule of Cdc14a-/- testes. Compared with WT male mice, the proportions of pachytene spermatocytes were increased and germ cells stained with γH2ax were decreased in Cdc14a-/- male mice, indicating that knockout of Cdc14a inhibited meiotic initiation. Subsequently, we analyzed the expression levels of some substrate proteins of Cdc14a, including Cdc25a, Wee1, and PR-Set7, and compared those with WT testes, in which the expression levels of these proteins were significantly increased in Cdc14a-/- testes. Our results revealed that Cdc14a-/- male mice are highly subfertile, and Cdc14a is essential for normal spermatogenesis and sperm function.
Collapse
Affiliation(s)
- Zongzhuang Wen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Jing Lin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Guangkai Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Chao Ye
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300041, PR China.
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, PR China.
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
17
|
Sun Y, Zheng X, Yuan H, Chen G, Ouyang J, Liu J, Liu X, Xing X, Zhao B. Proteomic analyses reveal divergent ubiquitylation patterns in hepatocellula carcinoma cell lines with different metastasis potential. J Proteomics 2020; 225:103834. [PMID: 32454254 DOI: 10.1016/j.jprot.2020.103834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours, metastasis and recurrence remain the primary reasons for poor prognosis. Ubiquitination serves as a degradation mechanism of proteins, but it is involved in additional cellular processes including metastasis. Here, by using label-free quantification, double-glycine (di-Gly) antibody affinity purification and high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS), we investigated quantitative proteome, ubiquitylome, and the crosstalk between the two datasets in HCC cell lines with different metastasis potential to identify biomarkers associated with HCC metastasis. In total, 83 ubiquitinated proteins significantly and steadily changed their abundance according to their metastatic potential, and the participated biological processes of these ubiquitinated proteins were tightly associated with tumour metastasis. Further signaling pathway analysis revealed that the ribosome and proteasome were significantly over-activated in the highly metastatic cells. Furthermore, we analyzed the crosstalk between the whole proteome and the ubiquitylome, and further discussed the mechanism that how ubiquitination events affect HCC metastasis. Eventually, the ubiquitination of Ku80 was validated to be significantly down-regulated in the high-metastatic cells comparing with the low-metastatic cells. We believe that these findings will help us better understand the underlying molecular mechanisms of the metastasis of HCC. SIGNIFICANCE: In this manuscript, we used label free based proteomics combined with diglycine antibody (di-Gly) affinity purification approach to identify biomarkers associated with HCC recurrence/metastasis in in a serial HCC cell lines with increasing invasion and metastasis potential. And then, we analyzed the crosstalk between the whole proteome and the ubiquitylome. Eventually, the ubiquitination of Ku80 was confirm to be closely associated with invasion and migration of HCC cells. As far as we know, this is the first time to use quantitative proteomic approach to study the ubiquitylomics in HCC cell lines with increasing metastasis ability.
Collapse
Affiliation(s)
- Ying Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Hui Yuan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jiahe Ouyang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, People's Republic of China.
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China.
| |
Collapse
|
18
|
Genetic basis for virulence differences of various Cryptosporidium parvum carcinogenic isolates. Sci Rep 2020; 10:7316. [PMID: 32355272 PMCID: PMC7193590 DOI: 10.1038/s41598-020-64370-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidium parvum is known to cause life-threatening diarrhea in immunocompromised hosts and was also reported to be capable of inducing digestive adenocarcinoma in a rodent model. Interestingly, three carcinogenic isolates of C. parvum, called DID, TUM1 and CHR, obtained from fecal samples of naturally infected animals or humans, showed higher virulence than the commercially available C. parvum IOWA isolate in our animal model in terms of clinical manifestations, mortality rate and time of onset of neoplastic lesions. In order to discover the potential genetic basis of the differential virulence observed between C. parvum isolates and to contribute to the understanding of Cryptosporidium virulence, entire genomes of the isolates DID, TUM1 and CHR were sequenced then compared to the C. parvum IOWA reference genome. 125 common SNVs corresponding to 90 CDSs were found in the C. parvum genome that could explain this differential virulence. In particular variants in several membrane and secreted proteins were identified. Besides the genes already known to be involved in parasite virulence, this study identified potential new virulence factors whose functional characterization can be achieved through CRISPR/Cas9 technology applied to this parasite.
Collapse
|
19
|
The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control. Int J Mol Sci 2020; 21:ijms21030709. [PMID: 31973188 PMCID: PMC7038166 DOI: 10.3390/ijms21030709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.
Collapse
|
20
|
ANXA2 Tyr23 and FLNA Ser2152 phosphorylation associate with poor prognosis in hepatic carcinoma revealed by quantitative phosphoproteomics analysis. J Proteomics 2019; 200:111-122. [PMID: 30951906 DOI: 10.1016/j.jprot.2019.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Hepatoma is one of the most common malignant tumors, and most patients have very poor prognosis. Early prediction and intervention of the hepatoma recurrence/metastasis are the most effective way to improve the patients' clinical outcomes. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative phospho-proteomics approach to identify biomarkers associated with hepatoma recurrence/metastasis in hepatoma cell lines with increasing metastasis ability. In total, 75 phosphorylated peptides corresponding to 60 phosphoproteins were significantly dysregulated and the participated biological processes of these phosphoproteins were tightly associated with tumor metastasis. Further signaling pathway analysis revealed that key signaling pathways which play crucial roles in cancer metastasis have been significantly over activated in the highly metastatic cells. Furthermore, the phosphorylation of FLNASer2152 and ANXA2Tyr23 were validated to be significantly up regulated in the high-metastatic cells comparing with the low-metastatic cells. By further investigation the clinical significance of the phosphorylation of FLNASer2152 and ANXA2Tyr23 in large-scale clinical samples, revealed that the over phosphorylation of FLNASer2152 and ANXA2Tyr23 were associated with poor prognosis and might be potential prognostic biomarkers for the primary hepatoma. When FLNASer2152 combined with ANXA2Tyr23, it had a better prognostic value for both OS and TTR.
Collapse
|
21
|
Imtiaz A, Belyantseva IA, Beirl AJ, Fenollar-Ferrer C, Bashir R, Bukhari I, Bouzid A, Shaukat U, Azaiez H, Booth KT, Kahrizi K, Najmabadi H, Maqsood A, Wilson EA, Fitzgerald TS, Tlili A, Olszewski R, Lund M, Chaudhry T, Rehman AU, Starost MF, Waryah AM, Hoa M, Dong L, Morell RJ, Smith RJH, Riazuddin S, Masmoudi S, Kindt KS, Naz S, Friedman TB. CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Hum Mol Genet 2019; 27:780-798. [PMID: 29293958 DOI: 10.1093/hmg/ddx440] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.
Collapse
Affiliation(s)
- Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular and Cellular Neurobiology, Section on Molecular and Cellular Signaling, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Rasheeda Bashir
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Ihtisham Bukhari
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Amal Bouzid
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Uzma Shaukat
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Azra Maqsood
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Elizabeth A Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Abdelaziz Tlili
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Merete Lund
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ali M Waryah
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Sheikh Riazuddin
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan.,Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan.,Laboratory for Research in Genetic Diseases, Burn Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore 54590, Pakistan
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Uddin B, Partscht P, Chen NP, Neuner A, Weiß M, Hardt R, Jafarpour A, Heßling B, Ruppert T, Lorenz H, Pereira G, Schiebel E. The human phosphatase CDC14A modulates primary cilium length by regulating centrosomal actin nucleation. EMBO Rep 2018; 20:embr.201846544. [PMID: 30467237 DOI: 10.15252/embr.201846544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022] Open
Abstract
CDC14A codes for a conserved proline-directed phosphatase, and mutations in the gene are associated with autosomal-recessive severe to profound deafness, due to defective kinocilia. A role of CDC14A in cilia formation has also been described in other organisms. However, how human CDC14A impacts on cilia formation remains unclear. Here, we show that human RPE1 hCDC14APD cells, encoding a phosphatase dead version of hCDC14A, have longer cilia than wild-type cells, while hCDC14A overexpression reduces cilia formation. Phospho-proteome analysis of ciliated RPE1 cells identified actin-associated and microtubule binding proteins regulating cilia length as hCDC14A substrates, including the actin-binding protein drebrin. Indeed, we find that hCDC14A counteracts the CDK5-dependent phosphorylation of drebrin at S142 during ciliogenesis. Further, we show that drebrin and hCDC14A regulate the recruitment of the actin organizer Arp2 to centrosomes. In addition, during ciliogenesis hCDC14A also regulates endocytosis and targeting of myosin Va vesicles to the basal body in a drebrin-independent manner, indicating that it impacts primary cilia formation in a multilayered manner.
Collapse
Affiliation(s)
- Borhan Uddin
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany.,Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh.,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Patrick Partscht
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Nan-Peng Chen
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Manuel Weiß
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Robert Hardt
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Aliakbar Jafarpour
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Bernd Heßling
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Holger Lorenz
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- DKFZ-ZMBH Alliance and Molecular Biology of Centrosomes and Cilia Unit, Centre for Organismal Studies and German Cancer Research Center, Heidelberg, Germany
| | - Elmar Schiebel
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Collins RJ, Morgan LD, Owen S, Ruge F, Jiang WG, Sanders AJ. Mechanistic insights of epithelial protein lost in neoplasm in prostate cancer metastasis. Int J Cancer 2018; 143:2537-2550. [PMID: 30098000 DOI: 10.1002/ijc.31786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 01/21/2023]
Abstract
EPLIN is frequently downregulated or lost in various cancers. The purpose of this study was to evaluate the importance of EPLIN in prostate cancer progression, with particular focus on the mechanistic implications to elucidate EPLIN's tumor suppressive function in cancer. EPLIN expression was evaluated in prostate cancer cell lines and tissues. PC-3 and LNCaP EPLINα overexpression models were generated through transfection with EPLINα sequence and EPLIN knockdown was achieved using shRNA in CA-HPV-10 cells. Functional assays were performed to evaluate cellular characteristics and potential mechanisms were evaluated using a protein microarray, and validated using western blot analysis. EPLIN expression was reduced in clinical prostate cancer sections, including hyperplasia (p ≤ 0.001) and adenocarcinoma (p = 0.005), when compared to normal prostate tissue. EPLINα overexpression reduced cell growth, migration and invasion, and influenced transcript, protein and phosphoprotein expression of paxillin, FAK and Src. EPLIN knockdown increased the invasive and migratory nature of CA-HPV-10 cells and also induced changes to FAK and Src total and/or phospho expression. Functional characterization of cellular migration and invasion in addition to FAK and Src inhibition demonstrated differential effects between control and EPLINα overexpression and EPLIN knockdown cell lines. This study highlights that EPLIN expression in prostate cancer is able to influence several aspects of cancer cell characteristics, including cell growth, migration and invasion. The mechanism of the tumor suppressive action of EPLIN remains to be fully elucidated; and this study proposes a role for EPLIN's ability to regulate the aggressive characteristics of prostate cancer cells partially through regulating FAK/Src signaling.
Collapse
Affiliation(s)
- Ross J Collins
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Liam D Morgan
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sioned Owen
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
24
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|