1
|
Stewart PS, Kim J, James G, Yi F, Stechmiller J, Weaver M, Kelly DL, Fisher S, Schultz G, Lyon D. Association of biofilm and microbial metrics with healing rate in older adults with chronic venous leg ulcers. Wound Repair Regen 2024; 32:858-871. [PMID: 39425525 PMCID: PMC11585430 DOI: 10.1111/wrr.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The presence of microbial biofilms in many human chronic wounds led to the hypothesis that biofilms delay healing of these wounds. We tested this hypothesis in a population of 117 older individuals with venous leg ulcers who were receiving standardised therapy, including frequent debridement. Debridement specimens were analysed for the amount of bacterial biomass by two independent methods: a microscopic approach that scored the relative size and number of bacterial aggregates, interpreted as a biofilm metric, and conventional enumeration by agar plating for viable bacteria. The plating protocol yielded three distinct values: the total viable bacterial count, bleach-tolerant bacteria, and the log reduction in viable bacteria upon bleach treatment. Wound healing rates over an 8-week observation period were calculated as the rate of decrease of the equivalent diameter of the wound. There was no statistically significant association between wound healing and the biofilm metric in any of the three analyses performed (p ≥0.15). In all three statistical tests, wound healing was associated with the log reduction caused by bleach treatment (p ≤0.004); wounds that harboured bacteria that were more bleach-susceptible healed more slowly. A refinement of the model of chronic wound infection pathogenesis is proposed in which dormant bacteria constitute a persistent nidus and outgrowth of metabolically active cells impairs healing. This model constitutes a new hypothesis as metabolic activity was not directly measured in this investigation.
Collapse
Affiliation(s)
- Philip S. Stewart
- Center for Biofilm Engineering, Montana State University
- Department of Chemical and Biological Engineering, Montana State University
| | - Junglyun Kim
- Chungnam National University College of Nursing
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing
| | - Garth James
- Center for Biofilm Engineering, Montana State University
- Department of Chemical and Biological Engineering, Montana State University
| | - Fan Yi
- Department of Mathematics and Statistical Science, University of Idaho
| | - Joyce Stechmiller
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing
| | - Michael Weaver
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing
| | - Debra L. Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing
| | - Steve Fisher
- Center for Biofilm Engineering, Montana State University
| | | | - Debra Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing
| |
Collapse
|
2
|
De Plano LM, Caratozzolo M, Conoci S, Guglielmino SPP, Franco D. Impact of Nutrient Starvation on Biofilm Formation in Pseudomonas aeruginosa: An Analysis of Growth, Adhesion, and Spatial Distribution. Antibiotics (Basel) 2024; 13:987. [PMID: 39452253 PMCID: PMC11504098 DOI: 10.3390/antibiotics13100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: This study investigates the impact of nutrient availability on the growth, adhesion, and biofilm formation of Pseudomonas aeruginosa ATCC 27853 under static conditions. Methods: Bacterial behaviour was evaluated in nutrient-rich Luria-Bertani (LB) broth and nutrient-limited M9 media, specifically lacking carbon (M9-C), nitrogen (M9-N), or phosphorus (M9-P). Bacterial adhesion was analysed microscopically during the transition from reversible to irreversible attachment (up to 120 min) and during biofilm production/maturation stages (up to 72 h). Results: Results demonstrated that LB and M9 media supported bacterial growth, whereas nutrient-starved conditions halted growth, with M9-C and M9-N inducing stationary phases and M9-P leading to cell death. Fractal analysis was employed to characterise the spatial distribution and complexity of bacterial adhesion patterns, revealing that nutrient-limited conditions affected both adhesion density and biofilm architecture, particularly in M9-C. In addition, live/dead staining confirmed a higher proportion of dead cells in M9-P over time (at 48 and 72 h). Conclusions: This study highlights how nutrient starvation influences biofilm formation and bacterial dispersion, offering insights into the survival strategies of P. aeruginosa in resource-limited environments. These findings should contribute to a better understanding of biofilm dynamics, with implications for managing biofilm-related infections and industrial biofouling.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Manuela Caratozzolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- LAB Sense Beyond Nano—URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, 98166 Messina, Italy
| | - Salvatore P. P. Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Lipońska A, Lee H, Yap MN. Staphylococcal exoribonuclease YhaM destabilizes ribosomes by targeting the mRNA of a hibernation factor. Nucleic Acids Res 2024; 52:8998-9013. [PMID: 38979572 PMCID: PMC11347170 DOI: 10.1093/nar/gkae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
The hibernation-promoting factor (Hpf) in Staphylococcus aureus binds to 70S ribosomes and induces the formation of the 100S complex (70S dimer), leading to translational avoidance and occlusion of ribosomes from RNase R-mediated degradation. Here, we show that the 3'-5' exoribonuclease YhaM plays a previously unrecognized role in modulating ribosome stability. Unlike RNase R, which directly degrades the 16S rRNA of ribosomes in S. aureus cells lacking Hpf, YhaM destabilizes ribosomes by indirectly degrading the 3'-hpf mRNA that carries an intrinsic terminator. YhaM adopts an active hexameric assembly and robustly cleaves ssRNA in a manganese-dependent manner. In vivo, YhaM appears to be a low-processive enzyme, trimming the hpf mRNA by only 1 nucleotide. Deletion of yhaM delays cell growth. These findings substantiate the physiological significance of this cryptic enzyme and the protective role of Hpf in ribosome integrity, providing a mechanistic understanding of bacterial ribosome turnover.
Collapse
Affiliation(s)
- Anna Lipońska
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 320 E Superior St, Chicago, IL 60611, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Biophysics Core in Research Resources Center, University of Illinois at Chicago (UIC), 1100 S Ashland Ave, Chicago, IL 60607, USA
| | - Mee-Ngan F Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 320 E Superior St, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Ueta M, Wada A, Wada C. The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles. Genes Cells 2024; 29:613-634. [PMID: 38937957 DOI: 10.1111/gtc.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
Bacteria use several means to survive under stress conditions such as nutrient depletion. One such response is the formation of hibernating 100S ribosomes, which are translationally inactive 70S dimers. In Gammaproteobacteria (Enterobacterales), 100S ribosome formation requires ribosome modulation factor (RMF) and short hibernation promoting factor (HPF), whereas it is mediated by only long HPF in the majority of bacteria. Here, we investigated the role of HPFs of Comamonas testosteroni, which belongs to the Betaproteobacteria with common ancestor to the Gammaproteobacteria. C. testosteroni has two genes of HPF homologs of differing length (CtHPF-125 and CtHPF-119). CtHPF-125 was induced in the stationary phase, whereas CtHPF-119 conserved in many other Betaproteobacteria was not expressed in the culture conditions used here. Unlike short HPF and RMF, and long HPF, CtHPF-125 could not form 100S ribosome. We first constructed the deletion mutant of Cthpf-125 gene. When the deletion mutant grows in the stationary phase, 70S particles were degraded faster than in the wild strain. CtHPF-125 contributes to stabilizing the 70S ribosome. CtHPF-125 and CtHPF-119 both inhibited protein synthesis by transcription-translation in vitro. Our findings suggest that CtHPF-125 binds to ribosome, and stabilizes 70S ribosomes, inhibits translation without forming 100S ribosomes and supports prolonging life.
Collapse
Affiliation(s)
- Masami Ueta
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| | - Akira Wada
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| | - Chieko Wada
- Biological Information Research, Yoshida Biological Laboratory Inc., Yoshida Biological Laboratory, Kyoto, Japan
| |
Collapse
|
5
|
Shi J, Zhou X, Zhang S, Sun F, Shen C, Su X. Unveiling the distribution characteristics of rpf-like genes and indigenous resuscitation promoting factor production in PCB-contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120803. [PMID: 38569268 DOI: 10.1016/j.jenvman.2024.120803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Resuscitation promoting factors (Rpfs), known for their anti-dormancy cytokine properties, have been extensively investigated in the medical field. Although the Rpf from Micrococcus luteus has been successfully utilized to resuscitate and stimulate microbial populations for the degradation of polychlorinated biphenyls (PCBs), the presence of indigenous Rpf homologs in PCB-contaminated soils has not been established. In this study, the distribution characteristics of rpf-like genes and indigenous strain capable of producing Rpf in PCB-contaminated soils were explored. The results revealed the widespread presence of Rpf-like domains and their associated genes, particularly in close association with heavy metals and PCBs. The rpf-like genes were predominantly found in Proteobacteria and displayed a positive correlation with genes involved in PCB degradation and viable but non-culturable (VBNC) formation. Notably, the recombinant Rpf-Ac protein derived from the indigenous strain Achromobacter sp. HR2 exhibited muralytic activity and demonstrated significant efficacy in resuscitating the growth of VBNC cells, while also stimulating the growth of normal cells. These findings shed light on the prevalent presence of Rpf homologs in PCB-contaminated soils and their potential to resuscitate functional populations in the VBNC state, thereby enhancing in situ bioremediation.
Collapse
Affiliation(s)
- Jie Shi
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinru Zhou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, 325500, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
6
|
Helena-Bueno K, Rybak MY, Ekemezie CL, Sullivan R, Brown CR, Dingwall C, Baslé A, Schneider C, Connolly JPR, Blaza JN, Csörgő B, Moynihan PJ, Gagnon MG, Hill CH, Melnikov SV. A new family of bacterial ribosome hibernation factors. Nature 2024; 626:1125-1132. [PMID: 38355796 PMCID: PMC10901736 DOI: 10.1038/s41586-024-07041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.
Collapse
Affiliation(s)
| | - Mariia Yu Rybak
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - James N Blaza
- Department of Chemistry, University of York, York, UK
- York Structural Biology Laboratory, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - Matthieu G Gagnon
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chris H Hill
- York Structural Biology Laboratory, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
7
|
Liu H, Wang Y, Zhang Z, Qi H, Zhang Y, Li W, Shi Q, Xie X. Nutrient condition modulates the antibiotic tolerance of Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166749. [PMID: 37659534 DOI: 10.1016/j.scitotenv.2023.166749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The variation in nutrient content across diverse environments has a significant impact on the survival and metabolism of microorganisms. In this study, we examined the influence of nutrients on the antibiotic tolerance of the PAO1 strain of Pseudomonas aeruginosa. Our findings indicate that under nutrient-rich conditions, this strain exhibited relatively high tolerance to ceftazidime, chloramphenicol, and tetracycline, but not aminoglycosides and fluoroquinolones. Transcriptome analysis revealed that genes associated with antibiotic tolerance were expressed more efficiently in nutrient-rich media, including ribosomal protein genes and multidrug efflux pump genes, which conferred higher tetracycline tolerance to the strain. Furthermore, the genes responsible for translation, biosynthesis, and oxidative phosphorylation were suppressed when nutrients were limited, resulting in decreased metabolic activity and lower sensitivity to ciprofloxacin. Artificial interference with ATP synthesis utilizing arsenate confirmed that the curtailment of energy provision bolstered the observed tolerance to ciprofloxacin. In general, our results indicate that this strain of P. aeruginosa tends to activate its intrinsic resistance mechanisms in nutrient-rich environments, thereby enhancing resistance to certain antibiotics. Conversely, in nutrient-limited environments, the strain is more likely to enter a dormant state, which enables it to tolerate antibiotics to which it would otherwise be sensitive. These findings further suggest that antibiotics released in environments with varying eutrophication levels may have divergent effects on the development of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Qi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenru Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
8
|
Ciolli Mattioli C, Eisner K, Rosenbaum A, Wang M, Rivalta A, Amir A, Golding I, Avraham R. Physiological stress drives the emergence of a Salmonella subpopulation through ribosomal RNA regulation. Curr Biol 2023; 33:4880-4892.e14. [PMID: 37879333 PMCID: PMC10843543 DOI: 10.1016/j.cub.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Bacteria undergo cycles of growth and starvation to which they must adapt swiftly. One important strategy for adjusting growth rates relies on ribosomal levels. Although high ribosomal levels are required for fast growth, their dynamics during starvation remain unclear. Here, we analyzed ribosomal RNA (rRNA) content of individual Salmonella cells by using fluorescence in situ hybridization (rRNA-FISH) and measured a dramatic decrease in rRNA numbers only in a subpopulation during nutrient limitation, resulting in a bimodal distribution of cells with high and low rRNA content. During nutritional upshifts, the two subpopulations were associated with distinct phenotypes. Using a transposon screen coupled with rRNA-FISH, we identified two mutants, DksA and RNase I, acting on rRNA transcription shutdown and degradation, which abolished the formation of the subpopulation with low rRNA content. Our work identifies a bacterial mechanism for regulation of ribosomal bimodality that may be beneficial for population survival during starvation.
Collapse
Affiliation(s)
- Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kfir Eisner
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aviel Rosenbaum
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mengyu Wang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andre' Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ariel Amir
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Golding
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
9
|
Akiyama T, Kim M. Bet-hedging: Bacterial ribosome dynamics during growth transitions. Curr Biol 2023; 33:R1186-R1188. [PMID: 37989094 DOI: 10.1016/j.cub.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
It is known that bacteria reduce their ribosome numbers during nutrient starvation. New research shows that this regulation leads to the formation of two subpopulations with distinct ribosomal RNA levels. The distinct levels affect the growth recovery when nutrients become available, suggesting a possible bet-hedging strategy.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA; Antibiotic Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Kim J, Ahn SB, Hong S, Kim KS, Ko EHE, Jo IJ, Chang J, Kim M, Lee W, Lee H. Intracellular Dynamics-Resolved Label-Free Scattering Reveals Real-Time Metabolism of Single Bacteria. NANO LETTERS 2023; 23:8225-8232. [PMID: 37650605 DOI: 10.1021/acs.nanolett.3c02370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanoscopic investigation of bacterial cells is essential to reveal their physiological status, impacting all cellular functions. Currently, this requires labeled probes or targeted staining procedures. Herein, we report a new bacterial feature, intracellular dynamics-resolved Rayleigh scattering (IDRS), that visualizes spatiotemporal cytoplasmic transitions in unlabeled bacteria and characterizes their real-time physiological status in 10 s. From single-bacterium IDRS signals, we discovered unique spatial patterns and their multiple transitions in Gram-negative and Gram-positive bacteria. The magnitude of IDRS signal variation highly correlated with the metabolic status of bacteria, differentiating persistent subpopulations. This is also the first report demonstrating distinct real-time metabolic conditions of unlabeled drug-resistant bacteria that are exposed to different doses of antibiotics. Our strategy opens up a way to simultaneously trace in situ metabolic and antibiotic resistance statuses, which can be applied in single-cell level control of bacterial metabolism and efficacy with a heterogeneous nature.
Collapse
Affiliation(s)
- Jungwoo Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Soo Bin Ahn
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subin Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Esther Ha-Eun Ko
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - I Jeong Jo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - JuOae Chang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Haemi Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
11
|
Jiang G, Li Y, Zhang J, Li W, Dang W, Zhang W. Proteomic analysis of the initial wake up of vibrio splendidus persister cells. World J Microbiol Biotechnol 2023; 39:116. [PMID: 36918451 DOI: 10.1007/s11274-023-03559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Vibrio splendidus is a ubiquitous pathogen that causes various diseases in aquaculture with a wide range of hosts. In our previous studies, we showed that L-glutamic acid was the optimal carbon source that could revive V. splendidus persister cells. In our present study, single cell observation under microscopy showed that V. splendidus could revive using L-glutamic acid as carbon source. A proteomic analysis was carried out to further illustrate the initial wake up of persister cells with L-glutamic acid. To collect the initially revived cells, SDS-PAGE was used to determine the revived time. The total proteins from the persister cells and the revived cells were analyzed using LC‒MS/MS. A total of 106 proteins, including 42 downregulated proteins and 64 upregulated proteins, were identified. GO analysis of the differentially expressed proteins (DEPs) showed that biological processes, including protein complex assembly, protein oligomerization, and arginine metabolism; cellular components, including extracellular membrane, plasma membrane and ribosome; and molecular functions, including the activities of arginine binding and structural constituent of ribosome, were enriched. KEGG analysis showed that lipopolysaccharide biosynthesis, porphyrin and chlorophyll metabolism, and peptidoglycan biosynthesis were upregulated, while the ribosome was downregulated. This is the first time to study the initial wake up of persister cells based on proteomic analysis, and the results revealed the main pathways involved in the early resuscitation of V. splendidus persister cells.
Collapse
Affiliation(s)
- Guohua Jiang
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Ya Li
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Jinxia Zhang
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Weisheng Li
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Wei Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Weiwei Zhang
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China.
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
12
|
Williamson KS, Dlakić M, Akiyama T, Franklin MJ. The Pseudomonas aeruginosa RpoH (σ 32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance. Int J Mol Sci 2023; 24:1513. [PMID: 36675051 PMCID: PMC9866376 DOI: 10.3390/ijms24021513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.
Collapse
Affiliation(s)
- Kerry S. Williamson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tatsuya Akiyama
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
13
|
Ranava D, Scheidler CM, Pfanzelt M, Fiedler M, Sieber SA, Schneider S, Yap MNF. Bidirectional sequestration between a bacterial hibernation factor and a glutamate metabolizing protein. Proc Natl Acad Sci U S A 2022; 119:e2207257119. [PMID: 36122228 PMCID: PMC9522360 DOI: 10.1073/pnas.2207257119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.
Collapse
Affiliation(s)
- David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Martin Pfanzelt
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Michaela Fiedler
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mee-Ngan F. Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Abstract
Since Jacques Monod's foundational work in the 1940s, investigators studying bacterial physiology have largely (but not exclusively) focused on the exponential phase of bacterial cultures, which is characterized by rapid growth and high biosynthesis activity in the presence of excess nutrients. However, this is not the predominant state of bacterial life. In nature, most bacteria experience nutrient limitation most of the time. In fact, investigators even prior to Monod had identified other aspects of bacterial growth, including what is now known as the stationary phase, when nutrients become limiting. This review will discuss how bacteria transition to growth arrest in response to nutrient limitation through changes in transcription, translation, and metabolism. We will then examine how these changes facilitate survival during potentially extended periods of nutrient limitation, with particular attention to the metabolic strategies that underpin bacterial longevity in this state.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
15
|
Stewart PS, Williamson KS, Boegli L, Hamerly T, White B, Scott L, Hu X, Mumey BM, Franklin MJ, Bothner B, Vital-Lopez FG, Wallqvist A, James GA. Search for a Shared Genetic or Biochemical Basis for Biofilm Tolerance to Antibiotics across Bacterial Species. Antimicrob Agents Chemother 2022; 66:e0002122. [PMID: 35266829 PMCID: PMC9017379 DOI: 10.1128/aac.00021-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022] Open
Abstract
Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for 3 days and then challenged with respective antibiotics (ciprofloxacin, daptomycin, and tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells, and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of individual microorganisms in biofilms and contribute to antibiotic tolerance.
Collapse
Affiliation(s)
- Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Kerry S. Williamson
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Laura Boegli
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Timothy Hamerly
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Ben White
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Liam Scott
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Xiao Hu
- Gianforte School of Computing, Montana State University, Bozeman, Montana, USA
| | - Brendan M. Mumey
- Gianforte School of Computing, Montana State University, Bozeman, Montana, USA
| | - Michael J. Franklin
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Francisco G. Vital-Lopez
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, USA
| | - Garth A. James
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
Abstract
During stationary phase in Escherichia coli, the expression of the ribosome modulation factor (RMF) protein participates in the dimerization of two 70S ribosomes, ultimately creating a 100S particle. 100S ribosomes are commonly thought to function to preserve ribosomes as growth ceases and cells begin to catabolize intracellular components, including proteins, during their transition into stationary phase. Here, we show that the rates of stationary-phase ribosomal degradation are increased in an rmf mutant strain that cannot produce 100S ribosomes, resulting in deficiencies in outgrowth upon reinoculation into fresh medium. Upon coinoculation in LB medium, the mutant exhibits a delay in entry into log phase, differences in growth rates, and an overall reduction in relative fitness during competition. Unexpectedly, the rmf mutant exhibited shorter generation times than wild-type cells during log phase, both in monoculture and during competition. These doubling times of ∼13 min suggest that failure to maintain ribosomal balance affects the control of cell division. Though the timing of entry into and exit from log phase is altered, 100S ribosomes are not essential for long-term viability of the rmf mutant when grown in monoculture. IMPORTANCE Ribosomes are the sole source in any cell for new protein synthesis that is vital to maintain life. While ribosomes are frequently consumed as sources of nutrients under low-nutrient conditions, some ribosomes appear to be preserved for later use. The failure to maintain the availability of these ribosomes can lead to a dire consequence upon the influx of new nutrients, as cells are unable to efficiently replenish their metabolic machinery. It is important to study the repercussions, consequences, and mechanisms of survival in cells that cannot properly maintain the availability of their ribosomes in order to better understand their mechanisms of survival during competition under nutrient-depleted conditions.
Collapse
|
17
|
Bay L, Ring HC. Human skin microbiota in health and disease: The cutaneous communities' interplay in equilibrium and dysbiosis: The cutaneous communities' interplay in equilibrium and dysbiosis. APMIS 2021; 130:706-718. [PMID: 34919288 DOI: 10.1111/apm.13201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 01/20/2023]
Abstract
Cutaneous microbial composition is driven by the microenvironment of the skin, as well as by internal and external factors. Local changes in the microenvironment can affect the configuration of the community, which may lead toward an imbalance of microbiota. Alterations in the microbial profile are common in both inflammatory skin diseases and chronic infections. A shift in balance within the microbiota, toward limited variation and a greater abundance of specific pathogens, may further worsen the pathogenicity of the diseases. These alterations may be prevented by topical treatment of probiotic solutions stimulating a balanced multispecies community. Compositional variations may further constitute potential biomarkers to predict flares or monitor efficacy during therapy. New approaches such as machine learning may contribute to this prediction of microbial alterations prior to the development of chronic infections and flares. This review provides insight into the composition and distribution of a healthy community of microorganisms in the skin and draws parallels with the community in chronic infections and chronic inflammatory skin diseases such acne vulgaris and Hidradenitis Suppurativa. We discuss the potential role of specific species in the pathogenesis and the possible prevention of disease exacerbation.
Collapse
Affiliation(s)
- Lene Bay
- Bacterial Infection Biology, Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Christian Ring
- Department of Dermato-Venereology and Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Roy S, Bahar AA, Gu H, Nangia S, Sauer K, Ren D. Persister control by leveraging dormancy associated reduction of antibiotic efflux. PLoS Pathog 2021; 17:e1010144. [PMID: 34890435 PMCID: PMC8716142 DOI: 10.1371/journal.ppat.1010144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/29/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Persistent bacterial infections do not respond to current antibiotic treatments and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 μg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 μg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles’ heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux. Bacterial persister cells are dormant phenotypic variants that are highly tolerant to most antibiotics; and thus, present a major challenge to infection control. This motivated us to develop new strategies that can specifically target the persister population. It is known that persister formation is associated with reduced membrane potential and cellular activities. Thus, we hypothesize that persister cells have reduced drug efflux compared to normal cells and accumulate more antimicrobial agents that can penetrate the membranes of persister cells. By testing this hypothesis, we developed a new set of criteria for selecting persister control agents and demonstrated effective control of Escherichia coli persister cells by minocycline, rifamycin SV, and eravacycline. Our results revealed that these agents are more effective against persister cells than normal cells and the killing occurred during persister wake-up. Collectively, these results demonstrate a new strategy for persister control by leveraging dormancy associated changes in bacterial physiology. The findings may contribute to future drug discovery and the treatment of persistent infections.
Collapse
Affiliation(s)
- Sweta Roy
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Ali Adem Bahar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, United States of America
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wainwright J, Hobbs G, Nakouti I. Persister cells: formation, resuscitation and combative therapies. Arch Microbiol 2021; 203:5899-5906. [PMID: 34739553 PMCID: PMC8590677 DOI: 10.1007/s00203-021-02585-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.
Collapse
Affiliation(s)
- Jack Wainwright
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Glyn Hobbs
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Ismini Nakouti
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| |
Collapse
|
20
|
Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
21
|
Feaga HA, Dworkin J. Transcription regulates ribosome hibernation. Mol Microbiol 2021; 116:663-673. [PMID: 34152658 PMCID: PMC8628635 DOI: 10.1111/mmi.14762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Most bacteria are quiescent, typically as a result of nutrient limitation. In order to minimize energy consumption during this potentially prolonged state, quiescent bacteria substantially attenuate protein synthesis, the most energetically costly cellular process. Ribosomes in quiescent bacteria are present as dimers of two 70S ribosomes. Dimerization is dependent on a single protein, hibernation promoting factor (HPF), that binds the ribosome in the mRNA channel. This interaction indicates that dimers are inactive, suggesting that HPF inhibits translation. However, we observe that HPF does not significantly affect protein synthesis in vivo suggesting that dimerization is a consequence of inactivity, not the cause. The HPF-dimer interaction further implies that re-initiation of translation when the bacteria exit quiescence requires dimer resolution. We show that ribosome dimers quickly resolve in the presence of nutrients, and this resolution is dependent on transcription, indicating that mRNA synthesis is required for dimer resolution. Finally, we observe that ectopic HPF expression in growing cells where mRNA is abundant does not significantly affect protein synthesis despite stimulating dimer formation, suggesting that dimerization is dynamic. Thus, the extensive transcription that occurs in response to nutrient availability rapidly re-activates the translational apparatus of a quiescent cell and induces dimer resolution.
Collapse
Affiliation(s)
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
22
|
Bergkessel M. Bacterial transcription during growth arrest. Transcription 2021; 12:232-249. [PMID: 34486930 PMCID: PMC8632087 DOI: 10.1080/21541264.2021.1968761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022] Open
Abstract
Bacteria in most natural environments spend substantial periods of time limited for essential nutrients and not actively dividing. While transcriptional activity under these conditions is substantially reduced compared to that occurring during active growth, observations from diverse organisms and experimental approaches have shown that new transcription still occurs and is important for survival. Much of our understanding of transcription regulation has come from measuring transcripts in exponentially growing cells, or from in vitro experiments focused on transcription from highly active promoters by the housekeeping RNA polymerase holoenzyme. The fact that transcription during growth arrest occurs at low levels and is highly heterogeneous has posed challenges for its study. However, new methods of measuring low levels of gene expression activity, even in single cells, offer exciting opportunities for directly investigating transcriptional activity and its regulation during growth arrest. Furthermore, much of the rich structural and biochemical data from decades of work on the bacterial transcriptional machinery is also relevant to growth arrest. In this review, the physiological changes likely affecting transcription during growth arrest are first considered. Next, possible adaptations to help facilitate ongoing transcription during growth arrest are discussed. Finally, new insights from several recently published datasets investigating mRNA transcripts in single bacterial cells at various growth phases will be explored. Keywords: Growth arrest, stationary phase, RNA polymerase, nucleoid condensation, population heterogeneity.
Collapse
|
23
|
Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation. mBio 2021; 12:e0033421. [PMID: 34253058 PMCID: PMC8406268 DOI: 10.1128/mbio.00334-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial and eukaryotic hibernation factors prevent translation by physically blocking the decoding center of ribosomes, a phenomenon called ribosome hibernation that often occurs in response to nutrient deprivation. The human pathogen Staphylococcus aureus lacking the sole hibernation factor HPF undergoes massive ribosome degradation via an unknown pathway. Using genetic and biochemical approaches, we find that inactivating the 3′-to-5′ exonuclease RNase R suppresses ribosome degradation in the Δhpf mutant. In vitro cell-free degradation assays confirm that 30S and 70S ribosomes isolated from the Δhpf mutant are extremely susceptible to RNase R, in stark contrast to nucleolytic resistance of the HPF-bound 70S and 100S complexes isolated from the wild type. In the absence of HPF, specific S. aureus 16S rRNA helices are sensitive to nucleolytic cleavage. These RNase hot spots are distinct from that found in the Escherichia coli ribosomes. S. aureus RNase R is associated with ribosomes, but unlike the E. coli counterpart, it is not regulated by general stressors and acetylation. The results not only highlight key differences between the evolutionarily conserved RNase R homologs but also provide direct evidence that HPF preserves ribosome integrity beyond its role in translational avoidance, thereby poising the hibernating ribosomes for rapid resumption of translation.
Collapse
|
24
|
Thorn CR, Carvalho-Wodarz CDS, Horstmann JC, Lehr CM, Prestidge CA, Thomas N. Tobramycin Liquid Crystal Nanoparticles Eradicate Cystic Fibrosis-Related Pseudomonas aeruginosa Biofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100531. [PMID: 33978317 DOI: 10.1002/smll.202100531] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Pseudomonas aeruginosa biofilms cause persistent and chronic infections, most known clinically in cystic fibrosis (CF). Tobramycin (TOB) is a standard anti-pseudomonal antibiotic; however, in biofilm infections, its efficacy severely decreases due to limited permeability across the biofilm matrix. Herewith, a biomimetic, nanostructured, lipid liquid crystal nanoparticle-(LCNP)-formulation is discovered to significantly enhance the efficacy of TOB and eradicate P. aeruginosa biofilm infections. Using an advanced, biologically-relevant co-culture model of human CF bronchial epithelial cells infected with P. aeruginosa biofilms at an air-liquid interface, nebulized TOB-LCNPs completely eradicated 1 × 109 CFU mL-1 of P. aeruginosa after two doses, a 100-fold improvement over the unformulated antibiotic. The enhanced activity of TOB is not observed with a liposomal formulation of TOB or with ciprofloxacin, an antibiotic that readily penetrates biofilms. It is demonstrated that the unique nanostructure of the LCNPs drives the enhanced penetration of TOB across the biofilm barrier, but not through the healthy lung epithelium barrier, significantly increasing the available antibiotic concentration at the site of infection. The LCNPs are an innovative strategy to improve the performance of TOB as a directed pulmonary therapy, enabling the administration of lower doses, reducing the toxicity, and amplifying the anti-biofilm activity of the anti-pseudomonal antibiotic.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
- Adelaide Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
| | | | - Justus C Horstmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
| | - Nicky Thomas
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
- Adelaide Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
| |
Collapse
|
25
|
Loveday EK, Zath GK, Bikos DA, Jay ZJ, Chang CB. Screening of Additive Formulations Enables Off-Chip Drop Reverse Transcription Quantitative Polymerase Chain Reaction of Single Influenza A Virus Genomes. Anal Chem 2021; 93:4365-4373. [PMID: 33635052 PMCID: PMC10016143 DOI: 10.1021/acs.analchem.0c03455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The miniaturization of polymerase chain reaction (PCR) using drop-based microfluidics allows for amplification of single nucleic acids in aqueous picoliter-sized drops. Accurate data collection during PCR requires that drops remain stable to coalescence during thermocycling and drop contents are retained. Following systematic testing of known PCR additives, we identified an optimized formulation of 1% w/v Tween-20, 0.8 μg/μL bovine serum albumin, 1 M betaine in the aqueous phase, and 3 wt % (w/w) of the polyethylene glycol-perfluoropolyether2 surfactant in the oil phase of 50 μm diameter drops that maintains drop stability and prevents dye transport. This formulation enables a method we call off-chip drop reverse transcription quantitative PCR (OCD RT-qPCR) in which drops are thermocycled in a qPCR machine and sampled at various cycle numbers "off-chip", or outside of a microfluidic chip. qPCR amplification curves constructed from hundreds of individual drops using OCD RT-qPCR and imaged using epifluorescence microscopy correlate with amplification curves of ≈300,000 drops thermocycled using a qPCR machine. To demonstrate the utility of OCD RT-qPCR, influenza A virus (IAV) RNA was detected down to a single viral genome copy per drop, or 0.320 cpd. This work was extended to perform multiplexed detection of IAV M gene RNA and cellular β-actin DNA in drops, and direct amplification of IAV genomes from infected cells without a separate RNA extraction step. The optimized additive formulation and the OCD-qPCR method allow for drop-based RT-qPCR without complex devices and demonstrate the ability to quantify individual or rare nucleic acid species within drops with minimal processing.
Collapse
Affiliation(s)
- Emma Kate Loveday
- Center for Biofilm Engineering and the Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Geoffrey K Zath
- Center for Biofilm Engineering and the Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Dimitri A Bikos
- Center for Biofilm Engineering and the Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Connie B Chang
- Center for Biofilm Engineering and the Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
26
|
Prossliner T, Gerdes K, Sørensen MA, Winther KS. Hibernation factors directly block ribonucleases from entering the ribosome in response to starvation. Nucleic Acids Res 2021; 49:2226-2239. [PMID: 33503254 PMCID: PMC7913689 DOI: 10.1093/nar/gkab017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome hibernation is a universal translation stress response found in bacteria as well as plant plastids. The term was coined almost two decades ago and despite recent insights including detailed cryo-EM structures, the physiological role and underlying molecular mechanism of ribosome hibernation has remained unclear. Here, we demonstrate that Escherichia coli hibernation factors RMF, HPF and RaiA (HFs) concurrently confer ribosome hibernation. In response to carbon starvation and resulting growth arrest, we observe that HFs protect ribosomes at the initial stage of starvation. Consistently, a deletion mutant lacking all three factors (ΔHF) is severely inhibited in regrowth from starvation. ΔHF cells increasingly accumulate 70S ribosomes harbouring fragmented rRNA, while rRNA in wild-type 100S dimers is intact. RNA fragmentation is observed to specifically occur at HF-associated sites in 16S rRNA of assembled 70S ribosomes. Surprisingly, degradation of the 16S rRNA 3′-end is decreased in cells lacking conserved endoribonuclease YbeY and exoribonuclease RNase R suggesting that HFs directly block these ribonucleases from accessing target sites in the ribosome.
Collapse
Affiliation(s)
- Thomas Prossliner
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | | - Michael Askvad Sørensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
27
|
Abstract
Incidences of non-tuberculosis mycobacteria (NTM) and Aspergillus fumigatus have increased around the world over the past decade and have become a significant health threat to immunocompromised individuals such as those with cystic fibrosis (CF). CF is characterized by the buildup of mucus in the lungs which become chronically infected by a myriad of pathogens. The survival rates of individuals with cystic fibrosis (CF) have significantly increased as a result of improved therapies, such as the inclusion of cystic fibrosis transmembrane conductance regulator (CFTR) modulators for some mutations. However, microbial infection of the airways remains a significant clinical problem. The well-known pathogens Pseudomonas aeruginosa and Staphylococcus aureus continue to establish difficult-to-treat infections in the CF lung. However, in recent years, there has been an increased prevalence of both Aspergillus fumigatus (Af) and non-tuberculous mycobacteria (NTM) species isolated from CF patient sputa. The emergence of these pathogens opens an important area of discussion about multikingdom infections, specifically, how interspecies interactions have the potential to shape the course of infection, such as tolerance to host immune defenses and antimicrobial therapies. Their ability to establish themselves in an existing polymicrobial environment suggests to us that microbial interactions play a significant role, and characterizing these mechanisms and understanding their implications will be critical to the future development of better antimicrobial therapies. With this minireview, we hope to inspire conversations about and demonstrate the merit of more research in this area.
Collapse
|
28
|
Theng S, Williamson KS, Franklin MJ. Role of Hibernation Promoting Factor in Ribosomal Protein Stability during Pseudomonas aeruginosa Dormancy. Int J Mol Sci 2020; 21:E9494. [PMID: 33327444 PMCID: PMC7764885 DOI: 10.3390/ijms21249494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes biofilm-associated infections. P. aeruginosa can survive in a dormant state with reduced metabolic activity in nutrient-limited environments, including the interiors of biofilms. When entering dormancy, the bacteria undergo metabolic remodeling, which includes reduced translation and degradation of cellular proteins. However, a supply of essential macromolecules, such as ribosomes, are protected from degradation during dormancy. The small ribosome-binding proteins, hibernation promoting factor (HPF) and ribosome modulation factor (RMF), inhibit translation by inducing formation of inactive 70S and 100S ribosome monomers and dimers. The inactivated ribosomes are protected from the initial steps in ribosome degradation, including endonuclease cleavage of the ribosomal RNA (rRNA). Here, we characterized the role of HPF in ribosomal protein (rProtein) stability and degradation during P. aeruginosa nutrient limitation. We determined the effect of the physiological status of P. aeruginosa prior to starvation on its ability to recover from starvation, and on its rRNA and rProtein stability during cell starvation. The results show that the wild-type strain and a stringent response mutant (∆relA∆spoT strain) maintain high cellular abundances of the rProteins L5 and S13 over the course of eight days of starvation. In contrast, the abundances of L5 and S13 reduce in the ∆hpf mutant cells. The loss of rProteins in the ∆hpf strain is dependent on the physiology of the cells prior to starvation. The greatest rProtein loss occurs when cells are first cultured to stationary phase prior to starvation, with less rProtein loss in the ∆hpf cells that are first cultured to exponential phase or in balanced minimal medium. Regardless of the pre-growth conditions, P. aeruginosa recovery from starvation and the integrity of its rRNA are impaired in the absence of HPF. The results indicate that protein remodeling during P. aeruginosa starvation includes the degradation of rProteins, and that HPF is essential to prevent rProtein loss in starved P. aeruginosa. The results also indicate that HPF is produced throughout cell growth, and that regardless of the cellular physiological status, HPF is required to protect against ribosome loss when the cells subsequently enter starvation phase.
Collapse
Affiliation(s)
- Sokuntheary Theng
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
| | - Kerry S. Williamson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
29
|
Wood TK, Song S. Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm 2020; 2:100018. [PMID: 33447804 PMCID: PMC7798447 DOI: 10.1016/j.bioflm.2019.100018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Procaryotes starve and face myriad stresses. The bulk population actively resists the stress, but a small population weathers the stress by entering a resting stage known as persistence. No mutations occur, and so persisters behave like wild-type cells upon removal of the stress and regrowth; hence, persisters are phenotypic variants. In contrast, resistant bacteria have mutations that allow cells to grow in the presence of antibiotics, and tolerant cells survive antibiotics better than actively-growing cells due to their slow growth (such as that of the stationary phase). In this review, we focus on the latest developments in studies related to the formation and resuscitation of persister cells and propose the guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) ribosome dimerization persister (PRDP) model for entering and exiting the persister state.
Collapse
Affiliation(s)
- Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
30
|
Functional Characterization of the Pseudomonas aeruginosa Ribosome Hibernation-Promoting Factor. J Bacteriol 2020; 202:JB.00280-20. [PMID: 32900865 DOI: 10.1128/jb.00280-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hibernation-promoting factor (HPF) is a ribosomal accessory protein that inactivates ribosomes during bacterial starvation. In Pseudomonas aeruginosa, HPF protects ribosome integrity while the cells are dormant. The sequence of HPF has diverged among bacteria but contains conserved charged amino acids in its two alpha helices that interact with the rRNA. Here, we characterized the function of HPF in P. aeruginosa by performing mutagenesis of the conserved residues and then assaying mutant HPF alleles for their ability to protect ribosome integrity of starved P. aeruginosa cells. The results show that HPF functionally tolerates point mutations in charged residues and in the conserved Y71 residue as well as a C-terminal truncation. Double and triple mutations of charged residues in helix 1 in combination with a Y71F substitution reduce HPF activity. Screening for single point mutations that caused impaired HPF activity identified additional substitutions in the two HPF alpha helices. However, alanine substitutions in equivalent positions restored HPF activity, indicating that HPF is tolerant to mutations that do not disrupt the protein structure. Surprisingly, heterologous HPFs from Gram-positive bacteria that have long C-terminal domains functionally complement the P. aeruginosa Δhpf mutant, suggesting that HPF may play a similar role in ribosome protection in other bacterial species. Collectively, the results show that HPF has diverged among bacteria and is tolerant to most single amino acid substitutions. The Y71 residue in combination with helix 1 is important for the functional role of HPF in ribosome protection during bacterial starvation and resuscitation of the bacteria from dormancy.IMPORTANCE In most environments, bacteria experience conditions where nutrients may be readily abundant or where nutrients are limited. Under nutrient limitation conditions, even non-spore-forming bacteria may enter a dormant state. Dormancy is accompanied by a variety of cellular physiological changes that are required for the cells to remain viable during dormancy and to resuscitate when nutrients become available. Among the physiological changes that occur in dormant bacteria is the inactivation and preservation of ribosomes by the dormancy protein, hibernation-promoting factor (HPF). In this study, we characterized the activity of HPF of Pseudomonas aeruginosa, an opportunistic pathogen that causes persistent infections, and analyzed the role of HPF in ribosome protection and bacterial survival during dormancy.
Collapse
|
31
|
Bergkessel M. Regulation of protein biosynthetic activity during growth arrest. Curr Opin Microbiol 2020; 57:62-69. [PMID: 32858411 DOI: 10.1016/j.mib.2020.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Heterotrophic bacteria grow and divide rapidly when resources are abundant. Yet resources are finite, and environments fluctuate, so bacteria need strategies to survive when nutrients become scarce. In fact, many bacteria spend most of their time in such conditions of nutrient limitation, and hence they need to optimise gene regulation and protein biosynthesis during growth arrest. An optimal strategy in these conditions must mitigate the challenges and risks of making new proteins, while the cell is severely limited for energy and substrates. Recently, ribosome abundance and activity were measured in these conditions, revealing very low amounts of new protein synthesis, which is nevertheless vital for survival. The underlying mechanisms are only now starting to be explored. Improving our understanding of the regulation of protein production during bacterial growth arrest could have important implications for a wide range of challenges, including the identification of new targets for antibiotic development.
Collapse
Affiliation(s)
- Megan Bergkessel
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
32
|
Progression from remodeling to hibernation of ribosomes in zinc-starved mycobacteria. Proc Natl Acad Sci U S A 2020; 117:19528-19537. [PMID: 32723821 PMCID: PMC7431043 DOI: 10.1073/pnas.2013409117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that hibernation of 70S ribosomes in mycobacteria is induced as a response to zinc starvation. Because zinc limitation also induces ribosome remodeling, our findings raise questions about the conditions for ribosome remodeling and hibernation. Here, we show that the two processes are induced at different concentrations of zinc and that the caseinolytic protease system plays a crucial role in zinc-dependent inhibition of hibernation during remodeling. The findings offer insights into the molecular pathway underlying the transition from remodeling of ribosomes to hibernation in response to progressive zinc depletion in mycobacteria. This study is also a demonstration of reactivation of hibernating ribosomes by zinc. Finally, this study correlates ribosome hibernation with streptomycin tolerance in Mycobacterium tuberculosis during infection. Zinc starvation in mycobacteria leads to remodeling of ribosomes, in which multiple ribosomal (r-) proteins containing the zinc-binding CXXC motif are replaced by their motif-free paralogues, collectively called C− r-proteins. We previously reported that the 70S C− ribosome is exclusively targeted for hibernation by mycobacterial-specific protein Y (Mpy), which binds to the decoding center and stabilizes the ribosome in an inactive and drug-resistant state. In this study, we delineate the conditions for ribosome remodeling and hibernation and provide further insight into how zinc depletion induces Mpy recruitment to C− ribosomes. Specifically, we show that ribosome hibernation in a batch culture is induced at an approximately two-fold lower cellular zinc concentration than remodeling. We further identify a growth phase in which the C− ribosome remains active, while its hibernation is inhibited by the caseinolytic protease (Clp) system in a zinc-dependent manner. The Clp protease system destabilizes a zinc-bound form of Mpy recruitment factor (Mrf), which is stabilized upon further depletion of zinc, presumably in a zinc-free form. Stabilized Mrf binds to the 30S subunit and recruits Mpy to the ribosome. Replenishment of zinc to cells harboring hibernating ribosomes restores Mrf instability and dissociates Mpy from the ribosome. Finally, we demonstrate zinc-responsive binding of Mpy to ribosomes in Mycobacterium tuberculosis (Mtb) and show Mpy-dependent antibiotic tolerance of Mtb in mouse lungs. Together, we propose that ribosome hibernation is a specific and conserved response to zinc depletion in both environmental and pathogenic mycobacteria.
Collapse
|
33
|
Song S, Wood TK. Combatting Persister Cells With Substituted Indoles. Front Microbiol 2020; 11:1565. [PMID: 32733426 PMCID: PMC7358577 DOI: 10.3389/fmicb.2020.01565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Given that a subpopulation of most bacterial cells becomes dormant due to stress, and that the resting cells of pathogens can revive and reconstitute infections, it is imperative to find methods to treat dormant cells to eradicate infections. The dormant bacteria that are not spores or cysts are known as persister cells. Remarkably, in contrast to the original report that incorrectly indicated indole increases persistence, a large number of indole-related compounds have been found in the last few years that kill persister cells. Hence, in this review, along with a summary of recent results related to persister cell formation and resuscitation, we focus on the ability of indole and substituted indoles to combat the persister cells of both pathogens and non-pathogens.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju, South Korea
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
34
|
Ribosome Dimerization Protects the Small Subunit. J Bacteriol 2020; 202:JB.00009-20. [PMID: 32123037 PMCID: PMC7186458 DOI: 10.1128/jb.00009-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023] Open
Abstract
When nutrients become scarce, bacteria can enter an extended state of quiescence. A major challenge of this state is how to preserve ribosomes for the return to favorable conditions. Here, we show that the ribosome dimerization protein hibernation-promoting factor (HPF) functions to protect essential ribosomal proteins. Ribosomes isolated from strains lacking HPF (Δhpf) or encoding a mutant allele of HPF that binds the ribosome but does not mediate dimerization were substantially depleted of the small subunit proteins S2 and S3. Strikingly, these proteins are located directly at the ribosome dimer interface. We used single-particle cryo-electron microscopy (cryo-EM) to further characterize these ribosomes and observed that a high percentage of ribosomes were missing S2, S3, or both. These data support a model in which the ribosome dimerization activity of HPF evolved to protect labile proteins that are essential for ribosome function. HPF is almost universally conserved in bacteria, and HPF deletions in diverse species exhibit decreased viability during starvation. Our data provide mechanistic insight into this phenotype and establish a mechanism for how HPF protects ribosomes during quiescence.IMPORTANCE The formation of ribosome dimers during periods of dormancy is widespread among bacteria. Dimerization is typically mediated by a single protein, hibernation-promoting factor (HPF). Bacteria lacking HPF exhibit strong defects in viability and pathogenesis and, in some species, extreme loss of rRNA. The mechanistic basis of these phenotypes has not been determined. Here, we report that HPF from the Gram-positive bacterium Bacillus subtilis preserves ribosomes by preventing the loss of essential ribosomal proteins at the dimer interface. This protection may explain phenotypes associated with the loss of HPF, since ribosome protection would aid survival during nutrient limitation and impart a strong selective advantage when the bacterial cell rapidly reinitiates growth in the presence of sufficient nutrients.
Collapse
|
35
|
Abstract
Geobacter and Pseudomonas spp. cohabit many of the same environments, where Geobacter spp. often dominate. Both bacteria are capable of extracellular electron transfer (EET) and play important roles in biogeochemical cycling. Although they recently in 2017 were demonstrated to undergo direct interspecies electron transfer (DIET) with one another, the genetic evolution of this syntrophic interaction has not been examined. Here, we use whole-genome sequencing of the cocultures before and after adaptive evolution to determine whether genetic selection is occurring. We also probe their interaction on a temporal level and determine whether their interaction dynamics change over the course of adaptive evolution. This study brings to light the multifaceted nature of interactions between just two microorganisms within a controlled environment and will aid in improving metabolic models of microbial communities comprising these two bacteria. Interactions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa coculture change in their dynamics over evolutionary time. Specifically, Geobacter sp. dominance increases with adaptation within the cocultures, as determined through quantitative PCR and fluorescence in situ hybridization. This suggests a transition from syntrophy to competition and demonstrates the rapid adaptive capacity of Geobacter spp. to dominate in cocultures with P. aeruginosa. Early in coculture establishment, two single-nucleotide variants in the G. sulfurreducensfabI and tetR genes emerged that were strongly selected for throughout coculture evolution with P. aeruginosa phenazine wild-type and phenazine-deficient mutants. Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) proteomics revealed that the tetR variant cooccurred with the upregulation of an adenylate cyclase transporter, CyaE, and a resistance-nodulation-division (RND) efflux pump notably known for antibiotic efflux. To determine whether antibiotic production was driving the increased expression of the multidrug efflux pump, we tested Pseudomonas-derived phenazine-1-carboxylic acid (PHZ-1-CA) for its potential to inhibit Geobacter growth and drive selection of the tetR and fabI genetic variants. Despite its inhibitory properties, PHZ-1-CA did not drive variant selection, indicating that other antibiotics may drive overexpression of the efflux pump and CyaE or that a novel role exists for these proteins in the context of this interaction.
Collapse
|
36
|
Basu A, Shields KE, Yap MNF. The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus. J Biol Chem 2020; 295:6053-6063. [PMID: 32209660 PMCID: PMC7196661 DOI: 10.1074/jbc.ra119.012307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.
Collapse
Affiliation(s)
- Arnab Basu
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Kathryn E Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Mee-Ngan F Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104; Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.
| |
Collapse
|
37
|
Diffuse lamellar keratitis associated with tabletop autoclave biofilms: case series and review. J Cataract Refract Surg 2020; 46:340-349. [DOI: 10.1097/j.jcrs.0000000000000070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Trösch R, Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol Chem 2020; 400:879-893. [PMID: 30653464 DOI: 10.1515/hsz-2018-0436] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Cells are highly adaptive systems that respond and adapt to changing environmental conditions such as temperature fluctuations or altered nutrient availability. Such acclimation processes involve reprogramming of the cellular gene expression profile, tuning of protein synthesis, remodeling of metabolic pathways and morphological changes of the cell shape. Nutrient starvation can lead to limited energy supply and consequently, remodeling of protein synthesis is one of the key steps of regulation since the translation of the genetic code into functional polypeptides may consume up to 40% of a cell's energy during proliferation. In eukaryotic cells, downregulation of protein synthesis during stress is mainly mediated by modification of the translation initiation factors. Prokaryotic cells suppress protein synthesis by the active formation of dimeric so-called 'hibernating' 100S ribosome complexes. Such a transition involves a number of proteins which are found in various forms in prokaryotes but also in chloroplasts of plants. Here, we review the current understanding of these hibernation factors and elaborate conserved principles which are shared between species.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Felix Willmund
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
39
|
Song S, Wood TK. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem Biophys Res Commun 2020; 523:281-286. [PMID: 32007277 DOI: 10.1016/j.bbrc.2020.01.102] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022]
Abstract
Stress is ubiquitous for bacteria and can convert a subpopulation of cells into a dormant state known as persistence, in which cells are tolerant to antimicrobials. These cells revive rapidly when the stress is removed and are likely the cause of many recurring infections such as those associated with tuberculosis, cystic fibrosis, and Lyme disease. However, how persister cells are formed is not understood well. Here we propose the ppGpp ribosome dimerization persister (PRDP) model in which the alarmone guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) generates persister cells directly by inactivating ribosomes via the ribosome modulation factor (RMF), the hibernation promoting factor (Hpf), and the ribosome-associated inhibitor (RaiA). We demonstrate that persister cells contain a large fraction of 100S ribosomes, that inactivation of RMF, HpF, and RaiA reduces persistence and increases single-cell persister resuscitation and that ppGpp has no effect on single-cell persister resuscitation. Hence, a direct connection between ppGpp and persistence is shown along with evidence of the importance of ribosome dimerization in persistence and for active ribosomes during resuscitation.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA.
| |
Collapse
|
40
|
Dimerization of long hibernation promoting factor from Staphylococcus aureus: Structural analysis and biochemical characterization. J Struct Biol 2020; 209:107408. [DOI: 10.1016/j.jsb.2019.107408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
|
41
|
Pratt SL, Zath GK, Akiyama T, Williamson KS, Franklin MJ, Chang CB. DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology. Front Microbiol 2019; 10:2112. [PMID: 31608020 PMCID: PMC6774397 DOI: 10.3389/fmicb.2019.02112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
The physiological heterogeneity of cells within a microbial population imparts resilience to stresses such as antimicrobial treatments and nutrient limitation. This resilience is partially due to a subpopulation of cells that can survive such stresses and regenerate the community. Microfluidic approaches now provide a means to study microbial physiology and bacterial heterogeneity at the single cell level, improving our ability to isolate and examine these subpopulations. Drop-based microfluidics provides a high-throughput approach to study individual cell physiology within bacterial populations. Using this approach, single cells are isolated from the population and encapsulated in growth medium dispersed in oil using a 15 μm diameter drop making microfluidic device. The drops are arranged as a packed monolayer inside a polydimethylsiloxane (PDMS) microfluidic device. Growth of thousands of individual cells in identical microenvironments can then be imaged using confocal laser scanning microscopy (CLSM). A challenge for this approach has been the maintenance of drop stability during extended time-lapse imaging. In particular, the drops do not maintain their volume over time during incubation in PDMS devices, due to fluid transport into the porous PDMS surroundings. Here, we present a strategy for PDMS device preparation that stabilizes drop position and volume within a drop array on a microfluidic chip for over 20 h. The stability of water-in-oil drops is maintained by soaking the device in a reservoir containing both water and oil in thermodynamic equilibrium. This ensures that phase equilibrium of the drop emulsion fluids within the porous PDMS material is maintained during drop incubation and imaging. We demonstrate the utility of this approach, which we label DropSOAC (Drop Stabilization On A Chip), for time-lapse studies of bacterial growth. We characterize growth of Pseudomonas aeruginosa and its Δhpf mutant derivative during resuscitation and growth following starvation. We demonstrate that growth rate and lag time heterogeneity of hundreds of individual bacterial cells can be determined starting from single isolated cells. The results show that the DropSOAC capsule provides a high-throughput approach toward studies of microbial physiology at the single cell level, and can be used to characterize physiological differences of cells from within a larger population.
Collapse
Affiliation(s)
- Shawna L. Pratt
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Geoffrey K. Zath
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Tatsuya Akiyama
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Kerry S. Williamson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Michael J. Franklin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Connie B. Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
42
|
Abstract
Protein synthesis consumes a large fraction of available resources in the cell. When bacteria encounter unfavorable conditions and cease to grow, specialized mechanisms are in place to ensure the overall reduction of costly protein synthesis while maintaining a basal level of translation. A number of ribosome-associated factors are involved in this regulation; some confer an inactive, hibernating state of the ribosome in the form of 70S monomers (RaiA; this and the following are based on Escherichia coli nomenclature) or 100S dimers (RMF and HPF homologs), and others inhibit translation at different stages in the translation cycle (RsfS, YqjD and paralogs, SRA, and EttA). Stationary phase cells therefore exhibit a complex array of different ribosome subpopulations that adjusts the translational capacity of the cell to the encountered conditions and ensures efficient reactivation of translation when conditions improve. Here, we review the current state of research regarding stationary phase-specific translation factors, in particular ribosome hibernation factors and other forms of translational regulation in response to stress conditions.
Collapse
Affiliation(s)
- Thomas Prossliner
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | | | | | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
43
|
Usachev KS, Validov SZ, Khusainov IS, Varfolomeev AA, Klochkov VV, Aganov AV, Yusupov MM. Solution structure of the N-terminal domain of the Staphylococcus aureus hibernation promoting factor. JOURNAL OF BIOMOLECULAR NMR 2019; 73:223-227. [PMID: 31165320 DOI: 10.1007/s10858-019-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Staphylococcus aureus hibernation promoting factor (SaHPF) is a 22,2 kDa protein which plays a crucial role in 100S Staphylococcus aureus ribosome formation during stress. SaHPF consists of N-terminal domain (NTD) that prevents proteins synthesis by binding to the 30S subunit at the P- and A-sites, connected through a flexible linker with a C-terminal domain (CTD) that keeps ribosomes in 100S form via homodimerization. Recently obtained 100S ribosome structure of S. aureus by cryo-EM shown that SaHPF-NTD bound to the ribosome active sites, however due to the absence of SaHPF-NTD structure it was modeled by homology with the E. coli hibernation factors HPF and YfiA. In present paper we have determined the solution structure of SaHPF-NTD by high-resolution NMR spectroscopy which allows us to increase structural knowledge about HPF structure from S. aureus.
Collapse
Affiliation(s)
- Konstantin S Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russian Federation
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russian Federation
| | - Shamil Z Validov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russian Federation
| | - Iskander Sh Khusainov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russian Federation
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Alexander A Varfolomeev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russian Federation
| | - Vladimir V Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russian Federation
| | - Albert V Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russian Federation
| | - Marat M Yusupov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France.
| |
Collapse
|
44
|
Analysis of the Pseudomonas aeruginosa Aminoglycoside Differential Resistomes Allows Defining Genes Simultaneously Involved in Intrinsic Antibiotic Resistance and Virulence. Antimicrob Agents Chemother 2019; 63:AAC.00185-19. [PMID: 30858210 DOI: 10.1128/aac.00185-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
High-throughput screening of transposon insertion libraries is a useful strategy for unveiling bacterial genes whose inactivation results in an altered susceptibility to antibiotics. A potential drawback of these studies is they are usually based on just one model antibiotic for each structural family, under the assumption that the results can be extrapolated to all members of said family. To determine if this simplification is appropriate, we have analyzed the susceptibility of mutants of Pseudomonas aeruginosa to four aminoglycosides. Our results indicate that each mutation produces different effects on susceptibility to the tested aminoglycosides, with only two mutants showing similar changes in the susceptibility to all studied aminoglycosides. This indicates that the role of a particular gene in the resistome of a given antibiotic should not be generalized to other members of the same structural family. Five aminoglycoside-hypersusceptible mutants inactivating glnD, hflK, PA2798, PA3016, and hpf were chosen for further analysis in order to elucidate if lower aminoglycoside susceptibility correlates with cross-hypersusceptibility to other antibiotics and with impaired virulence. Our results indicate that glnD inactivation leads to increased cross-susceptibility to different antibiotics. The mutant in this gene is strongly impaired in virulence traits such as pyocyanin production, biofilm formation, elastase activity, and swarming motility and the ability to kill Caenorhabditis elegans Thus, GlnD might be an interesting target for developing antibiotic coadjuvants with antiresistance and antivirulence properties against P. aeruginosa.
Collapse
|
45
|
The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. Int J Mol Sci 2019; 20:ijms20081981. [PMID: 31018531 PMCID: PMC6514570 DOI: 10.3390/ijms20081981] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/26/2023] Open
Abstract
The evolution of release factors catalyzing the hydrolysis of the final peptidyl-tRNA bond and the release of the polypeptide from the ribosome has been a longstanding paradox. While the components of the translation apparatus are generally well-conserved across extant life, structurally unrelated release factor peptidyl hydrolases (RF-PHs) emerged in the stems of the bacterial and archaeo-eukaryotic lineages. We analyze the diversification of RF-PH domains within the broader evolutionary framework of the translation apparatus. Thus, we reconstruct the possible state of translation termination in the Last Universal Common Ancestor with possible tRNA-like terminators. Further, evolutionary trajectories of the several auxiliary release factors in ribosome quality control (RQC) and rescue pathways point to multiple independent solutions to this problem and frequent transfers between superkingdoms including the recently characterized ArfT, which is more widely distributed across life than previously appreciated. The eukaryotic RQC system was pieced together from components with disparate provenance, which include the long-sought-after Vms1/ANKZF1 RF-PH of bacterial origin. We also uncover an under-appreciated evolutionary driver of innovation in rescue pathways: effectors deployed in biological conflicts that target the ribosome. At least three rescue pathways (centered on the prfH/RFH, baeRF-1, and C12orf65 RF-PH domains), were likely innovated in response to such conflicts.
Collapse
|
46
|
Fuqua C, Filloux A, Ghigo JM, Visick KL. Biofilms 2018: A diversity of microbes and mechanisms. J Bacteriol 2019; 201:JB.00118-19. [PMID: 30782638 PMCID: PMC6707918 DOI: 10.1128/jb.00118-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 8th ASM Conference on Biofilms was held in Washington D.C. on October 7-11, 2018. This very highly subscribed meeting represented a wide breadth of current research in biofilms, and included over 500 attendees, 12 sessions with 64 oral presentations, and four poster sessions with about 400 posters.
Collapse
Affiliation(s)
- Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, United Kingdom
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
47
|
Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00426-18. [PMID: 30297357 PMCID: PMC6256015 DOI: 10.1128/jb.00426-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites. The translationally silent 100S ribosome is a poorly understood form of the dimeric 70S complex that is ubiquitously found in all bacterial phyla. The elimination of the hibernating 100S ribosome leads to translational derepression, ribosome instability, antibiotic sensitivity, and biofilm defects in some bacteria. In Firmicutes, such as the opportunistic pathogen Staphylococcus aureus, a 190-amino acid protein called hibernating-promoting factor (HPF) dimerizes and conjoins two 70S ribosomes through a direct interaction between the HPF homodimer, with each HPF monomer tethered on an individual 70S complex. While the formation of the 100S ribosome in gammaproteobacteria and cyanobacteria is exclusively induced during postexponential growth phase and darkness, respectively, the 100S ribosomes in Firmicutes are constitutively produced from the lag-logarithmic phase through the post-stationary phase. Very little is known about the regulatory pathways that control hpf expression and 100S ribosome abundance. Here, we show that a general stress response (GSR) sigma factor (SigB) and a GTP-sensing transcription factor (CodY) integrate nutrient and thermal signals to regulate hpf synthesis in S. aureus, resulting in an enhanced virulence of the pathogen in a mouse model of septicemic infection. CodY-dependent regulation of hpf is strain specific. An epistasis analysis further demonstrated that CodY functions upstream of the GSR pathway in a condition-dependent manner. The results reveal an important link between S. aureus stress physiology, ribosome metabolism, and infection biology. IMPORTANCE The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites.
Collapse
|
48
|
Akiyama T, Williamson KS, Franklin MJ. Expression and regulation of the Pseudomonas aeruginosa hibernation promoting factor. Mol Microbiol 2018; 110:161-175. [PMID: 29885070 DOI: 10.1111/mmi.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2018] [Indexed: 12/01/2022]
Abstract
Bacterial biofilms contain subpopulations of cells that are dormant and highly tolerant to antibiotics. While dormant, the bacteria must maintain the integrity of macromolecules required for resuscitation. Previously, we showed that hibernation promoting factor (HPF) is essential for protecting Pseudomonas aeruginosa from ribosomal loss during dormancy. In this study, we mapped the genetic components required for hpf expression. Using 5'-RACE and fluorescent protein reporter fusions, we show that hpf is expressed as part of the rpoN operon, but that hpf also has a second promoter (Phpf ) within the rpoN gene. Phpf is active when the cells enter stationary phase, and expression from Phpf is modulated, but not eliminated, in mutant strains impaired in stationary phase transition (ΔdksA2, ΔrpoS and ΔrelA/ΔspoT mutants). The results of reporter gene studies and mRNA folding predictions indicated that the 5' end of the hpf mRNA may also influence hpf expression. Mutations that opened or that stabilized the mRNA hairpin loop structures strongly influenced the amount of HPF produced. The results demonstrate that hpf is expressed independently of rpoN, and that hpf regulation includes both transcriptional and post-transcriptional processes, allowing the cells to produce sufficient HPF during stationary phase to maintain viability while dormant.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Kerry S Williamson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Michael J Franklin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
49
|
Matilla MA. Shedding light into the mechanisms of formation and resuscitation of persistent bacterial cells. Environ Microbiol 2018; 20:3129-3131. [PMID: 30051562 DOI: 10.1111/1462-2920.14334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
50
|
Abstract
Mycobacteria as well as other bacteria remodel their ribosomes in response to zinc depletion by replacing zinc-binding ribosomal proteins with zinc-free paralogues, releasing zinc for other metabolic processes. In this study, we show that the remodeled ribosome acquires a structurally stable but functionally inactive and aminoglycoside-resistant state in zinc-starved Mycobacterium smegmatis. Conversely, M. smegmatis cells that are growth arrested in zinc-rich conditions have unstable ribosomes and reduced survival. We further provide evidence for ribosome remodeling in Mycobacterium tuberculosis in host tissues, suggesting that ribosome hibernation occurs during TB infections. Our findings could offer insights into mechanisms of persistence and antibiotic tolerance of mycobacterial infections. Bacteria respond to zinc starvation by replacing ribosomal proteins that have the zinc-binding CXXC motif (C+) with their zinc-free (C−) paralogues. Consequences of this process beyond zinc homeostasis are unknown. Here, we show that the C− ribosome in Mycobacterium smegmatis is the exclusive target of a bacterial protein Y homolog, referred to as mycobacterial-specific protein Y (MPY), which binds to the decoding region of the 30S subunit, thereby inactivating the ribosome. MPY binding is dependent on another mycobacterial protein, MPY recruitment factor (MRF), which is induced on zinc depletion, and interacts with C− ribosomes. MPY binding confers structural stability to C− ribosomes, promoting survival of growth-arrested cells under zinc-limiting conditions. Binding of MPY also has direct influence on the dynamics of aminoglycoside-binding pockets of the C− ribosome to inhibit binding of these antibiotics. Together, our data suggest that zinc limitation leads to ribosome hibernation and aminoglycoside resistance in mycobacteria. Furthermore, our observation of the expression of the proteins of C− ribosomes in Mycobacterium tuberculosis in a mouse model of infection suggests that ribosome hibernation could be relevant in our understanding of persistence and drug tolerance of the pathogen encountered during chemotherapy of TB.
Collapse
|