1
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
2
|
Akhter MS, Goodwin JE. Endothelial Dysfunction in Cardiorenal Conditions: Implications of Endothelial Glucocorticoid Receptor-Wnt Signaling. Int J Mol Sci 2023; 24:14261. [PMID: 37762564 PMCID: PMC10531724 DOI: 10.3390/ijms241814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium constitutes the innermost lining of the blood vessels and controls blood fluidity, vessel permeability, platelet aggregation, and vascular tone. Endothelial dysfunction plays a key role in initiating a vascular inflammatory cascade and is the pivotal cause of various devastating diseases in multiple organs including the heart, lung, kidney, and brain. Glucocorticoids have traditionally been used to combat vascular inflammation. Endothelial cells express glucocorticoid receptors (GRs), and recent studies have demonstrated that endothelial GR negatively regulates vascular inflammation in different pathological conditions such as sepsis, diabetes, and atherosclerosis. Mechanistically, the anti-inflammatory effects of GR are mediated, in part, through the suppression of Wnt signaling. Moreover, GR modulates the fatty acid oxidation (FAO) pathway in endothelial cells and hence can influence FAO-mediated fibrosis in several organs including the kidneys. This review summarizes the relationship between GR and Wnt signaling in endothelial cells and the effects of the Wnt pathway in different cardiac and renal diseases. Available data suggest that GR plays a significant role in restoring endothelial integrity, and research on endothelial GR-Wnt interactions could facilitate the development of novel therapies for many cardiorenal conditions.
Collapse
Affiliation(s)
- Mohammad Shohel Akhter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Julie Elizabeth Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
3
|
Nabhan AN, Webster JD, Adams JJ, Blazer L, Everrett C, Eidenschenk C, Arlantico A, Fleming I, Brightbill HD, Wolters PJ, Modrusan Z, Seshagiri S, Angers S, Sidhu SS, Newton K, Arron JR, Dixit VM. Targeted alveolar regeneration with Frizzled-specific agonists. Cell 2023; 186:2995-3012.e15. [PMID: 37321220 DOI: 10.1016/j.cell.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Collapse
Affiliation(s)
- Ahmad N Nabhan
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jarret J Adams
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Levi Blazer
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Christine Everrett
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Celine Eidenschenk
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Isabel Fleming
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | | | - Stephane Angers
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 1A2, Canada; Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sachdev S Sidhu
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joseph R Arron
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Samuelsson AM, Bartolomaeus TUP, Anandakumar H, Thowsen I, Nikpey E, Han J, Marko L, Finne K, Tenstad O, Eckstein J, Berndt N, Kühne T, Kedziora S, Sultan I, Skogstrand T, Karlsen TV, Nurmi H, Forslund SK, Bollano E, Alitalo K, Muller DN, Wiig H. VEGF-B hypertrophy predisposes to transition from diastolic to systolic heart failure in hypertensive rats. Cardiovasc Res 2023; 119:1553-1567. [PMID: 36951047 PMCID: PMC10318391 DOI: 10.1093/cvr/cvad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/04/2022] [Accepted: 01/10/2023] [Indexed: 03/24/2023] Open
Abstract
AIMS Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Jonas Leis vei 65, 5021 Bergen, Norway
| | - Theda Ulrike Patricia Bartolomaeus
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Irene Thowsen
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Elham Nikpey
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Jianhua Han
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Jonas Leis vei 65, 5021 Bergen, Norway
| | - Lajos Marko
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Johannes Eckstein
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charité-University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charite Platz 1, 10117 Berlin, Germany
| | - Titus Kühne
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charite Platz 1, 10117 Berlin, Germany
| | - Sarah Kedziora
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Sofia K Forslund
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Entela Bollano
- Department of Cardiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Göteborg, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Dominik N Muller
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| |
Collapse
|
5
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Liu J, Zhang R, Wang D, Lin Y, Bai C, Nie N, Gao S, Zhang Q, Chang H, Ren C. Elucidating the role of circNFIB in myocardial fibrosis alleviation by endogenous sulfur dioxide. BMC Cardiovasc Disord 2022; 22:492. [PMID: 36404310 PMCID: PMC9677687 DOI: 10.1186/s12872-022-02909-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND To investigate the role of circNFIB in the alleviation of myocardial fibrosis by endogenous sulfur dioxide (SO2). METHODS We stimulated cultured neonatal rat cardiac fibroblasts with transforming growth factor-β1 (TGF-β1) and developed an in vitro myocardial fibrosis model. Lentivirus vectors containing aspartate aminotransferase 1 (AAT1) cDNA were used to overexpress AAT1, and siRNA was used to silence circNFIB. The SO2, collagen, circNFIB, Wnt/β-catenin, and p38 MAPK pathways were examined in each group. RESULTS In the in vitro TGF-β1-induced myocardial fibrosis model, endogenous SO2/AAT1 expression was significantly decreased, and collagen levels in the cell supernatant and type I and III collagen expression, as well as α-SMA expression, were all significantly increased. TGF-β1 also significantly reduced circNFIB expression. AAT1 overexpression significantly reduced myocardial fibrosis while significantly increasing circNFIB expression. Endogenous SO2 alleviated myocardial fibrosis after circNFIB expression was blocked. We discovered that circNFIB plays an important role in the alleviation of myocardial fibrosis by endogenous SO2 by inhibiting the Wnt/β-catenin and p38 MAPK pathways. CONCLUSION Endogenous SO2 promotes circNFIB expression, which inhibits the Wnt/β-catenin and p38 MAPK signaling pathways, consequently alleviating myocardial fibrosis.
Collapse
Affiliation(s)
- Jia Liu
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ranran Zhang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dahai Wang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Lin
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Bai
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nana Nie
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Gao
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuye Zhang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Chang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chongmin Ren
- grid.412521.10000 0004 1769 1119Department of orthopedic oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Meyer IS, Li X, Meyer C, Voloshanenko O, Pohl S, Boutros M, Katus HA, Frey N, Leuschner F. Blockade of Wnt Secretion Attenuates Myocardial Ischemia-Reperfusion Injury by Modulating the Inflammatory Response. Int J Mol Sci 2022; 23:ijms232012252. [PMID: 36293109 PMCID: PMC9602582 DOI: 10.3390/ijms232012252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Wnt (a portmanteau of Wingless and Int-1) signaling in the adult heart is largely quiescent. However, there is accumulating evidence that it gets reactivated during the healing process after myocardial infarction (MI). We here tested the therapeutic potential of the Wnt secretion inhibitor LGK-974 on MI healing. Ischemia/reperfusion (I/R) injury was induced in mice and Wnt signaling was inhibited by oral administration of the porcupine inhibitor LGK-974. The transcriptome was analyzed from infarcted tissue by using RNA sequencing analysis. The inflammatory response after I/R was evaluated by flow cytometry. Heart function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Transcriptome and gene set enrichment analysis revealed a modulation of the inflammatory response upon administration of the Wnt secretion inhibitor LGK-974 following I/R. In addition, LGK-974-treated animals showed an attenuated inflammatory response and improved heart function. In an in vitro model of hypoxic cardiomyocyte and monocyte/macrophage interaction, LGK974 inhibited the activation of Wnt signaling in monocytes/macrophages and reduced their pro-inflammatory phenotype. We here show that Wnt signaling affects inflammatory processes after MI. The Wnt secretion inhibitor LGK-974 appears to be a promising compound for future immunomodulatory approaches to improve cardiac remodeling after MI.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Xue Li
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Carina Meyer
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Susann Pohl
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hugo Albert Katus
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Norbert Frey
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Florian Leuschner
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
8
|
Halmetoja E, Nagy I, Szabo Z, Alakoski T, Yrjölä R, Vainio L, Viitavaara E, Lin R, Rahtu-Korpela L, Vainio S, Kerkelä R, Magga J. Wnt11 in regulation of physiological and pathological cardiac growth. FASEB J 2022; 36:e22544. [PMID: 36098469 DOI: 10.1096/fj.202101856rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Wnt11 regulates early cardiac development and left ventricular compaction in the heart, but it is not known how Wnt11 regulates postnatal cardiac maturation and response to cardiac stress in the adult heart. We studied cell proliferation/maturation in postnatal and adolescent Wnt11 deficient (Wnt11-/-) heart and subjected adult mice with partial (Wnt11+/-) and complete Wnt11 (Wnt11-/-) deficiency to cardiac pressure overload. In addition, we subjected primary cardiomyocytes to recombinant Wnt proteins to study their effect on cardiomyocyte growth. Wnt11 deficiency did not affect cardiomyocyte proliferation or maturation in the postnatal or adolescent heart. However, Wnt11 deficiency led to enlarged heart phenotype that was not accompanied by significant hypertrophy of individual cardiomyocytes. Analysis of stressed adult hearts from wild-type mice showed a progressive decrease in Wnt11 expression in response to pressure overload. When studied in experimental cardiac pressure overload, Wnt11 deficiency did not exacerbate cardiac hypertrophy or remodeling and cardiac function remained identical between the genotypes. When subjecting cardiomyocytes to hypertrophic stimulus, the presence of recombinant Wnt11 together with Wnt5a reduced protein synthesis. In conclusion, Wnt11 deficiency does not affect postnatal cardiomyocyte proliferation but leads to cardiac growth. Interestingly, Wnt11 deficiency alone does not substantially modulate hypertrophic response to pressure overload in vivo. Wnt11 may require cooperation with other noncanonical Wnt proteins to regulate hypertrophic response under stress.
Collapse
Affiliation(s)
| | - Irina Nagy
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Tarja Alakoski
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Raisa Yrjölä
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Laura Vainio
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | | | - Ruizhu Lin
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | | | - Seppo Vainio
- Laboratory of Developmental Biology, Center for Cell Matrix Research, University of Oulu, Oulu, Finland.,Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Alharbi KS, Singh Y, Afzal O, Alfawaz Altamimi AS, Kazmi I, Al-Abbasi FA, Alzarea SI, Chellappan DK, Singh SK, Dua K, Gupta G. Molecular explanation of Wnt/βcatenin antagonist pyrvinium mediated calcium equilibrium changes in aging cardiovascular disorders. Mol Biol Rep 2022; 49:11101-11111. [DOI: 10.1007/s11033-022-07863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
|
10
|
He J, Wo D, Ma E, Wang Q, Chen J, Gao Q, Zhao Q, Shen F, Peng J, Zhu W, Ren DN. Huoxin pill prevents excessive inflammation and cardiac dysfunction following myocardial infarction by inhibiting adverse Wnt/β‑catenin signaling activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154293. [PMID: 35785558 DOI: 10.1016/j.phymed.2022.154293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is the most common cause of cardiac injury, resulting in widespread and irreversible damage to the heart. The incidence of MI gives rise to the excessive production of inflammatory cytokines that further promotes myocardial dysfunction. Wnt/β-catenin signaling pathway is adversely activated during MI and plays an important role in the modulation of the inflammatory response following tissue injury. Huoxin pill (HXP) is a Traditional Chinese Medicine formulation that has been long used in the treatment of cardiovascular diseases, however its mechanisms of cardioprotection remain unclear. METHODS We performed murine models of MI in order to model myocardial ischemic damage and examine the effect and underlying mechanism of HXP in protecting against myocardial ischemic injury. We further constructed conditional cardiomyocyte-specific β-catenin knockout mice and induced surgical MI in order to better understand the role of Wnt/β-catenin signaling following myocardial infarction in the adult heart. RESULTS HXP administration strongly protected against cardiac ischemic injury, improved cardiac function, and markedly decreased the expression of pro-inflammatory cytokines following MI. Nuclear activation of β‑catenin resulted in significantly increased nuclear translocation and activation of NF-κB. In contrast, cardiomyocyte-specific deletion of β-catenin decreased NF-κB activation and exhibited beneficial effects following ischemic injury. Hence, HXP protected against MI-induced ischemic injury and excessive inflammatory response via inhibiting Wnt/β‑catenin signaling. CONCLUSIONS Our study elucidated the role of HXP in protecting against ischemic myocardial injury via preventing MI-induced inflammatory response, which was mediated by its ability to inhibit adverse Wnt/β‑catenin signaling activation. Thus, our study provides the basis for the implementation of HXP as an effective therapeutic strategy in protecting against myocardial ischemic diseases.
Collapse
Affiliation(s)
- Jia He
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - En Ma
- Clinical and Translational Research Center, Research Institute of Heart Failure, Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Qing Wang
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Jinxiao Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Qian Gao
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Qiqin Zhao
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Fang Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative, Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, Fujian 350122, China.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
Collapse
Affiliation(s)
- Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
12
|
Alvandi Z, Nagata Y, Passos LSA, Hashemi Gheinani A, Guerrero JL, Wylie‐Sears J, Romero DC, Morris BA, Sullivan SM, Yaghoubian KM, Alvandi A, Adam RM, Aikawa E, Levine RA, Bischoff J. Wnt Site Signaling Inhibitor Secreted Frizzled‐Related Protein 3 Protects Mitral Valve Endothelium From Myocardial Infarction–Induced Endothelial‐to‐Mesenchymal Transition. J Am Heart Assoc 2022; 11:e023695. [PMID: 35348006 PMCID: PMC9075477 DOI: 10.1161/jaha.121.023695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
The onset and mechanisms of endothelial‐to‐mesenchymal transition (EndMT) in mitral valve (MV) leaflets following myocardial infarction (MI) are unknown, yet these events are closely linked to stiffening of leaflets and development of ischemic mitral regurgitation. We investigated whether circulating molecules present in plasma within days after MI incite EndMT in MV leaflets.
Methods and Results
We examined the onset of EndMT in MV leaflets from 9 sheep with inferior MI, 8 with sham surgery, and 6 naïve controls. Ovine MVs 8 to 10 days after inferior MI displayed EndMT, shown by increased vascular endothelial cadherin/α‐smooth muscle actin–positive cells. The effect of plasma on EndMT in MV endothelial cells (VECs) was assessed by quantitative polymerase chain reaction, migration assays, and immunofluorescence. In vitro, post‐MI plasma induced EndMT marker expression and enhanced migration of mitral VECs; sham plasma did not. Analysis of sham versus post‐MI plasma revealed a significant drop in the Wnt signaling antagonist sFRP3 (secreted frizzled‐related protein 3) in post‐MI plasma. Addition of recombinant sFRP3 to post‐MI plasma reversed its EndMT‐inducing effect on mitral VECs. RNA‐sequencing analysis of mitral VECs exposed to post‐MI plasma showed upregulated FOXM1 (forkhead box M1). Blocking FOXM1 reduced EndMT transcripts in mitral VECs treated with post‐MI plasma. Finally, FOXM1 induced by post‐MI plasma was downregulated by sFRP3.
Conclusions
Reduced sFRP3 in post‐MI plasma facilitates EndMT in mitral VECs by increasing the transcription factor FOXM1. Restoring sFRP3 levels or inhibiting FOXM1 soon after MI may provide a novel strategy to modulate EndMT in the MV to prevent ischemic mitral regurgitation and heart failure.
Collapse
Affiliation(s)
- Zahra Alvandi
- Vascular Biology Program Boston Children’s Hospital Boston MA
- Department of Surgery Harvard Medical School Boston MA
| | - Yasufumi Nagata
- Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA
| | | | - Ali Hashemi Gheinani
- Department of Surgery Harvard Medical School Boston MA
- Broad Institute of MIT and Harvard Cambridge MA
- Department of Urology Boston Children’s Hospital Boston MA
| | - J. Luis Guerrero
- Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA
| | | | - Dayana Carolina Romero
- Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA
| | - Brittan A. Morris
- Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA
| | - Suzanne M. Sullivan
- Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA
| | - Koushiar M. Yaghoubian
- Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA
| | - Amirhossein Alvandi
- Department of Mathematics and Statistics University of Massachusetts Amherst MA
| | - Rosalyn M. Adam
- Department of Surgery Harvard Medical School Boston MA
- Department of Urology Boston Children’s Hospital Boston MA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology Brigham and Women’s Hospital Harvard Medical School Boston MA
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular MedicineBrigham and Women’s HospitalHarvard Medical School Boston MA
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA
| | - Joyce Bischoff
- Vascular Biology Program Boston Children’s Hospital Boston MA
- Department of Surgery Harvard Medical School Boston MA
| |
Collapse
|
13
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 258] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
14
|
Yin C, Ye Z, Wu J, Huang C, Pan L, Ding H, Zhong L, Guo L, Zou Y, Wang X, Wang Y, Gao P, Jin X, Yan X, Zou Y, Huang R, Gong H. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine 2021; 74:103745. [PMID: 34911029 PMCID: PMC8669316 DOI: 10.1016/j.ebiom.2021.103745] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Acute myocardial infarction (AMI)-induced excessive myocardial fibrosis exaggerates cardiac dysfunction. However, serum Wnt2 or Wnt4 level in AMI patients, and the roles in cardiac fibrosis are largely unkown. Methods AMI and non-AMI patients were enrolled to examine serum Wnt2 and Wnt4 levels by ELISA analysis. The AMI patients were followed-up for one year. MI mouse model was built by ligation of left anterior descending branch (LAD). Findings Serum Wnt2 or Wnt4 level was increased in patients with AMI, and the elevated Wnt2 and Wnt4 were correlated to adverse outcome of these patients. Knockdown of Wnt2 and Wnt4 significantly attenuated myocardial remodeling and cardiac dysfunction following experimental MI. In vitro, hypoxia enhanced the secretion and expression of Wnt2 and Wnt4 in neonatal rat cardiac myocytes (NRCMs) or fibroblasts (NRCFs). Mechanistically, the elevated Wnt2 or Wnt4 activated β-catenin /NF-κB signaling to promote pro-fibrotic effects in cultured NRCFs. In addition, Wnt2 or Wnt4 upregulated the expression of these Wnt co-receptors, frizzled (Fzd) 2, Fzd4 and (ow-density lipoprotein receptor-related protein 6 (LRP6). Further analysis revealed that Wnt2 or Wnt4 activated β-catenin /NF-κB by the co-operation of Fzd4 or Fzd2 and LRP6 signaling, respectively. Interpretation Elevated Wnt2 and Wnt4 activate β-catenin/NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 in fibroblasts, which contributes to adverse outcome of patients with AMI, suggesting that systemic inhibition of Wnt2 and Wnt4 may improve cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Chao Yin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jian Wu
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxing Huang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Le Pan
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Zhong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Guo
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiang Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pan Gao
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuejuan Jin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxiang Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzeng Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China.
| | - Hui Gong
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Wang Q, Ma E, Wo D, Chen J, He J, Peng J, Zhu W, Ren DN. Huoxin pill prevents acute myocardial ischaemia injury via inhibition of Wnt/β-catenin signaling. J Cell Mol Med 2021; 25:11053-11062. [PMID: 34786834 PMCID: PMC8650034 DOI: 10.1111/jcmm.17028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide, and due to the widespread and irreversible damage caused, new therapeutic treatments are urgently needed in order to limit the degree of ischaemic damage following MI. Aberrant activation of Wnt/β‐catenin signalling pathway often occurs during cardiovascular diseases including MI, which results in excess production of reactive oxygen species (ROS) and further promotes myocardial dysfunction. Huoxin pill (HXP) is a Traditional Chinese Medicine formula that has been widely used in the treatment of coronary heart disease and angina; however, its mechanisms remain unclear. Here, we performed mouse models of MI and examined the effects and mechanisms of HXP in protecting against MI‐induced ischaemic damage. Our study showed that administration with HXP robustly protected against MI‐induced cardiac injuries, decreased infarct size and improved cardiac function. Moreover, HXP attenuated ischaemia‐induced DNA damage occurrence in vivo and H2O2‐induced DNA damage occurrence in vitro, via potent inhibition of adverse Wnt/β‑catenin signalling activation. Our study thus elucidated the role and mechanism of HXP in protecting against MI and oxidative stress‐induced injuries and suggests new therapeutic strategies in ischaemic heart disease via inhibition of Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Qing Wang
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - En Ma
- Clinical and Translational Research Center, Key Laboratory of Arrhythmias of Ministry of Education, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jinxiao Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jia He
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
16
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China.,The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China.,The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Ru Hua
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Jia-Rong Chen
- Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
17
|
Cheedipudi SM, Fan S, Rouhi L, Marian AJ. Pharmacological suppression of the WNT signaling pathway attenuates age-dependent expression of the phenotype in a mouse model of arrhythmogenic cardiomyopathy. THE JOURNAL OF CARDIOVASCULAR AGING 2021; 1. [PMID: 34447973 PMCID: PMC8386676 DOI: 10.20517/jca.2021.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction Arrhythmogenic cardiomyopathy (ACM) is a genetic disease of the myocardium, characterized by cardiac arrhythmias, dysfunction, and sudden cardiac death. The pathological hallmark of ACM is fibro-adipocytes replacing cardiac myocytes. The canonical WNT pathway is implicated in the pathogenesis of ACM. Aim The study aimed to determine the effects of the suppression of the WNT pathway on cardiac phenotype in a mouse model of ACM. Methods and Results One copy of the Dsp gene, a known cause of ACM in humans, was deleted specifically in cardiac myocytes (Myh6-Cre-Dsp W/F). Three-month-old wild type and Myh6-Cre-Dsp W/F mice, without a discernible phenotype, were randomized to either untreated or daily administration of a vehicle (placebo), or WNT974, the latter an established inhibitor of the WNT pathway, for three months. The Myh6-Cre-Dsp W/F mice in the untreated or placebo-treated groups exhibited cardiac dilatation and dysfunction, increased myocardial fibrosis, and apoptosis upon completion of the study, which was verified by complementary methods. Daily administration of WNT974 prevented and/or attenuated evolving cardiac dilatation and dysfunction, normalized myocardial fibrosis, and reduced apoptosis, compared to the untreated or placebo-treated groups. However, administration of WNT974 increased the number of adipocytes only in the Myh6-Cre-Dsp W/F hearts. There were no differences in the incidence of cardiac arrhythmias and survival rates. Conclusion Suppression of the WNT pathway imparts salutary phenotypic effects by preventing or attenuating age-dependent expression of cardiac dilatation and dysfunction, myocardial fibrosis, and apoptosis in a mouse model of ACM. The findings set the stage for large-scale studies and studies in larger animal models to test the beneficial effects of the suppression of the WNT pathway in ACM. One sentence summary Suppression of the WNT signaling pathway has beneficial effects on cardiac dysfunction, myocardial apoptosis, and fibrosis in a mouse model of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Siyang Fan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
Liu S, Tang L, Zhao X, Nguyen B, Heallen TR, Li M, Wang J, Wang J, Martin JF. Yap Promotes Noncanonical Wnt Signals From Cardiomyocytes for Heart Regeneration. Circ Res 2021; 129:782-797. [PMID: 34424032 DOI: 10.1161/circresaha.121.318966] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | - Li Tang
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - Bao Nguyen
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Todd R Heallen
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | | | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.).,Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,Cardiovascular Research Institute (J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| |
Collapse
|
19
|
Guo F, Seldin M, Péterfy M, Charugundla S, Zhou Z, Lee SD, Mouton A, Rajbhandari P, Zhang W, Pellegrini M, Tontonoz P, Lusis AJ, Shih DM. NOTUM promotes thermogenic capacity and protects against diet-induced obesity in male mice. Sci Rep 2021; 11:16409. [PMID: 34385484 PMCID: PMC8361163 DOI: 10.1038/s41598-021-95720-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
We recently showed that NOTUM, a liver-secreted Wnt inhibitor, can acutely promote browning of white adipose. We now report studies of chronic overexpression of NOTUM in liver indicating that it protects against diet-induced obesity and improves glucose homeostasis in mice. Adeno-associated virus (AAV) vectors were used to overexpress GFP or mouse Notum in the livers of male C57BL/6J mice and the mice were fed an obesifying diet. After 14 weeks of high fat, high sucrose diet feeding, the AAV-Notum mice exhibited decreased obesity and improved glucose tolerance compared to the AAV-GFP mice. Gene expression and immunoblotting analysis of the inguinal fat and brown fat revealed increased expression of beige/brown adipocyte markers in the AAV-Notum group, suggesting enhanced thermogenic capacity by NOTUM. A β3 adrenergic receptor agonist-stimulated lipolysis test suggested increased lipolysis capacity by NOTUM. The levels of collagen and C–C motif chemokine ligand 2 (CCL2) in the epididymal white adipose tissue of the AAV-Notum mice were significantly reduced, suggesting decreased fibrosis and inflammation, respectively. RNA sequencing analysis of inguinal white adipose of 4-week chow diet-fed mice revealed a highly significant enrichment of extracellular matrix (ECM) functional cluster among the down-regulated genes in the AAV-Notum group, suggesting a potential mechanism contributing to improved glucose homeostasis. Our in vitro studies demonstrated that recombinant human NOTUM protein blocked the inhibitory effects of WNT3A on brown adipocyte differentiation. Furthermore, NOTUM attenuated WNT3A’s effects on upregulation of TGF-β signaling and its downstream targets. Overall, our data suggest that NOTUM modulates adipose tissue function by promoting thermogenic capacity and inhibiting fibrosis through inhibition of Wnt signaling.
Collapse
Affiliation(s)
- Fangfei Guo
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Marcus Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Sarada Charugundla
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Zhiqiang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine Mount Sinai, New York, NY, 10029, USA
| | - Wenchao Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Matteo Pellegrini
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Diana M Shih
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
20
|
Yang H, Shao N, Holmström A, Zhao X, Chour T, Chen H, Itzhaki I, Wu H, Ameen M, Cunningham NJ, Tu C, Zhao MT, Tarantal AF, Abilez OJ, Wu JC. Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue. Cardiovasc Res 2021; 117:2125-2136. [PMID: 33002105 PMCID: PMC8318103 DOI: 10.1093/cvr/cvaa281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Stem cell therapy has shown promise for treating myocardial infarction via re-muscularization and paracrine signalling in both small and large animals. Non-human primates (NHPs), such as rhesus macaques (Macaca mulatta), are primarily utilized in preclinical trials due to their similarity to humans, both genetically and physiologically. Currently, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are delivered into the infarcted myocardium by either direct cell injection or an engineered tissue patch. Although both approaches have advantages in terms of sample preparation, cell-host interaction, and engraftment, how the iPSC-CMs respond to ischaemic conditions in the infarcted heart under these two different delivery approaches remains unclear. Here, we aim to gain a better understanding of the effects of hypoxia on iPSC-CMs at the transcriptome level. METHODS AND RESULTS NHP iPSC-CMs in both monolayer culture (2D) and engineered heart tissue (EHT) (3D) format were exposed to hypoxic conditions to serve as surrogates of direct cell injection and tissue implantation in vivo, respectively. Outcomes were compared at the transcriptome level. We found the 3D EHT model was more sensitive to ischaemic conditions and similar to the native in vivo myocardium in terms of cell-extracellular matrix/cell-cell interactions, energy metabolism, and paracrine signalling. CONCLUSION By exposing NHP iPSC-CMs to different culture conditions, transcriptome profiling improves our understanding of the mechanism of ischaemic injury.
Collapse
Affiliation(s)
- Huaxiao Yang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Department of Biomedical Engineering, University of North Texas, 390 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alexandra Holmström
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Xin Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Tony Chour
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodong Chen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Nathan J Cunningham
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ming-Tao Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alice F Tarantal
- Department of Pediatrics, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- Department Cell Biology and Human Anatomy, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- California National Primate Research Center, UC Davis, One Shields Avenue, Davis, CA 95616-8542, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| |
Collapse
|
21
|
Sen P, Gupta K, Kumari A, Singh G, Pandey S, Singh R. Wnt/β-Catenin Antagonist Pyrvinium Exerts Cardioprotective Effects in Polymicrobial Sepsis Model by Attenuating Calcium Dyshomeostasis and Mitochondrial Dysfunction. Cardiovasc Toxicol 2021; 21:517-532. [PMID: 33723718 DOI: 10.1007/s12012-021-09643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 01/22/2023]
Abstract
Calcium dysregulation and mitochondrial dysfunction are key elements in the development of sepsis-induced cardiac dysfunction. Evidences have suggested that inhibition of Wnt/β-Catenin signalling prevents cardiac dysfunction and remodelling in surgical, hypertension and pressure overload models. The present study investigated the effects of Wnt/β-Catenin inhibitor on calcium overload and mitochondrial dysfunction in rat sepsis model of cardiomyopathy. Induction of sepsis by cecal ligation puncture (CLP) resulted in the up-regulation of cardiac β-catenin transcriptional levels and cardiac dysfunction depicted by increased serum lactate dehydrogenase, CK-MB levels reduced maximum (dp/dt max.) and minimum developed pressure (dp/dt min.), increased LVEsDP and relaxation constant tau values. Moreover, oxidative and inflammatory stress, immune cell infiltration, increased myeloperoxidase activity, enhanced caspase-3 activity and fibronectin protein levels were observed in septic rat's heart. Also, septic rat's heart displayed mitochondrial dysfunction due to mPTP opening, increased calcium up-regulation in left ventricular apex tissues and whole heart, increased collagen staining, necrosis and structural damage. Pre-treatment with Wnt/β-Catenin antagonist attenuated sepsis-induced serum and tissue biochemical changes, cardiac dysfunction and structural alterations by inhibiting mitochondrial mPTP opening and restricting calcium overloading in cardiac tissue.
Collapse
Affiliation(s)
- Pallavi Sen
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala, Haryana, India
| | - Abha Kumari
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Gaaminepreet Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Sneha Pandey
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ragini Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
22
|
Volpini X, Ambrosio LF, Brajín MA, Brugo MB, Aoki MP, Rivarola HW, Alfonso F, Fozzatti L, Cervi L, Motran CC. Wnt Signaling Plays a Key Role in the Regulation of the Immune Response and Cardiac Damage during Trypanosoma cruzi Infection. ACS Infect Dis 2021; 7:566-578. [PMID: 33573383 DOI: 10.1021/acsinfecdis.0c00590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chagas cardiomyopathy is the consequence of a compromised electrical and mechanical cardiac function, with parasite persistence, unbalanced inflammation, and pathological tissue remodelling, being intricately related to myocardial aggression and impaired function. Recent studies have shown that Wnt signaling pathways play a critical role in the pathogenesis of cardiac and vascular diseases. In addition, we have reported that Trypanosoma cruzi infection activates Wnt signaling to promote intracellular replication of the parasites in macrophages, with the treatment of mice with IWP-L6 (an inhibitor of the O-acyl-transferase, PORCN, responsible for the post-translational modifications necessary for Wnt protein secretion) being able to diminish parasitemia and tissue parasitism. Here, we show that inhibition of Wnt signaling during the acute phase of T. cruzi infection controls the parasite replication, inhibits the development of parasite-prone and fibrosis-prone Th2-type immune response, and prevents the development of cardiac abnormalities characteristics of chronic Chagas disease. Our results suggest that the Wnt signaling pathway might be a potential target to prevent the development of T. cruzi-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Agustina Brajín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Belen Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Hector Walter Rivarola
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESV Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Bv. De la Reforma y Enfermera Gordillo, Pabellón
de Biología Celular. Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fernando Alfonso
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESV Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Bv. De la Reforma y Enfermera Gordillo, Pabellón
de Biología Celular. Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Claudia Cristina Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
23
|
Procopio MC, Lauro R, Nasso C, Carerj S, Squadrito F, Bitto A, Di Bella G, Micari A, Irrera N, Costa F. Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines 2021; 9:biomedicines9020204. [PMID: 33670488 PMCID: PMC7922652 DOI: 10.3390/biomedicines9020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a dramatic event often caused by atherosclerotic plaque erosion or rupture and subsequent thrombotic occlusion of a coronary vessel. The low supply of oxygen and nutrients in the infarcted area may result in cardiomyocytes necrosis, replacement of intact myocardium with non-contractile fibrous tissue and left ventricular (LV) function impairment if blood flow is not quickly restored. In this review, we summarized the possible correlation between adenosine system, purinergic system and Wnt/β-catenin pathway and their role in the pathogenesis of cardiac damage following MI. In this context, several pathways are involved and, in particular, the adenosine receptors system shows different interactions between its members and purinergic receptors: their modulation might be effective not only for a normal functional recovery but also for the treatment of heart diseases, thus avoiding fibrosis, reducing infarcted area and limiting scaring. Similarly, it has been shown that Wnt/β catenin pathway is activated following myocardial injury and its unbalanced activation might promote cardiac fibrosis and, consequently, LV systolic function impairment. In this regard, the therapeutic benefits of Wnt inhibitors use were highlighted, thus demonstrating that Wnt/β-catenin pathway might be considered as a therapeutic target to prevent adverse LV remodeling and heart failure following MI.
Collapse
Affiliation(s)
- Maria Cristina Procopio
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Chiara Nasso
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic “G. Martino”, 98165 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
- Correspondence: ; Tel.: +39-090-221-3093; Fax: +39-090-221-23-81
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| |
Collapse
|
24
|
Xie S, Fu W, Yu G, Hu X, Lai KS, Peng X, Zhou Y, Zhu X, Christov P, Sawyer L, Ni TT, Sulikowski GA, Yang Z, Lee E, Zeng C, Wang WE, Zhong TP. Discovering small molecules as Wnt inhibitors that promote heart regeneration and injury repair. J Mol Cell Biol 2021; 12:42-54. [PMID: 30925593 PMCID: PMC7259332 DOI: 10.1093/jmcb/mjz023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/11/2018] [Accepted: 03/03/2019] [Indexed: 12/30/2022] Open
Abstract
There are intense interests in discovering proregenerative medicine leads that can promote cardiac differentiation and regeneration, as well as repair damaged heart tissues. We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects. Two related compounds with novel structures, named as Cardiomogen 1 and 2 (CDMG1 and CDMG2), were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population. We find that Cardiomogen acts as a Wnt inhibitor by targeting β-catenin and reducing Tcf/Lef-mediated transcription in cultured cells. CDMG treatment of amputated zebrafish hearts reduces nuclear β-catenin in injured heart tissue, increases cardiomyocyte (CM) proliferation, and expedites wound healing, thus accelerating cardiac muscle regeneration. Importantly, Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction. Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue, which are in part attributable to the β-catenin reduction. Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration, highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.
Collapse
Affiliation(s)
- Shuying Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Guangju Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Kaa Seng Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Xiangwen Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Yating Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Xuejiao Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Plamen Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leah Sawyer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Terri T Ni
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Gary A Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wei E Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| |
Collapse
|
25
|
Effect of Interventions in WNT Signaling on Healing of Cardiac Injury: A Systematic Review. Cells 2021; 10:cells10020207. [PMID: 33494313 PMCID: PMC7912185 DOI: 10.3390/cells10020207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
The wound healing that follows myocardial infarction is a complex process involving multiple mechanisms, such as inflammation, angiogenesis and fibrosis. In the last two decades, the involvement of WNT signaling has been extensively studied and effects on virtually all aspects of this wound healing have been reported. However, as often is the case in a newly emerging field, inconsistent and sometimes even contradictory findings have been reported. The aim of this systematic review is to provide a comprehensive overview of studies in which the effect of interventions in WNT signaling were investigated in in vivo models of cardiac injury. To this end, we used different search engines to perform a systematic search of the literature using the key words "WNT and myocardial and infarction". We categorized the interventions according to their place in the WNT signaling pathway (ligand, receptor, destruction complex or nuclear level). The most consistent improvements of the wound healing response were observed in studies in which the acylation of WNT proteins was inhibited by administering porcupine inhibitors, by inhibiting of the downstream glycogen synthase kinase-3β (GSK3β) and by intervening in the β-catenin-mediated gene transcription. Interestingly, in several of these studies, evidence was presented for activation of cardiomyocyte proliferation around the infarct area. These findings indicate that inhibition of WNT signaling can play a valuable role in the repair of cardiac injury, thereby improving cardiac function and preventing the development of heart failure.
Collapse
|
26
|
Li Y, Du L, Cheng S, Guo J, Zhu S, Wang Y, Gao H. Hypoxia exacerbates cardiomyocyte injury via upregulation of Wnt3a and inhibition of Sirt3. Cytokine 2020; 136:155237. [DOI: 10.1016/j.cyto.2020.155237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
|
27
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
28
|
Peng X, Lai KS, She P, Kang J, Wang T, Li G, Zhou Y, Sun J, Jin D, Xu X, Liao L, Liu J, Lee E, Poss KD, Zhong TP. Induction of Wnt signaling antagonists and p21-activated kinase enhances cardiomyocyte proliferation during zebrafish heart regeneration. J Mol Cell Biol 2020; 13:41-58. [PMID: 33582796 PMCID: PMC8035995 DOI: 10.1093/jmcb/mjaa046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Heart regeneration occurs by dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). However, the signaling mechanisms by which injury induces CM renewal remain incompletely understood. Here, we find that cardiac injury in zebrafish induces expression of the secreted Wnt inhibitors, including Dickkopf 1 (Dkk1), Dkk3, secreted Frizzled-related protein 1 (sFrp1), and sFrp2, in cardiac tissue adjacent to injury sites. Experimental blocking of Wnt activity via Dkk1 overexpression enhances CM proliferation and heart regeneration, whereas ectopic activation of Wnt8 signaling blunts injury-induced CM dedifferentiation and proliferation. Although Wnt signaling is dampened upon injury, the cytoplasmic β-catenin is unexpectedly increased at disarrayed CM sarcomeres in myocardial wound edges. Our analyses indicated that p21-activated kinase 2 (Pak2) is induced at regenerating CMs, where it phosphorylates cytoplasmic β-catenin at Ser 675 and increases its stability at disassembled sarcomeres. Myocardial-specific induction of the phospho-mimetic β-catenin (S675E) enhances CM dedifferentiation and sarcomere disassembly in response to injury. Conversely, inactivation of Pak2 kinase activity reduces the Ser 675-phosphorylated β-catenin (pS675-β-catenin) and attenuates CM sarcomere disorganization and dedifferentiation. Taken together, these findings demonstrate that coordination of Wnt signaling inhibition and Pak2/pS675-β-catenin signaling enhances zebrafish heart regeneration by supporting CM dedifferentiation and proliferation.
Collapse
Affiliation(s)
- Xiangwen Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhong Shan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Kaa Seng Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhong Shan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Peilu She
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Junsu Kang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Guobao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhong Shan Hospital, Fudan University, Shanghai 200438, China
| | - Yating Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ethan Lee
- Department of Developmental and Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| |
Collapse
|
29
|
Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev 2020; 60:101063. [PMID: 32272170 DOI: 10.1016/j.arr.2020.101063] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final hallmark of pathological remodeling, which is a major contributor to the pathogenesis of various chronic diseases and aging-related organ failure to fully control chronic wound-healing and restoring tissue function. The process of fibrosis is involved in the pathogenesis of the kidney, lung, liver, heart and other tissue disorders. Wnt is a highly conserved signaling in the aberrant wound repair and fibrogenesis, and sustained Wnt activation is correlated with the pathogenesis of fibrosis. In particular, mounting evidence has revealed that Wnt signaling played important roles in cell fate determination, proliferation and cell polarity establishment. The expression and distribution of Wnt signaling in different tissues vary with age, and these changes have key effects on maintaining tissue homeostasis. In this review, we first describe the major constituents of the Wnt signaling and their regulation functions. Subsequently, we summarize the dysregulation of Wnt signaling in aging-related fibrotic tissues such as kidney, liver, lung and cardiac fibrosis, followed by a detailed discussion of its involvement in organ fibrosis. In addition, the crosstalk between Wnt signaling and other pathways has the potential to profoundly add to the complexity of organ fibrosis. Increasing studies have demonstrated that a number of Wnt inhibitors had the potential role against tissue fibrosis, specifically in kidney fibrosis and the implications of Wnt signaling in aging-related diseases. Therefore, targeting Wnt signaling might be a novel and promising therapeutic strategy against aging-related tissue fibrosis.
Collapse
|
30
|
Lim KE, Hoggatt AM, Bullock WA, Horan DJ, Yokota H, Pavalko FM, Robling AG. Pten deletion in Dmp1-expressing cells does not rescue the osteopenic effects of Wnt/β-catenin suppression. J Cell Physiol 2020; 235:9785-9794. [PMID: 32529635 DOI: 10.1002/jcp.29792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/06/2022]
Abstract
Skeletal homeostasis is sensitive to perturbations in Wnt signaling. Beyond its role in the bone, Wnt is a major target for pharmaceutical inhibition in a wide range of diseases, most notably cancers. Numerous clinical trials for Wnt-based candidates are currently underway, and Wnt inhibitors will likely soon be approved for clinical use. Given the bone-suppressive effects accompanying Wnt inhibition, there is a need to expose alternate pathways/molecules that can be targeted to counter the deleterious effects of Wnt inhibition on bone properties. Activation of the Pi3k/Akt pathway via Pten deletion is one possible osteoanabolic pathway to exploit. We investigated whether the osteopenic effects of β-catenin deletion from bone cells could be rescued by Pten deletion in the same cells. Mice carrying floxed alleles for Pten and β-catenin were bred to Dmp1-Cre mice to delete Pten alone, β-catenin alone, or both genes from the late-stage osteoblast/osteocyte population. The mice were assessed for bone mass, density, strength, and formation parameters to evaluate the potential rescue effect of Pten deletion in Wnt-impaired mice. Pten deletion resulted in high bone mass and β-catenin deletion resulted in low bone mass. Compound mutants had bone properties similar to β-catenin mutant mice, or surprisingly in some assays, were further compromised beyond β-catenin mutants. Pten inhibition, or one of its downstream nodes, is unlikely to protect against the bone-wasting effects of Wnt/βcat inhibition. Other avenues for preserving bone mass in the presence of Wnt inhibition should be explored to alleviate the skeletal side effects of Wnt inhibitor-based therapies.
Collapse
Affiliation(s)
- Kyung-Eun Lim
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - April M Hoggatt
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Whitney A Bullock
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel J Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hiroki Yokota
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Frederick M Pavalko
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
31
|
Blankesteijn WM. Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other Pathways. Mol Pharmacol 2019; 97:90-101. [PMID: 31757861 DOI: 10.1124/mol.119.118018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
Myocardial infarction is a frequent cardiovascular event and a major cause for cardiomyocyte loss. In adult mammals, cardiomyocytes are traditionally considered to be terminally differentiated cells, unable to proliferate. Therefore, the wound-healing response in the infarct area typically yields scar tissue rather than newly formed cardiomyocytes. In the last decade, several lines of evidence have challenged the lack of proliferative capacity of the differentiated cardiomyocyte: studies in zebrafish and neonatal mammals have convincingly demonstrated the regenerative capacity of cardiomyocytes. Moreover, multiple signaling pathways have been identified in these models that-when activated in adult mammalian cardiomyocytes-can reactivate the cell cycle in these cells. However, cardiomyocytes frequently exit the cell cycle before symmetric division into daughter cells, leading to polyploidy and multinucleation. Now that there is more insight into the reactivation of the cell cycle machinery, other prerequisites for successful symmetric division of cardiomyocytes, such as the control of sarcomere disassembly to allow cytokinesis, require more investigation. This review aims to discuss the signaling pathways involved in cardiomyocyte proliferation, with a specific focus on wingless/int-1 protein signaling. Comparing the conflicting results from in vitro and in vivo studies on this pathway illustrates that the interaction with other cells and structures around the infarct is likely to be essential to determine the outcome of these interventions. The extensive crosstalk with other pathways implicated in cardiomyocyte proliferation calls for the identification of nodal points in the cell signaling before cardiomyocyte proliferation can be moved forward toward clinical application as a cure of cardiac disease. SIGNIFICANCE STATEMENT: Evidence is mounting that proliferation of pre-existing cardiomyocytes can be stimulated to repair injury of the heart. In this review article, an overview is provided of the different signaling pathways implicated in cardiomyocyte proliferation with emphasis on wingless/int-1 protein signaling, crosstalk between the pathways, and controversial results obtained in vitro and in vivo.
Collapse
Affiliation(s)
- W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| |
Collapse
|
32
|
Daskalopoulos EP, Hermans KCM, Debets J, Strzelecka A, Leenders P, Vervoort-Peters L, Janssen BJA, Blankesteijn WM. The Beneficial Effects of UM206 on Wound Healing After Myocardial Infarction in Mice Are Lost in Follow-Up Experiments. Front Cardiovasc Med 2019; 6:118. [PMID: 31620445 PMCID: PMC6759626 DOI: 10.3389/fcvm.2019.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: An inadequate wound healing following myocardial infarction (MI) is one of the main etiologies of heart failure (HF) development. Interventions aiming at improving this process may contribute to preserving cardiac function after MI. Our group, as well as others, have demonstrated the crucial role of Wnt/frizzled signaling in post-MI remodeling. In this overview, we provide the results of different studies aimed at confirming an initial study from our group, in which we observed beneficial effects of administration of a peptide fragment of Wnt5a, UM206, on infarct healing in a mouse MI model. Methods: Mice were subjected to permanent left coronary artery ligation, and treated with saline (control) or UM206, administered via osmotic minipumps. Cardiac function was assessed by echocardiography and hemodynamic measurements, while infarct size and myofibroblast content were characterized by (immuno)histochemistry. Results: In total, we performed seven follow-up studies, but we were unable to reproduce the beneficial effects of UM206 on infarct healing in most of them. Variations in dose and timing of UM206 administration, its manufacturer and the genetic background of the mice could not restore the phenotype. An in-depth analysis of the datasets revealed that the absence of effect of UM206 coincided with a lack of adverse cardiac remodeling and HF development in all experimental groups, irrespective of the treatment. Discussion: Irreproducibility of experimental observations is a major issue in biomedical sciences. It can arise from a relatively low number of experimental observations in the original study, a faulty hypothesis or a variation in the experimental model that cannot be controlled. In this case, the lack of adverse cardiac remodeling and lung weight increases in the follow-up studies point out to altered experimental conditions as the most likely explanation.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| | - Jacques Debets
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| | - Agnieszka Strzelecka
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| | - Peter Leenders
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| | - Lily Vervoort-Peters
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| | - Ben J A Janssen
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University (UM), Maastricht, Netherlands
| |
Collapse
|
33
|
Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, Chen H, Fang J, Zhou F, Sun J, Yang X. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal 2019; 17:109. [PMID: 31462314 PMCID: PMC6714433 DOI: 10.1186/s12964-019-0419-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer-related death in women worldwide. Metastatic disease remains the primary cause of death in patients with breast cancer. Basal-like breast cancer (BLBC) is associated with aggressive behavior, stem-like phenotype, high histological grade, poor clinical features, and high rates of recurrences and/or metastasis. However, the mechanism of BLBC phenotype shaping remains obscure. Methods Seventeen normal breast/breast cancer cell lines were used for evaluating the breast cancer subtype-markers, WNT targets and constitutive components, and epithelial mesenchymal transition (EMT) markers analysis by western blot. One hundred and twenty formalin-fixed breast cancer tissues were used for immunohistochemistry (IHC) staining. Nine online platforms (cBioPortal, CCLE, GEPIA, etc.) were used for related analyses. Results We identified Wnt5b as a key regulatory factor that governs the phenotype of BLBC by activating canonical and non-canonical WNT signaling. Wnt5b exhibited basal-like specificity in cells and clinical samples both at the mRNA and protein levels and also showed good correlation with basal-like phenotype at the mRNA level. Besides, Wnt5b was also a promising therapeutic target for LGK-974 treatment. In addition, we identified that CK1α was expressed at low levels in BLBC and that the activation of CK1α by pyrvinium was an alternative strategy for BLBC treatment. Conclusions Wnt5b is not only a diagnostic biomarker but also a potential therapeutic target of BLBC. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0419-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Yanhua Zhang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Weiping Zhou
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Qing Ruan
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hui Chen
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Research, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, China
| | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
| |
Collapse
|
34
|
Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacol Sin 2019; 40:9-12. [PMID: 30002488 PMCID: PMC6318317 DOI: 10.1038/s41401-018-0060-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI) is one of the most serious health threats, resulting in huge physical and economic burdens worldwide. Wnt signaling pathways play an important role in developmental processes such as tissue patterning, cell differentiation and cell division. Appropriate regulation of the activities of Wnt signaling pathways is also important for heart development and healing in post-MI heart. Moreover, Wnt pathway inhibitors have been identified as novel antitumor drugs and applied in ongoing clinical trials. This research progress has generated increasing interests for investigating the effects of Wnt pathway inhibitors on MI healing. In this short review, we summarize the roles of Wnt signaling pathways in post-MI heart and the therapeutic effects of Wnt pathway inhibitors on MI, and discuss the underlying mechanisms of Wnt pathway inhibitors in cardiac repairing.
Collapse
|
35
|
Zhang LS, Kang X, Lu J, Zhang Y, Wu X, Wu G, Zheng J, Tuladhar R, Shi H, Wang Q, Morlock L, Yao H, Huang LJS, Maire P, Kim J, Williams N, Xu J, Chen C, Zhang CC, Lum L. Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9. EBioMedicine 2019; 39:145-158. [PMID: 30528456 PMCID: PMC6354558 DOI: 10.1016/j.ebiom.2018.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/β-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/β-catenin-dependent growth of LICs. Small molecules disrupting WNT/β-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.
Collapse
Affiliation(s)
- Li-Shu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunlei Kang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianming Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junke Zheng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rubina Tuladhar
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heping Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiaoling Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lorraine Morlock
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyu Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR, 8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - James Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Meyer IS, Leuschner F. The role of Wnt signaling in the healing myocardium: a focus on cell specificity. Basic Res Cardiol 2018; 113:44. [PMID: 30327885 DOI: 10.1007/s00395-018-0705-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Various cell types are involved in the healing process after myocardial infarction (MI). Besides cardiac resident cells (such as cardiomyocytes, fibroblasts and endothelial cells) already present at the lesion site, a massive influx of leukocytes (mainly monocytes and neutrophils) is observed within hours after the ischemic event. So far, little is known about modes of interaction of these cells. Wnt signaling is an evolutionary conserved signaling cassette known to play an important role in cell-cell communication. While the overall reactivation of Wnt signaling upon ischemic injury is well described, the precise expression pattern of Wnt proteins, however, is far from understood. We here describe known Wnt components that partake in MI healing and differentiate cell-specific aspects. The secretion of Wnt proteins and their antagonists in the context of cardiac inflammation after MI appear to be tightly regulated in a spatial-temporal manner. Overall, we aim to stress the importance of elucidating not only Wnt component-specific aspects, but also their sometimes contradicting effects in different target cells. A better understanding of Wnt signaling in MI healing may eventually lead to the development of successful therapeutic approaches in an often considered "un-druggable" pathway.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
37
|
Guimaraes PPG, Tan M, Tammela T, Wu K, Chung A, Oberli M, Wang K, Spektor R, Riley RS, Viana CTR, Jacks T, Langer R, Mitchell MJ. Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release 2018; 290:75-87. [PMID: 30290244 DOI: 10.1016/j.jconrel.2018.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023]
Abstract
Activation of the Wnt signaling pathway promotes lung cancer progression and contributes to poor patient prognosis. The porcupine inhibitor LGK974, a novel orally bioavailable cancer therapeutic in Phase I clinical trials, induces potent Wnt signaling inhibition and leads to suppressed growth and progression of multiple types of cancers. The clinical use of LGK974, however, is limited in part due to its low solubility and high toxicity in tissues that rely on Wnt signaling for normal homeostasis. Here, we report the use of host-guest chemistry to enhance the solubility and bioavailability of LGK974 in mice through complexation with cyclodextrins (CD). We assessed the effects of these complexes to inhibit Wnt signaling in lung adenocarcinomas that are typically driven by overactive Wnt signaling. 2D 1H NMR confirmed host-guest complexation of CDs with LGK974. CD:LGK974 complexes significantly decreased the expression of Wnt target genes in lung cancer organoids and in lung cancer allografts in mice. Further, CD:LGK974 complexes increased the bioavailability upon oral administration in mice compared to free LGK974. In a mouse lung cancer allograft model, CD:LGK974 complexes induced potent Wnt signaling inhibition with reduced intestinal toxicity compared to treatment with free drug. Collectively, the development of these complexes enables safer and repeated oral or parenteral administration of Wnt signaling inhibitors, which hold promise for the treatment of multiple types of malignancies.
Collapse
Affiliation(s)
- Pedro P G Guimaraes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States; Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Mingchee Tan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States
| | - Tuomas Tammela
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Katherine Wu
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Amanda Chung
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States
| | - Matthias Oberli
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Roman Spektor
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, NY, United States
| | - Rachel S Riley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Celso T R Viana
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Abstract
Ischaemic heart disease is a leading cause of death worldwide. Injury to the heart is followed by loss of the damaged cardiomyocytes, which are replaced with fibrotic scar tissue. Depletion of cardiomyocytes results in decreased cardiac contraction, which leads to pathological cardiac dilatation, additional cardiomyocyte loss, and mechanical dysfunction, culminating in heart failure. This sequential reaction is defined as cardiac remodelling. Many therapies have focused on preventing the progressive process of cardiac remodelling to heart failure. However, after patients have developed end-stage heart failure, intervention is limited to heart transplantation. One of the main reasons for the dramatic injurious effect of cardiomyocyte loss is that the adult human heart has minimal regenerative capacity. In the past 2 decades, several strategies to repair the injured heart and improve heart function have been pursued, including cellular and noncellular therapies. In this Review, we discuss current therapeutic approaches for cardiac repair and regeneration, describing outcomes, limitations, and future prospects of preclinical and clinical trials of heart regeneration. Substantial progress has been made towards understanding the cellular and molecular mechanisms regulating heart regeneration, offering the potential to control cardiac remodelling and redirect the adult heart to a regenerative state.
Collapse
Affiliation(s)
- Hisayuki Hashimoto
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
39
|
Dobzanski A, Khalil SM, Lane AP. Nasal polyp fibroblasts modulate epithelial characteristics via Wnt signaling. Int Forum Allergy Rhinol 2018; 8:1412-1420. [PMID: 30118173 DOI: 10.1002/alr.22199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND While essential to the normal differentiation of ciliated airway epithelial cells, upregulated Wnt signaling in chronic rhinosinusitis with nasal polyps (CRSwNP) has been proposed to result in abnormal epithelial morphology and dysfunctional mucociliary clearance. The mechanism of epithelial Wnt signaling dysregulation in CRSwNP is unknown, and importantly cellular sources of Wnt ligands in CRSwNP have not yet been investigated. METHODS Human sinonasal epithelial cells (hSNECs) and human sinonasal fibroblasts (hSNFs) were collected from 34 human subjects (25 control and 9 CRSwNP) and differentiated as primary air-liquid interface (ALI) and organoid co-cultures. hSNECs were isolated to the apical compartment of the transwell and hSNFs were isolated to the basolateral compartment. After 21 days of ALI culture, ciliary expression and sinonasal epithelial morphology were examined by immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). An organoid model was used to evaluate proliferation of basal cells in presence of hSNFs. RESULTS Epithelial cells co-cultured with CRSwNP-hSNFs revealed significantly decreased ciliated cells, altered epithelial cell morphology, and increased colony forming efficiency compared to epithelial cells co-cultured with control-hSNFs. CRSwNP-hSNFs showed significantly higher messenger RNA (mRNA) expression of canonical WNT3A. A Wnt agonist, CHIR99021, replicated CRSwNP-hSNF co-cultures, and treatment with the Wnt inhibitor IWP2 prevented abnormal morphologies. CONCLUSION These results suggest that abnormal interactions between epithelial cells and fibroblasts may contribute to CRSwNP pathogenesis and supports the concept that dysregulated Wnt signaling contributes impairment to epithelial function in CRSwNP.
Collapse
Affiliation(s)
- Alex Dobzanski
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Syed Muaz Khalil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 521] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
41
|
Jiang J, Lan C, Li L, Yang D, Xia X, Liao Q, Fu W, Chen X, An S, Wang WE, Zeng C. A novel porcupine inhibitor blocks WNT pathways and attenuates cardiac hypertrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3459-3467. [PMID: 30076960 DOI: 10.1016/j.bbadis.2018.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
WNT pathways are critically involved in the cardiac hypertrophy growth. Porcupine, an acyltransferase that specifically enables secretion of all WNT ligands, became a highly druggable target for inhibiting WNT pathways. Here we test if a novel small-molecule porcupine inhibitor CGX1321, which has entered human clinical trials as an anti-cancer agent, exerts an anti-hypertrophic effect. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy on four-month-old male C57 mice. Cardiac function was measured with echocardiography. Histological analysis was performed to detect cardiomyocyte size and molecular expressions. CGX1321 was administrated daily for 4 weeks post TAC injury. As a result, CGX1321 improved cardiac function and animal survival of post-TAC mice. CGX1321 significantly reduced cardiomyocyte hypertrophy, cardiomyocyte apoptosis and fibrosis induced by TAC injury. CGX1321 significantly inhibited TAC induced nuclear translocation of β-catenin and the elevation of Frizzled-2, cyclin-D1 and c-myc expression, indicating its inhibitory effect on canonical WNT pathway. Furthermore, CGX1321 inhibited TAC induced nuclear translocation of nuclear factor of activated T-cells and the elevation of phosphorylated c-Jun expression, suggesting its inhibitory function on non-canonical WNT pathway. We conclude that CGX1321 inhibits both canonical and non-canonical WNT pathways, and attenuates cardiac hypertrophy. Our findings support the porcupine inhibitors as a class of new drugs to be potentially used for treating patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Cong Lan
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Dezhong Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| | - Xiongwen Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China; Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Songzhu An
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou 510663, China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Chongqing 400042, China
| |
Collapse
|
42
|
Targeting Wnt/β-Catenin Signaling for Cancer Immunotherapy. Trends Pharmacol Sci 2018; 39:648-658. [DOI: 10.1016/j.tips.2018.03.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
|
43
|
Hofsteen P, Robitaille AM, Strash N, Palpant N, Moon RT, Pabon L, Murry CE. ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. iScience 2018; 2:88-100. [PMID: 29888752 PMCID: PMC5993047 DOI: 10.1016/j.isci.2018.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cardiac development requires coordinated biphasic regulation of the WNT/β-catenin signaling pathway. By intersecting gene expression and loss-of-function siRNA screens we identified Alpha Protein Kinase 2 (ALPK2) as a candidate negative regulator of WNT/β-catenin signaling in cardiogenesis. In differentiating human embryonic stem cells (hESCs), ALPK2 is highly induced as hESCs transition from mesoderm to cardiac progenitors. Using antisense knockdown and CRISPR/Cas9 mutagenesis in hESCs and zebrafish, we demonstrate that ALPK2 promotes cardiac function and cardiomyocyte differentiation. Quantitative phosphoproteomics, protein expression profiling, and β-catenin reporter assays demonstrate that loss of ALPK2 led to stabilization of β-catenin and increased WNT signaling. Furthermore, cardiac defects attributed to ALPK2 depletion can be rescued in a dose-dependent manner by direct inhibition of WNT signaling through the small molecule XAV939. Together, these results demonstrate that ALPK2 regulates β-catenin-dependent signaling during developmental commitment of cardiomyocytes. ALPK2 is expressed and regulated during hESC cardiomyocyte lineage determination Cardiac development in zebrafish embryos and hESCs requires ALPK2 ALPK2 negatively regulates WNT signaling to promote cardiomyocyte differentiation
Collapse
Affiliation(s)
- Peter Hofsteen
- Department of Pathology, School of Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, School of Medicine, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Aaron Mark Robitaille
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nicholas Strash
- Department of Pathology, School of Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, School of Medicine, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nathan Palpant
- Department of Pathology, School of Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, School of Medicine, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Randall T Moon
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, School of Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, School of Medicine, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Charles E Murry
- Department of Pathology, School of Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Medicine (Division of Cardiology), School of Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, School of Medicine, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Burgy O, Königshoff M. The WNT signaling pathways in wound healing and fibrosis. Matrix Biol 2018; 68-69:67-80. [PMID: 29572156 DOI: 10.1016/j.matbio.2018.03.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
The WNT signaling pathways are major regulators of organ development. Ample research over the past few decades revealed that these pathways are critically involved in adult tissue homeostasis and stem cell function as well as the development of chronic diseases, such as cancer and fibrosis. In this review, we will describe the different WNT signal pathways, summarize the current evidence of WNT signal involvement in wound healing and fibrosis, and highlight potential novel therapeutic options for fibrotic disorders targeting WNT signaling pathways.
Collapse
Affiliation(s)
- Olivier Burgy
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
45
|
Reichman DE, Park L, Man L, Redmond D, Chao K, Harvey RP, Taketo MM, Rosenwaks Z, James D. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development 2018; 145:dev.159905. [PMID: 29217753 PMCID: PMC5825863 DOI: 10.1242/dev.159905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/26/2017] [Indexed: 01/29/2023]
Abstract
Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs.
Collapse
Affiliation(s)
- David E Reichman
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Laura Park
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Limor Man
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Redmond
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kenny Chao
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia.,School of Biological and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Makoto M Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Zev Rosenwaks
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daylon James
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA .,Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
46
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
47
|
Chemical Modulation of WNT Signaling in Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:245-269. [DOI: 10.1016/bs.pmbts.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction. Clin Sci (Lond) 2017; 131:2919-2932. [PMID: 29162747 DOI: 10.1042/cs20171256] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
Abstract
After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU+ cardiomyocytes. Meanwhile, CGX1321 increased Ki67+ and phosphohistone H3 (PH3+) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway.
Collapse
|
49
|
Evaluation of pharmacokinetic and pharmacodynamic profiles of liposomes for the cell type-specific delivery of small molecule drugs. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2565-2574. [PMID: 28754465 DOI: 10.1016/j.nano.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/28/2017] [Accepted: 07/09/2017] [Indexed: 01/04/2023]
Abstract
Liposome-based drug formulations represent an exciting avenue of research as they increase efficacy to toxicity ratios. Current formulations rely on passive accumulation to the disease site where drug is taken up by the cells. Ligand mediated targeting increases the net accumulation of liposomes, however, an unexplored benefit is to potentially refine pharmacodynamics (PD) of a drug specifically to different cell types within diseased tissue. As a model system, we engineered cardiomyocyte- (I-1) and endothelial-targeted (B-40) liposomes to carry a VEGFR2 inhibitor (PTK787), and examined the effect of cell type-specific delivery on both pharmacokinetics (PK) and PD. Neovascularization in post-myocardial infarction was significantly reduced by B-40 liposomes loaded with PTK787 as compared to animals injected with I-1 liposomes, and profoundly more as compared to free PTK787. This study thus shows that the intraorgan targeting of drugs through cell type-specific delivery holds substantial promise towards lowering the minimal efficacious dose administered systemically.
Collapse
|