1
|
Moser MS, Hallem EA. Astacin metalloproteases in human-parasitic nematodes. ADVANCES IN PARASITOLOGY 2024; 126:177-204. [PMID: 39448190 DOI: 10.1016/bs.apar.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Parasitic nematodes infect over 2 billion individuals worldwide, primarily in low-resource areas, and are responsible for several chronic and potentially deadly diseases. Throughout their life cycle, these parasites are thought to use astacin metalloproteases, a subfamily of zinc-containing metalloendopeptidases, for processes such as skin penetration, molting, and tissue migration. Here, we review the known functions of astacins in human-infective, soil-transmitted parasitic nematodes - including the hookworms Necator americanus and Ancylostoma duodenale, the threadworm Strongyloides stercoralis, the giant roundworm Ascaris lumbricoides, and the whipworm Trichuris trichiura - as well as the human-infective, vector-borne filarial nematodes Wuchereria bancrofti, Onchocerca volvulus, and Brugia malayi. We also review astacin function in parasitic nematodes that infect other mammalian hosts and discuss the potential of astacins as anthelmintic drug targets. Finally, we highlight the molecular and genetic tools that are now available for further exploration of astacin function and discuss how a better understanding of astacin function in human-parasitic nematodes could lead to new avenues for nematode control and drug therapies.
Collapse
Affiliation(s)
- Matthew S Moser
- Molecular Biology Interdepartmental PhD Program; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. Antimicrob Agents Chemother 2023; 67:e0041923. [PMID: 37728916 PMCID: PMC10583680 DOI: 10.1128/aac.00419-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023] Open
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.
Collapse
Affiliation(s)
| | | | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536248. [PMID: 37090573 PMCID: PMC10120635 DOI: 10.1101/2023.04.10.536248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wucheria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis having serious effects on individuals’ lives. Although current anthelmintics are effective at killing the microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open Transient Receptor Potential (TRP) channels on the muscles of adult female Brugia malayi leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trials for treatment of river blindness. Here we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca 2+ fluorescence in the muscle using Ca 2+ -imaging techniques. Diethylcarbamazine interacts with the TRPC orthologue receptor TRP-2 to promote Ca 2+ entry into the Brugia muscle cells which can activate SLO-1 Ca 2+ activated K + channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca 2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca 2+ entry that is increased by emodepside activation of SLO-1 channels.
Collapse
|
4
|
Kashyap SS, McHugh MA, Robertson AP, Martin RJ. Diethylcarbamazine mediated potentiation of emodepside induced paralysis requires TRP-2 in adult Brugia malayi. Int J Parasitol Drugs Drug Resist 2022; 20:108-112. [PMID: 36368250 PMCID: PMC9772243 DOI: 10.1016/j.ijpddr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Human and veterinary filarial nematode infections are a major health concern in tropical countries. They are transmitted by biting insects and mosquitoes. Lymphatic filariasis, a group of filarial infections caused by Brugia spp. and Wucheria bancrofti affect more than 120 million people worldwide. Infected individuals develop swollen limbs and disfigurement, leading to an inability to work and ostracization from society. Control and prophylaxis for these infections involve mass drug administration combinations of anthelmintics including diethylcarbamazine (DEC). DEC has actions on microfilariae, but its effects on adult worms are less pronounced. The SLO-1 (BK) channel activator, emodepside, kills adults of many filarial species. However, the in vivo efficacy of emodepside is suboptimal against B. malayi, possibly due to reduced bioavailability in the lymphatic system. Expressing different slo-1 splice variants in B. malayi also affects sensitivity to emodepside. This study explores the potentiation of emodepside mediated paralysis by DEC in adult female B. malayi. Worminator motility measurements show that co-application of DEC and emodepside increases the potency of emodepside 4-fold. The potentiation of the emodepside effect persists even after the worms recover (desensitize) from the initial effects of DEC. RNAi knock-down demonstrates that the DEC-mediated potentiation of emodepside requires the presence of TRP-2 channels. Our study demonstrates that the addition of DEC could enhance the effect of emodepside where bioavailability or activity against a specific species may be low.
Collapse
Affiliation(s)
- Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Mark A McHugh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Reconstitution of an N-AChR from Brugia malayi an evolved change in acetylcholine receptor accessory protein requirements in filarial parasites. PLoS Pathog 2022; 18:e1010962. [DOI: 10.1371/journal.ppat.1010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/01/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Neurotransmission is an important target for anthelmintic drugs, where receptor characteristics and response can be examined through reconstitution ex vivo in Xenopus laevis oocytes. The homomeric ACR-16 nicotine sensitive acetylcholine receptors (N-AChRs) of several helminth species have been characterized in this way. Our efforts to reconstitute the N-AChR from the clade III filarial parasite, Brugia malayi using similar conditions, initially produced no detectable response. A robust response to acetylcholine is obtained from the closely related clade III parasite Ascaris suum, suggesting that specific changes have occurred between Ascaris and Brugia. N-AChRs from three species intermediate between A. suum and B. malayi were characterized to provide information on the cause. Maximal response to acetylcholine did not change abruptly, consistent with a discrete event, but rather decreased progressively from A. suum through Dracunculus medinensis, Gonglylonema pulchrum and Thelazia callipaeda. Receptor responses to the characteristic nicotine, and other agonists were generally similar. The decrease in maximal current did correlate with a delayed time to reach larger response. Together, this suggested that the failure to reconstitute the B. malayi N-AChR was one extreme of a progressive decrease and that an issue with synthesis of the receptor in oocytes was responsible. Addition of accessory proteins EMC-6, NRA-2 and NRA-4, in addition to RIC-3, produced a small, but measurable B. malayi N-AChR response. Pharmacological properties of a chimeric B. malayi N-AChR were equivalent to the other species, confirming the receptor response remains unchanged while its production is increasingly dependent on accessory proteins. One possibility is that loss of many subunits for acetylcholine receptors from the filarial nematode genome is linked to new subunit combinations that lead to such a dependence. This novel phylogenetic approach allowed the first characterization of a B. malayi AChR ex vivo and in doing so, provides a framework for the successful characterization of other receptors that have yet to be reconstituted.
Collapse
|
6
|
Minkler SJ, Loghry-Jansen HJ, Sondjaja NA, Kimber MJ. Expression and Secretion of Circular RNAs in the Parasitic Nematode, Ascaris suum. Front Genet 2022; 13:884052. [PMID: 35711944 PMCID: PMC9194832 DOI: 10.3389/fgene.2022.884052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a recently identified RNA species with emerging functional roles as microRNA (miRNA) and protein sponges, regulators of gene transcription and translation, and modulators of fundamental biological processes including immunoregulation. Relevant to this study, circRNAs have recently been described in the parasitic nematode, Haemonchus contortus, suggesting they may have functionally important roles in parasites. Given their involvement in regulating biological processes, a better understanding of their role in parasites could be leveraged for future control efforts. Here, we report the use of next-generation sequencing to identify 1,997 distinct circRNAs expressed in adult female stages of the gastrointestinal parasitic nematode, Ascaris suum. We describe spatial expression in the ovary-enriched and body wall muscle, and also report circRNA presence in extracellular vesicles (EVs) secreted by the parasite into the external environment. Further, we used an in-silico approach to predict that a subset of Ascaris circRNAs bind both endogenous parasite miRNAs as well as human host miRNAs, suggesting they could be functional as both endogenous and exogenous miRNA sponges to alter gene expression. There was not a strong correlation between Ascaris circRNA length and endogenous miRNA interactions, indicating Ascaris circRNAs are enriched for Ascaris miRNA binding sites, but that human miRNAs were predicted form a more thermodynamically stable bond with Ascaris circRNAs. These results suggest that secreted circRNAs could be interacting with host miRNAs at the host-parasite interface and influencing host gene transcription. Lastly, although we have previously found that therapeutically relevant concentrations of the anthelmintic drug ivermectin inhibited EV release from parasitic nematodes, we did not observe a direct effect of ivermectin treatment on Ascaris circRNAs expression or secretion.
Collapse
Affiliation(s)
- Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Hannah J Loghry-Jansen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Izquierdo PG, Calahorro F, Thisainathan T, Atkins JH, Haszczyn J, Lewis CJ, Tattersall JEH, Green AC, Holden-Dye L, O'Connor V. Cholinergic signaling at the body wall neuromuscular junction distally inhibits feeding behavior in Caenorhabditis elegans. J Biol Chem 2021; 298:101466. [PMID: 34864060 PMCID: PMC8801469 DOI: 10.1016/j.jbc.2021.101466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/13/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Fernando Calahorro
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Thibana Thisainathan
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - James H Atkins
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Johanna Haszczyn
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christian J Lewis
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O'Connor
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Kashyap SS, Verma S, McHugh M, Wolday M, Williams PD, Robertson AP, Martin RJ. Anthelmintic resistance and homeostatic plasticity (Brugia malayi). Sci Rep 2021; 11:14499. [PMID: 34262123 PMCID: PMC8280109 DOI: 10.1038/s41598-021-93911-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
Homeostatic plasticity refers to the capacity of excitable cells to regulate their activity to make compensatory adjustments to long-lasting stimulation. It is found across the spectrum of vertebrate and invertebrate species and is driven by changes in cytosolic calcium; it has not been explored in parasitic nematodes when treated with therapeutic drugs. Here we have studied the adaptation of Brugia malayi to exposure to the anthelmintic, levamisole that activates muscle AChR ion-channels. We found three phases of the Brugia malayi motility responses as they adapted to levamisole: an initial spastic paralysis; a flaccid paralysis that follows; and finally, a recovery of motility with loss of sensitivity to levamisole at 4 h. Motility, calcium-imaging, patch-clamp and molecular experiments showed the muscle AChRs are dynamic with mechanisms that adjust their subtype composition and sensitivity to levamisole. This homeostatic plasticity allows the parasite to adapt resisting the anthelmintic.
Collapse
Affiliation(s)
- Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Mark McHugh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Mengisteab Wolday
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Paul D Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Tyagi R, Bulman CA, Cho-Ngwa F, Fischer C, Marcellino C, Arkin MR, McKerrow JH, McNamara CW, Mahoney M, Tricoche N, Jawahar S, Janetka JW, Lustigman S, Sakanari J, Mitreva M. An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens 2021; 10:71. [PMID: 33466870 PMCID: PMC7830784 DOI: 10.3390/pathogens10010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adult Brugia pahangi and prioritized the hits for further studies by integrating those results with a computational prioritization of drugs and associated targets. This resulted in the identification of 18 hits with anti-macrofilaricidal activity, of which two classes, azoles and aspartic protease inhibitors, were further expanded upon. Follow up screening against Onchocerca spp. (adult Onchocerca ochengi and pre-adult O. volvulus) confirmed activity for 13 drugs (the majority having IC50 < 10 μM), and a counter screen of a subset against L. loa microfilariae showed the potential to identify selective drugs that prevent adverse events when co-infected individuals are treated. Stage specific activity was also observed. Many of these drugs are amenable to structural optimization, and also have known canonical targets, making them promising candidates for further optimization that can lead to identifying and characterizing novel anti-macrofilarial drugs.
Collapse
Affiliation(s)
- Rahul Tyagi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea CM-00237, Cameroon;
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Chris Marcellino
- Division of Neurocritical Care and Hospital Neurology, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA;
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Nancy Tricoche
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Shabnam Jawahar
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| |
Collapse
|
11
|
Verma S, Kulke D, McCall JW, Martin RJ, Robertson AP. Recording drug responses from adult Dirofilaria immitis pharyngeal and somatic muscle cells. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 15:1-8. [PMID: 33348209 PMCID: PMC7753077 DOI: 10.1016/j.ijpddr.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Despite being considered one of the most pathogenic helminth infections of companion animals, members of macrocyclic lactone class are the only drugs available for the prevention of heartworm disease caused by Dirofilaria immitis. Alarmingly, heartworm prevention is at risk; several studies confirm the existence of macrocyclic lactone resistance in D. immitis populations across the United States. To safeguard the long term prevention and control of this disease, the identification and development of novel anthelmintics is urgently needed. To identify novel, resistance-breaking drugs, it is highly desirable to: Unfortunately, none of the three above statements can be answered sufficiently for D. immitis and most of our hypotheses derive from surrogate species and/or in vitro studies. Therefore, the present study aims to improve our fundamental understanding of the neuromuscular system of the canine heartworm by establishing new methods allowing the investigation of body wall and pharyngeal muscle responses and their modulation by anthelmintics. We found that the pharynx of adult D. immitis responds to both ivermectin and moxidectin with EC50s in the low micromolar range. We also demonstrate that the somatic muscle cells have robust responses to 30 μM acetylcholine, levamisole, pyrantel and nicotine. This is important preliminary data, demonstrating the feasibility of electrophysiological studies in this important parasite.
Collapse
Affiliation(s)
- S Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - D Kulke
- Drug Discovery and External Innovation, Bayer Animal Health GmbH, 51373, Leverkusen, Germany.
| | | | - R J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - A P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
12
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
13
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
14
|
Williams PDE, Verma S, Robertson AP, Martin RJ. Adapting techniques for calcium imaging in muscles of adult Brugia malayi. INVERTEBRATE NEUROSCIENCE 2020; 20:12. [PMID: 32803437 DOI: 10.1007/s10158-020-00247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Brugia malayi is a human filarial nematode parasite that causes lymphatic filariasis or 'elephantiasis' a disfiguring neglected tropical disease. This parasite is a more tractable nematode parasite for the experimental study of anthelmintic drugs and has been studied with patch-clamp and RNAi techniques. Unlike in C. elegans however, calcium signaling in B. malayi or other nematode parasites has not been achieved, limiting the studies of the mode of action of anthelmintic drugs. We describe here the development of calcium imaging methods that allow us to characterize changes in cellular calcium in the muscles of B. malayi. This is a powerful technique that can help in elucidating the mode of action of selected anthelmintics. We developed two approaches that allow the recording of calcium signals in the muscles of adult B. malayi: (a) soaking the muscles with Fluo-3AM, promoting large-scale imaging of multiple cells simultaneously and, (b) direct insertion of Fluo-3 using microinjection, providing the possibility of performing dual calcium and electrophysiological recordings. Here, we describe the techniques used to optimize dye entry into the muscle cells and demonstrate that detectable increases in Fluo-3 fluorescence to elevated calcium concentrations can be achieved in B. malayi using both techniques.
Collapse
Affiliation(s)
- Paul D E Williams
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50011, USA
| | - Saurabh Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50011, USA.
| |
Collapse
|
15
|
McHugh M, Williams P, Verma S, Powell-Coffman JA, Robertson AP, Martin RJ. Cholinergic receptors on intestine cells of Ascaris suum and activation of nAChRs by levamisole. Int J Parasitol Drugs Drug Resist 2020; 13:38-50. [PMID: 32470835 PMCID: PMC7256660 DOI: 10.1016/j.ijpddr.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022]
Abstract
Cholinergic agonists, like levamisole, are a major class of anthelmintic drugs that are known to act selectively on nicotinic acetylcholine receptors (nAChRs) on the somatic muscle and nerves of nematode parasites to produce their contraction and spastic paralysis. Previous studies have suggested that in addition to the nAChRs found on muscle and nerves, there are nAChRs on non-excitable tissues of nematode parasites. We looked for evidence of nAChRs expression in the cells of the intestine of the large pig nematode, Ascaris suum, using RT-PCR and RNAscope in situ hybridization and detected mRNA of nAChR subunits in the cells. These subunits include components of the putative levamisole receptor in A. suum muscle: Asu-unc-38, Asu-unc-29, Asu-unc-63 and Asu-acr-8. Relative expression of these mRNAs in A. suum intestine was quantified by qPCR. We also looked for and found expression of G protein-linked acetylcholine receptors (Asu-gar-1). We used Fluo-3 AM to detect intracellular calcium changes in response to receptor activation by acetylcholine (as a non-selective agonist) and levamisole (as an L-type nAChR agonist) to look for evidence of functioning nAChRs in the intestine. We found that both acetylcholine and levamisole elicited increases in intracellular calcium but their signal profiles in isolated intestinal tissues were different, suggesting activation of different receptor sets. The levamisole responses were blocked by mecamylamine, a nicotinic receptor antagonist in A. suum, indicating the activation of intestinal nAChRs rather than G protein-linked acetylcholine receptors (GARs) by levamisole. The detection of nAChRs in cells of the intestine, in addition to those on muscles and nerves, reveals another site of action of the cholinergic anthelmintics and a site that may contribute to the synergistic interactions of cholinergic anthelmintics with other anthelmintics that affect the intestine (Cry5B).
Collapse
Affiliation(s)
- Mark McHugh
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Paul Williams
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Saurabh Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jo Anne Powell-Coffman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
16
|
Verma S, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine activates TRP channels including TRP-2 in filaria, Brugia malayi. Commun Biol 2020; 3:398. [PMID: 32724078 PMCID: PMC7387335 DOI: 10.1038/s42003-020-01128-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Diethylcarbamazine is an important classic drug used for prevention and treatment of lymphatic filariasis and loiasis, diseases caused by filarial nematodes. Despite many studies, its site of action has not been established. Until now, the consensus has been that diethylcarbamazine works by activating host immune systems, not by a direct action on the parasites. Here we show that low concentrations of diethylcarbamazine have direct and rapid (<30 s) temporary spastic paralyzing effects on the parasites that lasts around 4 h, which is produced by diethylcarbamazine opening TRP channels in muscle of Brugia malayi involving TRP-2 (TRPC-like channel subunits). GON-2 and CED-11, TRPM-like channel subunits, also contributed to diethylcarbamazine responses. Opening of these TRP channels produces contraction and subsequent activation of calcium-dependent SLO-1K channels. Recovery from the temporary paralysis is consistent with inactivation of TRP channels. Our observations elucidate mechanisms for the rapid onset and short-lasting therapeutic actions of diethylcarbamazine.
Collapse
Affiliation(s)
- Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
17
|
D’Amelio S, Lombardo F, Pizzarelli A, Bellini I, Cavallero S. Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes. Genes (Basel) 2020; 11:E801. [PMID: 32679891 PMCID: PMC7397233 DOI: 10.3390/genes11070801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023] Open
Abstract
Advancements in technologies employed in high-throughput next-generation sequencing (NGS) methods are supporting the spread of studies that, combined with advances in computational biology and bioinformatics, have greatly accelerated discoveries within basic and biomedical research for many parasitic diseases. Here, we review the most updated "omic" studies performed on anisakid nematodes, a family of marine parasites that are causative agents of the fish-borne zoonosis known as anisakiasis or anisakidosis. Few deposited data on Anisakis genomes are so far available, and this still hinders the deep and highly accurate characterization of biological aspects of interest, even as several transcriptomic and proteomic studies are becoming available. These have been aimed at discovering and characterizing molecules specific to peculiar developmental parasitic stages or tissues, as well as transcripts with pathogenic potential as toxins and allergens, with a broad relevance for a better understanding of host-pathogen relationships and for the development of reliable diagnostic tools.
Collapse
Affiliation(s)
| | | | | | | | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (S.D.); (F.L.); (A.P.); (I.B.)
| |
Collapse
|
18
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Choudhary S, Tipton JG, Abongwa M, Brewer MT, Chelladurai JJ, Musselman N, Martin RJ, Robertson AP. Pharmacological characterization of a homomeric nicotinic acetylcholine receptor formed by Ancylostoma caninum ACR-16. INVERTEBRATE NEUROSCIENCE : IN 2019; 19:11. [PMID: 31486912 PMCID: PMC7869652 DOI: 10.1007/s10158-019-0231-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/17/2019] [Indexed: 01/07/2023]
Abstract
Parasitic nematode infections are treated using anthelmintic drugs, some of which target nicotinic acetylcholine receptors (nAChRs) located in different parasite tissues. The limited arsenal of anthelmintic agents and the prevalence of drug resistance imply that future defense against parasitic infections will depend on the discovery of novel targets and therapeutics. Previous studies have suggested that Ascaris suum ACR-16 nAChRs are a suitable target for the development of antinematodal drugs. In this study, we characterized the pharmacology of the Ancylostoma caninum ACR-16 receptor using two-electrode voltage-clamp electrophysiology. This technique allowed us to study the effects of cholinergic agonists and antagonists on the nematode nAChRs expressed in Xenopus laevis oocytes. Aca-ACR-16 was not sensitive to many of the existing cholinomimetic anthelmintics (levamisole, oxantel, pyrantel, and tribendimidine). 3-Bromocytisine was the most potent agonist (> 130% of the control acetylcholine current) on the Aca-ACR-16 nAChR but, unlike Asu-ACR-16, oxantel did not activate the receptor. The mean time constants of desensitization for agonists on Aca-ACR-16 were longer than the rates observed in Asu-ACR-16. In contrast to Asu-ACR-16, the A. caninum receptor was completely inhibited by DHβE and moderately inhibited by α-BTX. In conclusion, we have successfully reconstituted a fully functional homomeric nAChR, ACR-16, from A. caninum, a model for human hookworm infections. The pharmacology of the receptor is distinct from levamisole-sensitive nematode receptors. The ACR-16 homologue also displayed some pharmacological differences from Asu-ACR-16. Hence, A. caninum ACR-16 may be a valid target site for the development of anthelmintics against hookworm infections.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - James G Tipton
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Melanie Abongwa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Jeba Jesudoss Chelladurai
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Nicole Musselman
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Small ST, Labbé F, Coulibaly YI, Nutman TB, King CL, Serre D, Zimmerman PA. Human Migration and the Spread of the Nematode Parasite Wuchereria bancrofti. Mol Biol Evol 2019; 36:1931-1941. [PMID: 31077328 PMCID: PMC6735882 DOI: 10.1093/molbev/msz116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human disease lymphatic filariasis causes the debilitating effects of elephantiasis and hydrocele. Lymphatic filariasis currently affects the lives of 90 million people in 52 countries. There are three nematodes that cause lymphatic filariasis, Brugia malayi, Brugia timori, and Wuchereria bancrofti, but 90% of all cases of lymphatic filariasis are caused solely by W. bancrofti (Wb). Here we use population genomics to reconstruct the probable route and timing of migration of Wb strains that currently infect Africa, Haiti, and Papua New Guinea (PNG). We used selective whole genome amplification to sequence 42 whole genomes of single Wb worms from populations in Haiti, Mali, Kenya, and PNG. Our results are consistent with a hypothesis of an Island Southeast Asia or East Asian origin of Wb. Our demographic models support divergence times that correlate with the migration of human populations. We hypothesize that PNG was infected at two separate times, first by the Melanesians and later by the migrating Austronesians. The migrating Austronesians also likely introduced Wb to Madagascar where later migrations spread it to continental Africa. From Africa, Wb spread to the New World during the transatlantic slave trade. Genome scans identified 17 genes that were highly differentiated among Wb populations. Among these are genes associated with human immune suppression, insecticide sensitivity, and proposed drug targets. Identifying the distribution of genetic diversity in Wb populations and selection forces acting on the genome will build a foundation to test future hypotheses and help predict response to current eradication efforts.
Collapse
Affiliation(s)
- Scott T Small
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
| | - Frédéric Labbé
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| | - Yaya I Coulibaly
- Head Filariasis Unit, NIAID-Mali ICER, University of Bamako, Bamako, Mali
| | | | - Christopher L King
- Global Health and Disease, Case Western Reserve University, Cleveland, OH
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peter A Zimmerman
- Global Health and Disease, Case Western Reserve University, Cleveland, OH
- Department of Biology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
21
|
Kashyap SS, Verma S, Voronin D, Lustigman S, Kulke D, Robertson AP, Martin RJ. Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel. PLoS Pathog 2019; 15:e1008041. [PMID: 31553770 PMCID: PMC6779273 DOI: 10.1371/journal.ppat.1008041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/07/2019] [Accepted: 08/23/2019] [Indexed: 01/15/2023] Open
Abstract
Filariae are parasitic nematodes that are transmitted to their definitive host as third-stage larvae by arthropod vectors like mosquitoes. Filariae cause diseases including: lymphatic filariasis with distressing and disturbing symptoms like elephantiasis; and river blindness. Filarial diseases affect millions of people in 73 countries throughout the topics and sub-tropics. The drugs available for mass drug administration, (ivermectin, albendazole and diethylcarbamazine), are ineffective against adult filariae (macrofilariae) at the registered dosing regimen; this generates a real and urgent need to identify effective macrofilaricides. Emodepside, a veterinary anthelmintic registered for treatment of nematode infections in cats and dogs, is reported to have macrofilaricidal effects. Here, we explore the mode of action of emodepside using adult Brugia malayi, one of the species that causes lymphatic filariasis. Whole-parasite motility measurement with Worminator and patch-clamp of single muscle cells show that emodepside potently inhibits motility by activating voltage-gated potassium channels and that the male is more sensitive than the female. RNAi knock down suggests that emodepside targets SLO-1 K channels. We expressed slo-1 isoforms, with alternatively spliced exons at the RCK1 (Regulator of Conductance of Potassium) domain, heterologously in Xenopus laevis oocytes. We discovered that the slo-1f isoform, found in muscles of males, is more sensitive to emodepside than the slo-1a isoform found in muscles of females; and selective RNAi of the slo-1a isoform in female worms increased emodepside potency. In Onchocerca volvulus, that causes river blindness, we found two isoforms in adult females with homology to Bma-SLO-1A and Bma-SLO-1F at the RCK1 domain. In silico modeling identified an emodepside binding pocket in the same RCK1 region of different species of filaria that is affected by these splice variations. Our observations show that emodepside has potent macrofilaricidal effects and alternative splicing in the RCK1 binding pocket affects potency. Therefore, the evaluation of potential sex-dependent effects of an anthelmintic compound is of importance to prevent any under-dosing of one or the other gender of nematodes once given to patients.
Collapse
Affiliation(s)
- Sudhanva S. Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Daniel Kulke
- Bayer Animal Health GmbH, Drug Discovery and External Innovation, Leverkusen, Germany
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
22
|
Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci Rep 2019; 9:483. [PMID: 30679624 PMCID: PMC6345965 DOI: 10.1038/s41598-018-37036-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/28/2018] [Indexed: 11/09/2022] Open
Abstract
Nematodes belong to one of the most diverse animal phyla. However, functional genomic studies in nematodes, other than in a few species, have often been limited in their reliability and success. Here we report that by combining liposome-based technology with microinjection, we were able to establish a wide range of genomic techniques in the newly described nematode genus Auanema. The method also allowed heritable changes in dauer larvae of Auanema, despite the immaturity of the gonad at the time of the microinjection. As proof of concept for potential functional studies in other nematode species, we also induced RNAi in the free-living nematode Pristionchus pacificus and targeted the human parasite Strongyloides stercoralis.
Collapse
|
23
|
Blanco MG, Vela Gurovic MS, Silbestri GF, Garelli A, Giunti S, Rayes D, De Rosa MJ. Diisopropylphenyl-imidazole (DII): A new compound that exerts anthelmintic activity through novel molecular mechanisms. PLoS Negl Trop Dis 2018; 12:e0007021. [PMID: 30557347 PMCID: PMC6312359 DOI: 10.1371/journal.pntd.0007021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/31/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Nematode parasites cause substantial morbidity to billions of people and considerable losses in livestock and food crops. The repertoire of effective anthelmintic compounds for treating these parasitoses is very limited, as drug development has been delayed for decades. Moreover, resistance has become a global concern in livestock parasites and is an emerging issue for human helminthiasis. Therefore, anthelmintics with novel mechanisms of action are urgently needed. Taking advantage of Caenorhabditis elegans as an established model system, we here screened the nematicidal potential of novel imidazolium and imidazole derivatives. One of these derivatives, diisopropylphenyl-imidazole (DII), is lethal to C. elegans at both mature and immature stages. This lethal effect appears to be specific because DII concentrations which prove to be toxic to C. elegans do not induce significant lethality on bacteria, Drosophila melanogaster, and HEK-293 cells. Our analysis of DII action on C. elegans mutant strains determined that, in the adult stage, null mutants of unc-29 are resistant to the drug. Muscle expression of this gene completely restores DII sensitivity. UNC-29 has been largely reported as an essential constituent of the levamisole-sensitive muscle nicotinic receptor (L-AChR). Nevertheless, null mutants in unc-63 and lev-8 (essential and non-essential subunits of L-AChRs, respectively) are as sensitive to DII as the wild-type strain. Therefore, our results suggest that DII effects on adult nematodes rely on a previously unidentified UNC-29-containing muscle AChR, different from the classical L-AChR. Interestingly, DII targets appear to be different between larvae and adults, as unc-29 null mutant larvae are sensitive to the drug. The existence of more than one target could delay resistance development. Its lethality on C. elegans, its harmlessness in non-nematode species and its novel and dual mechanism of action make DII a promising candidate compound for anthelmintic therapy. Intestinal helminth infections affect approximately one-third of the world’s population, particularly in developing countries. Paradoxically, drug development in this area has been delayed for years. In addition, resistance to currently available drugs is also an emerging global concern. Therefore, there is an urgent need for new and effective anthelmintics. In this work, we used C. elegans as a model for parasitic nematodes to screen the anthelmintic activity of several imidazole-derivative compounds. We found a compound, diisopropylphenyl-imidazole (DII), that is lethal to both mature and immature stages of C. elegans. The DII nematicidal mechanism of action depends on a novel UNC-29-containing AChR in adult C. elegans muscle. Since this mechanism is different from those of currently used anthelmintics, it could constitute a therapeutic option when traditional anthelmintic agents fail. In addition, we found that the DII larvicidal effect depends on a different target to that of adult stages. The fact that DII produces lethality through different targets may delay resistance development. The specificity and novel mode of action of DII, which includes differential targeting in larvae and adult nematodes, support its potential as a promising drug candidate to treat helminthiasis.
Collapse
Affiliation(s)
- María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Soledad Vela Gurovic
- Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.,CERZOS UNS-CONICET CCT, Bahía Blanca, Argentina
| | - Gustavo Fabián Silbestri
- Dpto de Química, Universidad Nacional del Sur (UNS)-CONICET, Instituto de Química del Sur (INQUISUR), Bahía Blanca, Argentina
| | - Andrés Garelli
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
24
|
Turani O, Hernando G, Corradi J, Bouzat C. Activation of Caenorhabditis elegans Levamisole-Sensitive and Mammalian Nicotinic Receptors by the Antiparasitic Bephenium. Mol Pharmacol 2018; 94:1270-1279. [PMID: 30190363 DOI: 10.1124/mol.118.113357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in neuromuscular transmission. In nematodes, muscle nAChRs are targets of antiparasitic drugs. Bephenium is an anthelmintic compound whose molecular action in the free-living nematode Caenorhabditis elegans, which is a model for anthelmintic drug discovery, is poorly known. We explored the effect of bephenium on C. elegans locomotion and applied single-channel recordings to identify its molecular target, mechanism of action, and selectivity between mammalian and C. elegans nAChRs. As in parasites, bephenium paralyzes C. elegans A mutant strain lacking the muscle levamisole-sensitive nAChR (L-AChR) shows full resistance to bephenium, indicating that this receptor is the target site. Bephenium activates L-AChR channels from larvae muscle cells in the micromolar range. Channel activity is similar to that elicited by levamisole, appearing mainly as isolated brief openings. Our analysis revealed that bephenium is an agonist of L-AChR and an open-channel blocker at higher concentrations. It also activates mammalian muscle nAChRs. Opening events are significantly briefer than those elicited by ACh and do not appear in activation episodes at a range of concentrations, indicating that it is a very weak agonist of mammalian nAChRs. Recordings in the presence of ACh showed that bephenium acts as a voltage-dependent channel blocker and a low-affinity agonist. Molecular docking into homology-modeled binding-site interfaces represent the binding mode of bephenium that explains its partial agonism. Given the great diversity of helminth nAChRs and the overlap of their pharmacological profiles, unraveling the basis of drug receptor-selectivity will be required for rational design of anthelmintic drugs.
Collapse
Affiliation(s)
- Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
25
|
Blanchard A, Guégnard F, Charvet CL, Crisford A, Courtot E, Sauvé C, Harmache A, Duguet T, O’Connor V, Castagnone-Sereno P, Reaves B, Wolstenholme AJ, Beech RN, Holden-Dye L, Neveu C. Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: When novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species. PLoS Pathog 2018; 14:e1006996. [PMID: 29719008 PMCID: PMC5931475 DOI: 10.1371/journal.ppat.1006996] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
Cholinergic agonists such as levamisole and pyrantel are widely used as anthelmintics to treat parasitic nematode infestations. These drugs elicit spastic paralysis by activating acetylcholine receptors (AChRs) expressed in nematode body wall muscles. In the model nematode Caenorhabditis elegans, genetic screens led to the identification of five genes encoding levamisole-sensitive-AChR (L-AChR) subunits: unc-38, unc-63, unc-29, lev-1 and lev-8. These subunits form a functional L-AChR when heterologously expressed in Xenopus laevis oocytes. Here we show that the majority of parasitic species that are sensitive to levamisole lack a gene orthologous to C. elegans lev-8. This raises important questions concerning the properties of the native receptor that constitutes the target for cholinergic anthelmintics. We demonstrate that the closely related ACR-8 subunit from phylogenetically distant animal and plant parasitic nematode species functionally substitutes for LEV-8 in the C. elegans L-AChR when expressed in Xenopus oocytes. The importance of ACR-8 in parasitic nematode sensitivity to cholinergic anthelmintics is reinforced by a ‘model hopping’ approach in which we demonstrate the ability of ACR-8 from the hematophagous parasitic nematode Haemonchus contortus to fully restore levamisole sensitivity, and to confer high sensitivity to pyrantel, when expressed in the body wall muscle of C. elegans lev-8 null mutants. The critical role of acr-8 to in vivo drug sensitivity is substantiated by the successful demonstration of RNAi gene silencing for Hco-acr-8 which reduced the sensitivity of H. contortus larvae to levamisole. Intriguingly, the pyrantel sensitivity remained unchanged thus providing new evidence for distinct modes of action of these important anthelmintics in parasitic species versus C. elegans. More broadly, this highlights the limits of C. elegans as a predictive model to decipher cholinergic agonist targets from parasitic nematode species and provides key molecular insight to inform the discovery of next generation anthelmintic compounds. Parasitic nematodes have global health and economic impacts. They infect animals, including livestock, humans, and plants including all major food crops. Their control in human and veterinary medicine is reliant on anthelmintic drugs but this is now challenged by resistant worms especially in livestock. Importantly, for anthelmintics such as levamisole and other cholinergic agonists, resistance appears to be less frequent stressing the need to investigate their molecular target in parasitic nematodes. The levamisole receptor was first identified in the free-living model nematode C. elegans but it is now becoming apparent that this is not a good predictor for many parasitic species. In particular we have found that the LEV-8 subunit which is involved in levamisole sensitivity in C. elegans, is not present in many levamisole-sensitive parasitic species. Here we used heterologous expression systems and gene silencing to provide the functional in vivo demonstration that the ACR-8 subunit, which is not an essential component of the levamisole receptor in C. elegans, has a critical role in the levamisole sensitivity of parasitic nematodes. This has important significance for understanding the molecular targets of cholinergic anthelmintics and addresses the increasing challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | - Anna Crisford
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Elise Courtot
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
| | | | | | - Thomas Duguet
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Vincent O’Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Barbara Reaves
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Adrian J. Wolstenholme
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Lindy Holden-Dye
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Cedric Neveu
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
- * E-mail:
| |
Collapse
|
26
|
The interactions of anthelmintic drugs with nicotinic receptors in parasitic nematodes. Emerg Top Life Sci 2017; 1:667-673. [PMID: 33525839 DOI: 10.1042/etls20170096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 02/01/2023]
Abstract
Parasitic nematodes express a large number of distinct nicotinic acetylcholine receptors and these in turn are the targets of many classes of anthelmintic drug. This complexity poses many challenges to the field, including sorting the exact subunit composition of each of the receptor subtypes and how much they vary between species. It is clear that the model organism Caenorhabditis elegans does not recapitulate the complexity of nicotinic pharmacology of many parasite species and data using this system may be misleading when applied to them. The number of different receptors may allow nematodes some plasticity which they can exploit to evolve resistance to a specific cholinergic drug; however, this may mean that combinations of cholinergic agents may be effective at sustainably controlling them. Resistance may involve the expression of truncated receptor subunits that affect the expression levels of the receptors via mechanisms that remain to be deciphered.
Collapse
|