1
|
Pang Y. Deciphering adiabatic rotating frame relaxometry in biological tissues. Magn Reson Med 2024; 92:2670-2682. [PMID: 39099141 DOI: 10.1002/mrm.30240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE This work aims to unravel the intricacies of adiabatic rotating frame relaxometry in biological tissues. THEORY AND METHODS The classical formalisms of dipolar relaxationR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ were systematically analyzed for water molecules reorienting on "fast" and "slow" timescales. These two timescales are, respectively, responsible for the absence and presence ofR 1 ρ $$ {R}_{1\rho } $$ dispersion. A time-averagedR 1 ρ $$ {R}_{1\rho } $$ orR 2 ρ $$ {R}_{2\rho } $$ over an adiabatic pulse duration was recast into a sum ofR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ , but with different weightings. These weightings depend on the specific modulations of adiabatic pulse waveforms. In this context, stretched hyperbolic secant (HSn $$ HSn $$ ) pulses were characterized. Previously publishedH S 1 $$ HS1 $$ R 1 ρ $$ {R}_{1\rho } $$ , continuous-wave (CW)R 1 ρ $$ {R}_{1\rho } $$ , andR 1 $$ {R}_1 $$ measures from 12 agarose phantoms were used to validate the theoretical predictions. A similar validation was also performed on previously publishedHSn $$ HSn $$ R 1 ρ $$ {R}_{1\rho } $$ (n $$ n $$ =1, 4, 8) andHS 1 $$ HS1 $$ R 2 ρ $$ {R}_{2\rho } $$ from bovine cartilage specimens. RESULTS Longitudinal relaxation weighting decreases forHSn $$ HSn $$ pulses asn $$ n $$ increases. Predicted CWR 1 ρ cal $$ {R}_{1\rho}^{cal} $$ values from agarose phantoms align well with the measured CWR 1 ρ exp $$ {R}_{1\rho}^{exp} $$ values, as indicated by a linear regression function:R 1 ρ cal = 1.04 * R 1 ρ exp - 1.96 $$ {R}_{1\rho}^{cal}={1.04}^{\ast }{R}_{1\rho}^{exp}-1.96 $$ . The predicted adiabaticR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ from cartilage specimens are consistent with those previously measured, as quantified by:R 1 ρ , 2 ρ cal = 1.10 * R 1 ρ , 2 ρ exp - 0.41 $$ {R}_{1\rho, 2\rho}^{cal}={1.10}^{\ast }{R}_{1\rho, 2\rho}^{exp}-0.41 $$ . CONCLUSION This work has theoretically and experimentally demonstrated that adiabaticR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ can be recast into a sum ofR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ , with varying weightings. Therefore, any suggestions that adiabatic rotating frame relaxometry in biological tissues could provide more information than the standardR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ warrant closer scrutiny.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024:10.1007/s12064-024-00427-2. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
3
|
Gizatullin B, Mattea C, Stapf S. Effect of Exchange Dynamics on the NMR Relaxation of Water in Porous Silica. J Phys Chem Lett 2024:11335-11341. [PMID: 39499855 DOI: 10.1021/acs.jpclett.4c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The interaction of molecules, in particular, water, with solid interfaces has been studied by a multitude of methods, among them nuclear magnetic resonance spin relaxation. The frequency dependence of the relaxation times follows patterns that have been interpreted in terms of the molecular orientation and dynamics. Several different model approaches could successfully explain limiting cases of 1H relaxation dispersion in systems with rigid surfaces such as silica gel or glass, but none of them can reproduce the relaxation of both 1H and 2H nuclei, which differ in their respective relaxation mechanisms, dipolar vs quadrupolar. From detailed studies of the dynamics of hydration of water in biological materials, the importance of hydrogen and molecular exchange to the longitudinal relaxation time of T1 was demonstrated. In this work, exchange times of both H2O and D2O in hydrophilic silica gel are varied in a controlled fashion in a wide range using disodium hydrogen phosphate, and the effect of physical exchange on spin relaxation is quantified for the first time in such systems using the exchange-mediated reorientation model.
Collapse
Affiliation(s)
- Bulat Gizatullin
- Dept. Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Carlos Mattea
- Dept. Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Siegfried Stapf
- Dept. Technische Physik II/Polymerphysik, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| |
Collapse
|
4
|
Agles AA, Bourg IC. Structure and Dynamics of Water in Polysaccharide (Alginate) Solutions and Gels Explained by the Core-Shell Model. Biomacromolecules 2024; 25:6403-6415. [PMID: 39228282 PMCID: PMC11480987 DOI: 10.1021/acs.biomac.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
In both biological and engineered systems, polysaccharides offer a means of establishing structural stiffness without altering the availability of water. Notable examples include the extracellular matrix of prokaryotes and eukaryotes, artificial skin grafts, drug delivery materials, and gels for water harvesting. Proper design and modeling of these systems require detailed understanding of the behavior of water confined in pores narrower than about 1 nm. We use molecular dynamics simulations to investigate the properties of water in solutions and gels of the polysaccharide alginate as a function of the water content and polymer cross-linking. We find that a detailed understanding of the nanoscale dynamics of water in alginate solutions and gels requires consideration of the discrete nature of water. However, we also find that the trends in tortuosity, permeability, dielectric constant, and shear viscosity can be adequately represented using the "core-shell" conceptual model that considers the confined fluid as a continuum.
Collapse
Affiliation(s)
- Avery A. Agles
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High
Meadows Environmental Institute, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Yeritsyan KV, Badasyan AV. Differential scanning calorimetry of proteins and Zimm-Bragg model in water. Arch Biochem Biophys 2024; 760:110132. [PMID: 39181382 DOI: 10.1016/j.abb.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles. Despite its obvious importance, there is no approach that would allow the extraction of such information from the heat capacity measurements. In order to connect the measured profile to microscopic properties of a polypeptide chain, a proper model is required to fit. Using recent advances in the Zimm-Bragg (ZB) theory of protein folding in water, we propose a new and efficient algorithm to process the DSC experimental data and to extract the H-bonding energy among other relevant constants. Thus, for the randomly picked set of 33 proteins, we have found a quite narrow distribution of hydrogen bonding energies from 1 to 8 kJ/mol with the average energy of intra-protein hydrogen bonds h¯=4.2±1.5 kJ/mol and the average energy of water-protein bonds as hps¯=3.8±1.5 kJ/mol. This is an important illustration of a tiny disbalance between the water-protein and intraprotein hydrogen bonds. Fitted values of the nucleation parameter σ belong to the range from 0.001 to 0.01, as expected. The reported method can be considered as complementary to the classical two-state approach and together with other parameters provides the protein-water and intraprotein H-bonding energies, not accessible within the two-state paradigm.
Collapse
Affiliation(s)
- Knarik V Yeritsyan
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Artem V Badasyan
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia.
| |
Collapse
|
6
|
Loubet NA, Verde AR, Appignanesi GA. A structural determinant of the behavior of water at hydration and nanoconfinement conditions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:61. [PMID: 39343851 DOI: 10.1140/epje/s10189-024-00454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The molecular nature of the phases that conform the two-liquid scenario is elucidated in this work in the light of a molecular principle governing water structuring, which unveils the relevance of the contraction and reorientation of the second molecular shell to allow for the existence of coordination defects in water's hydrogen bond network. In turn, such principle is shown to also determine the behavior of hydration and nanoconfined water while enabling to define conditions for wettability (quantifying hydrophobicity and predicting drying transitions), thus opening the possibility to unravel the active role of water in central fields of research.
Collapse
Affiliation(s)
- Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
7
|
Förster M, Ukoji N, Sahle CJ, Niskanen J, Sakrowski R, Surmeier G, Weis C, Irifune T, Imoto S, Yavas H, Huotari S, Marx D, Sternemann C, Tse JS. Generating interstitial water within the persisting tetrahedral H-bond network explains density increase upon compressing liquid water. Proc Natl Acad Sci U S A 2024; 121:e2403662121. [PMID: 39284048 PMCID: PMC11441526 DOI: 10.1073/pnas.2403662121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 10/02/2024] Open
Abstract
Despite its ubiquitous nature, the atomic structure of water in its liquid state is still controversially debated. We use a combination of X-ray Raman scattering spectroscopy in conjunction with ab initio and path integral molecular dynamics simulations to study the local atomic and electronic structure of water under high pressure conditions. Systematically increasing fingerprints of non-hydrogen-bonded H[Formula: see text]O molecules in the first hydration shell are identified in the experimental and computational oxygen K-edge excitation spectra. This provides evidence for a compaction mechanism in terms of a continuous collapse of the second hydration shell with increasing pressure via generation of interstitial water within locally tetrahedral hydrogen-bonding environments.
Collapse
Affiliation(s)
- Mirko Förster
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Nnanna Ukoji
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| | | | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, Turun yliopistoFI-20014, Finland
| | - Robin Sakrowski
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Christopher Weis
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Tetsuo Irifune
- Geodynamics Research Center, Ehime University, Matsuyama790, Japan
| | - Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum44780, Germany
| | - Hasan Yavas
- Deutsches Elektronen-Synchrotron, Hamburg22607, Germany
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Simo Huotari
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum44780, Germany
| | | | - John S. Tse
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| |
Collapse
|
8
|
Omwansu W, Musembi R, Derese S. Graph-based analysis of H-bond networks and unsupervised learning reveal conformational coupling in prion peptide segments. Phys Chem Chem Phys 2024. [PMID: 39291469 DOI: 10.1039/d4cp02123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we employed a comprehensive computational approach to investigate the physical chemistry of the water networks surrounding hydrated peptide segments, as derived from molecular dynamics simulations. Our analysis uncovers a complex interplay of direct and water-mediated hydrogen bonds that intricately weave through the peptides. We demonstrate that these hydrogen bond networks encode critical information about the peptides' conformational behavior, with the dimensionality of these networks showing sensitivity to the peptides' conformations. Additionally, we estimated the free-energy landscape of the peptides across various conformations, revealing that their structures are predominantly characterized by unfolded, partially folded, and folded configurations, resulting in broad and rugged free-energy surfaces due to the numerous degrees of freedom contributed by the surrounding solvent. Importantly, the structured nature of this free-energy landscape becomes obscured when conventional collective variables, such as the number of hydrogen bonds, are used. Our findings provide new insights into the molecular mechanisms that couple protein and solvent degrees of freedom, highlighting their significance in the functioning of biological systems.
Collapse
Affiliation(s)
- Wycliffe Omwansu
- Department of Physics, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Robinson Musembi
- Department of Physics, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Solomon Derese
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Zhu Z, Zhou X, Li Y, Gu S, Sun L, Liu Y. Characterizing the Orderliness of Interfacial Water through Stretching Vibrations. J Phys Chem Lett 2024; 15:9136-9143. [PMID: 39207889 DOI: 10.1021/acs.jpclett.4c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Spatial orderliness, which is the orderly structure of molecules, differs significantly between interfacial water and bulk water. Understanding this property is essential for various applications in both natural and engineered environments. However, the subnanometer thickness of interfacial water presents challenges for direct and rapid characterization of its structural orderliness. Herein, through molecular dynamics simulations and infrared spectral analysis of interfacial water in a graphene slit pore, we reveal a hyperbolic tangent relationship between the water ordering and its O-H stretching information in the infrared spectrum. Specifically, O-H symmetric stretching dominated in the highly ordered water structure, while a transition to the asymmetric stretching corresponded to an increase in the degree of disorder. Thus, the O-H stretching behavior could serve as a useful and quick assessment of the orderliness of interfacial water. This work provided insights into interfacial water's unique molecular network and structural dynamics and identified the stretching vibrations' key role in its degree of order, providing insight for fields such as nanotechnology, biology, and material science.
Collapse
Affiliation(s)
- Zhi Zhu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xin Zhou
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Shiyu Gu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lan Sun
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Liu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
10
|
Orlowski S, Greene E, Lassiter K, Tabler T, Bottje W, Dridi S. Research Note: Carcass yield and meat quality in high- and low-water efficient broiler lines exposed to heat stress. Poult Sci 2024; 103:103921. [PMID: 39013298 PMCID: PMC11305290 DOI: 10.1016/j.psj.2024.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
Heat stress (HS) and water scarcity are significant challenges to sustainable poultry production worldwide. It is, therefore, critical to identify effective strategies to prevent, withstand, or adapt to these challenges. After four generations of divergent selection for water efficiency, the present study was undertaken to determine the effect of HS on meat quality and muscle myopathy incidences in high (HWE)- and low (LWE)-water efficient broilers. Day-old male chicks (240 chicks/line) were allotted randomly by line and body weight-matched groups to 12 controlled-environmental chambers (2 pens/chamber). At d29, birds were exposed to 2 environmental conditions (thermoneutral (TN), 25°C; or cyclic HS, 36°C, 9h/d) in a 2 × 2 factorial design. On d49, birds were processed, carcass parts were weighed, meat quality and muscle myopathy incidence were assessed. Processing data were analyzed by Two-way ANOVA and Tukey's HSD multiple comparison test, and frequency of muscle myopathy score between groups was determined using Chi-square and Fisher's exact test. Significance was set at P < 0.05. As no significant environment by line interaction was discerned, the 2 main factors were analyzed separately. High water efficient birds had significantly higher tender- and leg quarter (LQ)-weight as well as carcass without giblet (WOG), chilled carcass WOG (CWOG), wing, LQ, and rack yields compared to their LWE counterparts. Both abdominal fat content and yields were significantly greater in LWE than HWE chickens. Chronic HS exposure significantly decreased dock, WOG, fat, CWOG, breast, tender, wing, and LQ weights as well as breast yield. HWE chickens had a significantly lower b* value compared to the LWE birds and HS significantly reduced the drip loss and the b* value compared to TN condition. Compared to LWE, HWE birds had higher and lower incidence of severe woody breast (WB) and white striping (WS) under TN and HS, respectively. HS reduced the incidence of both myopathies in both lines. In conclusion, the genetic selection for water efficiency seems to improve carcass yield, reduce fat content, and decrease the breast b* value. HWE birds had higher incidences of WB and WS under TN, which is reversed under HS conditions.
Collapse
Affiliation(s)
- Sara Orlowski
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Elisabeth Greene
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Kentu Lassiter
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Travis Tabler
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Walter Bottje
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
11
|
Goswami A, Kohata A, Okazoe T, Huang H, Aida T. Fluoro-Crown Ether Phosphate as Efficient Cell-Permeable Drug Carrier by Disrupting Hydration Layer. J Am Chem Soc 2024; 146:23406-23411. [PMID: 39082642 DOI: 10.1021/jacs.4c06464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Fast and direct permeation of drug molecules is crucial for effective biotherapeutics. Inspired by a recent finding that fluorous compounds disrupt the hydrogen-bonded network of water, we developed fluoro-crown ether phosphate CyclicFP-X. This compound acts as a fast cell-permeating agent, enabling direct delivery of various bioactive cargos (X) into cancer cells without endocytic entrapment. In contrast, its nonfluorinated cyclic analog (CyclicP-X) failed to achieve cellular internalization. Although the acyclic fluorous analog AcyclicFP-X was internalized, this process occurred slowly owing to the involvement of an endocytic trapping pathway. Designed with a high fluorine density, CyclicFP-X exhibits compactness, polarity, and high-water solubility, facilitating lipid vesicle fusion by disrupting their hydration layers. Raman spectroscopy confirmed the generation of dangling -OH bonds upon addition of CyclicFP-OH to water. Furthermore, conjugating CyclicFP-X with fluorouracil (FU, an anticancer drug) via a reductively cleavable disulfide linker (CyclicFP-SS-FU) demonstrated the general utility of fluoro-crown ether phosphate as a potent carrier for biotherapeutics.
Collapse
Affiliation(s)
- Abir Goswami
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hubiao Huang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
12
|
Scandellari F, Attou T, Barbeta A, Bernhard F, D'Amato C, Dimitrova-Petrova K, Donaldson A, Durodola O, Ferraris S, Floriancic MG, Fontenla-Razzetto G, Gerchow M, Han Q, Khalil I, Kirchner JW, Kühnhammer K, Liu Q, Llorens P, Magh RK, Marshall J, Meusburger K, Oliveira AM, Muñoz-Villers L, Pires SS, Todini-Zicavo D, van Meerveld I, Voigt C, Wirsig L, Beyer M, Geris J, Hopp L, Penna D, Sprenger M. Using stable isotopes to inform water resource management in forested and agricultural ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121381. [PMID: 38917546 DOI: 10.1016/j.jenvman.2024.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Present and future climatic trends are expected to markedly alter water fluxes and stores in the hydrologic cycle. In addition, water demand continues to grow due to increased human use and a growing population. Sustainably managing water resources requires a thorough understanding of water storage and flow in natural, agricultural, and urban ecosystems. Measurements of stable isotopes of water (hydrogen and oxygen) in the water cycle (atmosphere, soils, plants, surface water, and groundwater) can provide information on the transport pathways, sourcing, dynamics, ages, and storage pools of water that is difficult to obtain with other techniques. However, the potential of these techniques for practical questions has not been fully exploited yet. Here, we outline the benefits and limitations of potential applications of stable isotope methods useful to water managers, farmers, and other stakeholders. We also describe several case studies demonstrating how stable isotopes of water can support water management decision-making. Finally, we propose a workflow that guides users through a sequence of decisions required to apply stable isotope methods to examples of water management issues. We call for ongoing dialogue and a stronger connection between water management stakeholders and water stable isotope practitioners to identify the most pressing issues and develop best-practice guidelines to apply these techniques.
Collapse
Affiliation(s)
| | - Taha Attou
- CNRS-UPS, Toulouse, France; Mohammed VI Polytechnic University, Benguerir, Morocco.
| | | | - Fabian Bernhard
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| | | | | | | | | | | | | | | | - Malkin Gerchow
- Technische Universität Braunschweig, Braunschweig, Germany.
| | - Qiong Han
- Tianjin University, Tianjin, People's Republic of China.
| | - Isis Khalil
- Green Power Storage Solutions SA (GPSS), Wecker, Luxembourg.
| | - James W Kirchner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland; ETH Zurich, Zürich, Switzerland.
| | - Kathrin Kühnhammer
- Technische Universität Braunschweig, Braunschweig, Germany; University of Freiburg, Freiburg, Germany.
| | - Qin Liu
- Nanjing University of Information Science and Technology, Nanjing, People's Republic of China.
| | - Pilar Llorens
- Institute of Environmental Assessment and Water Research, CSIC, Barcelona, Spain.
| | | | - John Marshall
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic; Leibniz-Zentrum für Agrarlandschaftsforschung, Müncheberg, Germany; Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| | | | | | | | - Diego Todini-Zicavo
- University of Padova, Legnaro (PD), Italy; University School for Advances Studies (IUSS), Pavia, Italy.
| | | | | | - Luise Wirsig
- Technische Universität Braunschweig, Braunschweig, Germany.
| | - Matthias Beyer
- Technische Universität Braunschweig, Braunschweig, Germany.
| | | | - Luisa Hopp
- University of Bayreuth, Bayreuth, Germany.
| | - Daniele Penna
- University of Firenze, Firenze, Italy; Oregon State University, Corvallis, USA.
| | | |
Collapse
|
13
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
14
|
Accordino SR, Alarcón LM, Loubet NA, Appignanesi GA. Water at the nanoscale: From filling or dewetting hydrophobic pores and carbon nanotubes to "sliding" on graphene. J Chem Phys 2024; 161:044504. [PMID: 39037145 DOI: 10.1063/5.0215579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
In this work, we study the effect of nanoconfinement on the hydration properties of model hydrophobic pores and carbon nanotubes, determining their wetting propensity and the conditions for geometrically induced dehydration. By employing a recently introduced water structural index, we aim at two main goals: (1) to accurately quantify the local hydrophobicity and predict the drying transitions in such systems, and (2) to provide a molecular rationalization of the wetting process. In this sense, we will further discuss the number and strength of the interactions required by the water molecules to promote wetting. In the case of graphene-like surfaces, an explanation for their unexpectedly significant hydrophilicity will also be provided. On the one hand, the structural index will show that the net attraction to the dense carbon network that a water molecule experiences through several simultaneous weak interactions is sufficient to give rise to hydrophilic behavior. On the other hand, we will show that an additional effect is also at play: the hydrating water molecule is retained on the surface by a smooth exchange of such simultaneous weak interactions, as if "sliding" on graphene.
Collapse
Affiliation(s)
- Sebastián R Accordino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Laureano M Alarcón
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
15
|
Panuszko A, Śmiechowski M, Pieloszczyk M, Malinowski A, Stangret J. Weakly Hydrated Solute of Mixed Hydrophobic-Hydrophilic Nature. J Phys Chem B 2024; 128:6352-6361. [PMID: 38913837 PMCID: PMC11228977 DOI: 10.1021/acs.jpcb.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Infrared (IR) spectroscopy is a commonly used and invaluable tool in studies of solvation phenomena in aqueous solutions. Concurrently, density functional theory calculations and ab initio molecular dynamics simulations deliver the solvation shell picture at the molecular detail level. The mentioned techniques allowed us to gain insights into the structure and energy of the hydrogen bonding network of water molecules around methylsulfonylmethane (MSM). In the hydration sphere of MSM, there are two types of populations of water molecules: a significant share of water molecules weakly bonded to the sulfone group and a smaller share of water molecules strongly bonded to each other around the methyl groups of MSM. The very weak hydrogen bond of water molecules with the hydrophilic group causes the extended network of water hydrogen bonds to be not "anchored" on the sulfone group, and consequently, the MSM hydration shell is labile.
Collapse
Affiliation(s)
- Aneta Panuszko
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Maciej Pieloszczyk
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adrian Malinowski
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Stangret
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
16
|
Nagel M, Pence V, Ballesteros D, Lambardi M, Popova E, Panis B. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:797-824. [PMID: 38211950 DOI: 10.1146/annurev-arplant-070623-103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud-freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.
Collapse
Affiliation(s)
- Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany;
| | - Valerie Pence
- Lindner Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, Ohio, USA
| | - Daniel Ballesteros
- Department of Botany and Geology, Universitat de València, Burjassot, Spain
- Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, United Kingdom
| | - Maurizio Lambardi
- Institute of BioEconomy (IBE), National Research Council (CNR), Florence, Italy
| | - Elena Popova
- Department of Cell Biology and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Bart Panis
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Sun Q, Chen YN, Liu YZ. The Effects of External Interfaces on Hydrophobic Interactions I: Smooth Surface. Molecules 2024; 29:3128. [PMID: 38999080 PMCID: PMC11243484 DOI: 10.3390/molecules29133128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
External interfaces, such as the air-water and solid-liquid interfaces, are ubiquitous in nature. Hydrophobic interactions are considered the fundamental driving force in many physical and chemical processes occurring in aqueous solutions. It is important to understand the effects of external interfaces on hydrophobic interactions. According to the structural studies on liquid water and the air-water interface, the external interface primarily affects the structure of the topmost water layer (interfacial water). Therefore, an external interface may affect hydrophobic interactions. The effects of interfaces on hydrophobicity are related not only to surface molecular polarity but also to the geometric characteristics of the external interface, such as shape and surface roughness. This study is devoted to understanding the effects of a smooth interface on hydrophobicity. Due to hydrophobic interactions, the solutes tend to accumulate at external interfaces to maximize the hydrogen bonding of water. Additionally, these can be demonstrated by the calculated potential mean forces (PMFs) using molecular dynamic (MD) simulations.
Collapse
Affiliation(s)
- Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China (Y.-Z.L.)
| | | | | |
Collapse
|
18
|
Fransson T, Pettersson LGM. TDDFT and the x-ray absorption spectrum of liquid water: Finding the "best" functional. J Chem Phys 2024; 160:234105. [PMID: 38884399 DOI: 10.1063/5.0209719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
We investigate the performance of time-dependent density functional theory (TDDFT) for reproducing high-level reference x-ray absorption spectra of liquid water and water clusters. For this, we apply the integrated absolute difference (IAD) metric, previously used for x-ray emission spectra of liquid water [T. Fransson and L. G. M. Pettersson, J. Chem. Theory Comput. 19, 7333-7342 (2023)], in order to investigate which exchange-correlation (xc) functionals yield TDDFT spectra in best agreement to reference, as well as to investigate the suitability of IAD for x-ray absorption spectroscopy spectrum calculations. Considering highly asymmetric and symmetric six-molecule clusters, it is seen that long-range corrected xc-functionals are required to yield good agreement with the reference coupled cluster (CC) and algebraic-diagrammatic construction spectra, with 100% asymptotic Hartree-Fock exchange resulting in the lowest IADs. The xc-functionals with best agreement to reference have been adopted for larger water clusters, yielding results in line with recently published CC theory, but which still show some discrepancies in the relative intensity of the features compared to experiment.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Physics, AlbaNova University Center, Stockholm University, 10961 Stockholm, Sweden
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, 10961 Stockholm, Sweden
| |
Collapse
|
19
|
Lang X, Shi L, Zhao Z, Min W. Probing the structure of water in individual living cells. Nat Commun 2024; 15:5271. [PMID: 38902250 PMCID: PMC11190263 DOI: 10.1038/s41467-024-49404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Water regulates or even governs a wide range of biological processes. Despite its fundamental importance, surprisingly little is known about the structure of intracellular water. Herein we employ a Raman micro-spectroscopy technique to uncover the composition, abundance and vibrational spectra of intracellular water in individual living cells. In three different cell types, we show a small but consistent population (~3%) of non-bulk-like water. It exhibits a weakened hydrogen-bonded network and a more disordered tetrahedral structure. We attribute this population to biointerfacial water located in the vicinity of biomolecules. Moreover, our whole-cell modeling suggests that all soluble (globular) proteins inside cells are surrounded by, on average, one full molecular layer (about 2.6 Angstrom) of biointerfacial water. Furthermore, relative invariance of biointerfacial water is observed among different single cells. Overall, our study not only opens up experimental possibilities of interrogating water structure in vivo but also provides insights into water in life.
Collapse
Affiliation(s)
- Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
20
|
Sujita R, Aoki H, Takenaka M, Ouchi M, Terashima T. Universal Access to Water-Compatible and Nanostructured Materials via the Self-Assembly of Cationic Alternating Copolymers. ACS Macro Lett 2024; 13:747-753. [PMID: 38815215 DOI: 10.1021/acsmacrolett.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we report the water-assisted self-assembly of alternating copolymers bearing imidazolium cations and hydrophobic groups to create water-compatible and nanostructured materials. The copolymers efficiently absorbed water into the cationic segments from the outer environments, depending on the relative humidity. The absorbed water serves as hydrophilic molecules to modulate the weight fraction of hydrophilic/hydrophobic units in the samples. Thus, the morphologies and domain spacing of the nanostructures can be controlled by not only the side chains, but also the amount of absorbed water. The self-assembly of the cationic copolymers, developed herein, afforded universal access to various morphologies, including lamella, gyroid, and cylinder, in addition to the precision control of the domain spacing at the 0.01 nm level.
Collapse
Affiliation(s)
- Ryota Sujita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
Shirley JC, Baiz CR. MANUSCRIPT Local Crowd, Local Probe: Strengths and Drawbacks of Azidohomoalanine as a Site-Specific Crowding Probe. J Phys Chem B 2024; 128:5310-5319. [PMID: 38806061 DOI: 10.1021/acs.jpcb.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Every residue on a protein can be characterized by its interaction with water, in lack or in excess, as water is the matrix of biological systems. Infrared spectroscopy and the implementation of local azidohomoalanine (AHA) probes allow us to move beyond an ensemble or surface-driven conceptualization of water behavior and toward a granular, site-specific picture. In this paper, we examined the role of crowding in modulating both global and local behavior on the β-hairpin, TrpZip2 using a combination of Fourier-transform infrared spectroscopy (FTIR) spectroscopy, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics simulations. We found that, at the amino acid level, crowding drove dehydration of both sheet and turn peptide sites as well as free AHA. However, the subpicosecond dynamics showed highly individualized responses based on the local environment. Interestingly, while steady-state FTIR measurements revealed similar responses at the amino-acid level to hard versus soft crowding (dehydration), we found that PEG and glucose had opposite stabilizing and destabilizing effects on the protein secondary structure, emphasizing an important distinction in understanding the impact of crowding on protein structure as well as the role of crowding across length scales.
Collapse
Affiliation(s)
- Joseph C Shirley
- Department of Chemistry, University of Texas, Austin 78712, Texas, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas, Austin 78712, Texas, United States
| |
Collapse
|
22
|
Liu YZ, Chen YN, Sun Q. The Dependence of Hydrophobic Interactions on the Shape of Solute Surface. Molecules 2024; 29:2601. [PMID: 38893477 PMCID: PMC11173737 DOI: 10.3390/molecules29112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
According to our recent studies on hydrophobicity, this work is aimed at understanding the dependence of hydrophobic interactions on the shape of a solute's surface. It has been observed that dissolved solutes primarily affect the structure of interfacial water, which refers to the top layer of water at the interface between the solute and water. As solutes aggregate in a solution, hydrophobic interactions become closely related to the transition of water molecules from the interfacial region to the bulk water. It is inferred that hydrophobic interactions may depend on the shape of the solute surface. To enhance the strength of hydrophobic interactions, the solutes tend to aggregate, thereby minimizing their surface area-to-volume ratio. This also suggests that hydrophobic interactions may exhibit directional characteristics. Moreover, this phenomenon can be supported by calculated potential mean forces (PMFs) using molecular dynamics (MD) simulations, where different surfaces, such as convex, flat, or concave, are associated with a sphere. Furthermore, this concept can be extended to comprehend the molecular packing parameter, commonly utilized in studying the self-assembly behavior of amphiphilic molecules in aqueous solutions.
Collapse
Affiliation(s)
| | | | - Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China; (Y.-Z.L.); (Y.-N.C.)
| |
Collapse
|
23
|
Elizebath D, Vedhanarayanan B, Dhiman A, Mishra RK, Ramachandran CN, Lin TW, Praveen VK. Spontaneous Curvature Induction in an Artificial Bilayer Membrane. Angew Chem Int Ed Engl 2024; 63:e202403900. [PMID: 38459961 DOI: 10.1002/anie.202403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Angat Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rakesh K Mishra
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, National Institute of Technology Uttarakhand (NITUK), Srinagar (Garhwal), Uttarakhand, 246174, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
24
|
Ludwig V, da Costa Ludwig ZM, Modesto MDA, Rocha AA. Binding energies and hydrogen bonds effects on DNA-cisplatin interactions: a DFT-xTB study. J Mol Model 2024; 30:187. [PMID: 38801468 DOI: 10.1007/s00894-024-05983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
CONTEXT A systematic study of hydrogen bonds in base pairs and the interaction of cisplatin with DNA fragments was carried out. Structure, binding energies, and electron density were analyzed. xTB has proven to be an accurate method for obtaining structures and binding energies in DNA structures. Our xTB values for DNA base binding energy were in the same order and in some cases better than CAM-B3LYP values compared to experimental values. Double-stranded DNA-cisplatin structures have been calculated and the hydrogen bonds of water molecules are a decisive factor contributing to the preference for the cisplatin-Guanine interaction. Higher values of the water hydrogen bonding energies were obtained in cisplatin-Guanine structures. Furthermore, the electrostatic potential was used to investigate and improve the analysis of DNA-cisplatin structures. METHODS We applied the xTB method and the CAM-B3LYP functional combined with def2-SVP basis set to perform and analyze of the bonding energies of the cisplatin interaction and the effects of the hydrogen bonds. Results were calculated employing the xTB and the ORCA software.
Collapse
Affiliation(s)
- Valdemir Ludwig
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil.
| | - Zélia Maria da Costa Ludwig
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil
| | - Marlon de Assis Modesto
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil
| | - Arthur Augusto Rocha
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, CP 36036-330, Minas Gerais, Brasil
| |
Collapse
|
25
|
Springer CS, Pike MM, Barbara TM. A Futile Cycle?: Tissue Homeostatic Trans-Membrane Water Co-Transport: Kinetics, Thermodynamics, Metabolic Consequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589812. [PMID: 38659823 PMCID: PMC11042311 DOI: 10.1101/2024.04.17.589812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The phenomenon of active trans-membrane water cycling (AWC) has emerged in little over a decade. Here, we consider H2O transport across cell membranes from the origins of its study. Historically, trans-membrane water transport processes were classified into: A) compensating bidirectional fluxes ("exchange"), and B) unidirectional flux ("net flow") categories. Recent literature molecular structure determinations and molecular dynamic (MD) simulations indicate probably all the many different hydrophilic substrate membrane co-transporters have membrane-spanning hydrophilic pathways and co-transport water along with their substrates, and that they individually catalyze category A and/or B water flux processes, although usually not simultaneously. The AWC name signifies that, integrated over the all the cell's co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water exchange (category A) is synchronized with the metabolic rate of the crucial Na+,K+-ATPase (NKA) enzyme. A literature survey indicates the stoichiometric (category B) water/substrate ratios of individual co-transporters are often very large. The MD simulations also suggest how different co-transporter reactions can be kinetically coupled molecularly. Is this (Na+,K+-ATPase rate-synchronized) cycling futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy analyses of the many transport reactions with known water stoichiometries. Free energy calculations, using literature intracellular pressure (Pi) values reveals there is an outward trans-membrane H2O barochemical gradient of magnitude comparable to that of the well-known inward Na+ electrochemical gradient. For most co-influxers, these gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. The thermodynamic analyses include glucose, glutamate-, gamma-aminobutyric acid (GABA), and lactate- transporters. 2%-4% Pi alterations can lead to disastrous concentration levels. For the neurotransmitters glutamate- and GABA, very small astrocytic Pi changes can allow/disallow synaptic transmission. Unlike the Na+ and K+ electrochemical steady-states, the H2O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate the trans-membrane pressure gradient. A feedback loop inherent in the opposing Na+ electrochemical and H2O barochemical gradients regulates AQP-catalyzed water flux as an integral AWC aspect. These results also require a re-consideration of the underlying nature of Pi. Active trans-membrane water cycling is not futile, but is inherent to the cell's "NKA system" - a new, fundamental aspect of biology.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center
- Department of Chemical Physiology and Biochemistry
- Department of Biomedical Engineering
- Brenden-Colson Center for Pancreatic Care
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | - Martin M Pike
- Advanced Imaging Research Center
- Department of Biomedical Engineering
- Knight Cancer Institute, Oregon Health & Science University; Portland, Oregon
| | | |
Collapse
|
26
|
Loubet NA, Verde AR, Appignanesi GA. A water structure indicator suitable for generic contexts: Two-liquid behavior at hydration and nanoconfinement conditions and a molecular approach to hydrophobicity and wetting. J Chem Phys 2024; 160:144502. [PMID: 38587223 DOI: 10.1063/5.0203989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
In a recent work, we have briefly introduced a new structural index for water that, unlike previous indicators, was devised specifically for generic contexts beyond bulk conditions, making it suitable for hydration and nanoconfinement settings. In this work, we shall study this metric in detail, demonstrating its ability to reveal the existence of a fine-tuned interplay between the local structure and energetics in liquid water. This molecular principle enables the establishment of an extended hydrogen bond network, while simultaneously allowing for the existence of network defects by compensating for uncoordinated sites. By studying different water models and different temperatures encompassing both the normal liquid and the supercooled regime, this molecular mechanism will be shown to underlie the two-state behavior of bulk water. In addition, by studying functionalized self-assembled monolayers and diverse graphene-like surfaces, we shall show that this principle is also operative at hydration and nanoconfinement conditions, thus generalizing the validity of the two-liquid scenario of water to these contexts. This approach will allow us to define conditions for wettability, providing an accurate measure of hydrophobicity and a reliable predictor of filling and drying transitions. Hence, it might open the possibility of elucidating the active role of water in the broad fields of biophysics and materials science. As a preliminary step, we shall study the hydration structure and hydrophilicity of graphene-like systems (parallel graphene sheets and carbon nanotubes) as a function of the confinement dimensionality.
Collapse
Affiliation(s)
- Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
27
|
Deng J, Cui Q. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields. J Chem Theory Comput 2024; 20:1897-1911. [PMID: 38417108 DOI: 10.1021/acs.jctc.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Prediction of the hydration levels of protein cavities and active sites is important to both mechanistic analysis and ligand design. Due to the unique microscopic environment of these buried water molecules, a polarizable model is expected to be crucial for an accurate treatment of protein internal hydration in simulations. Here we adapt a nonequilibrium candidate Monte Carlo approach for conducting grand canonical Monte Carlo simulations with the Drude polarizable force field. The GPU implementation enables the efficient sampling of internal cavity hydration levels in biomolecular systems. We also develop an enhanced sampling approach referred to as B-walking, which satisfies detailed balance and readily combines with grand canonical integration to efficiently calculate quantitative binding free energies of water to protein cavities. Applications of these developments are illustrated in a solvent box and the polar ligand binding site in trypsin. Our simulation results show that including electronic polarization leads to a modest but clear improvement in the description of water position and occupancy compared to the crystal structure. The B-walking approach enhances the range of water sampling in different chemical potential windows and thus improves the accuracy of water binding free energy calculations.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
28
|
Maturi F, Raposo Filho RS, Brites CDS, Fan J, He R, Zhuang B, Liu X, Carlos LD. Deciphering Density Fluctuations in the Hydration Water of Brownian Nanoparticles via Upconversion Thermometry. J Phys Chem Lett 2024; 15:2606-2615. [PMID: 38420927 PMCID: PMC10926164 DOI: 10.1021/acs.jpclett.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
We investigate the intricate relationship among temperature, pH, and Brownian velocity in a range of differently sized upconversion nanoparticles (UCNPs) dispersed in water. These UCNPs, acting as nanorulers, offer insights into assessing the relative proportion of high-density and low-density liquid in the surrounding hydration water. The study reveals a size-dependent reduction in the onset temperature of liquid-water fluctuations, indicating an augmented presence of high-density liquid domains at the nanoparticle surfaces. The observed upper-temperature threshold is consistent with a hypothetical phase diagram of water, validating the two-state model. Moreover, an increase in pH disrupts the organization of water molecules, similar to external pressure effects, allowing simulation of the effects of temperature and pressure on hydrogen bonding networks. The findings underscore the significance of the surface of suspended nanoparticles for understanding high- to low-density liquid fluctuations and water behavior at charged interfaces.
Collapse
Affiliation(s)
- Fernando
E. Maturi
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Chemistry, São Paulo State University
(UNESP), 14800-060 Araraquara, SP, Brazil
| | - Ramon S. Raposo Filho
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos D. S. Brites
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jingyue Fan
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Ruihua He
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Bilin Zhuang
- Harvey
Mudd College, 301 Platt
Boulevard, Claremont, California 91711, United States
| | - Xiaogang Liu
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Luís D. Carlos
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Mondal S, Mukherjee S, Bagchi B. Melting and Bubble Formation in a Double-Stranded DNA: Microscopic Aspects of Early Base-Pair Opening Events and the Role of Water. J Phys Chem B 2024; 128:2076-2086. [PMID: 38389118 DOI: 10.1021/acs.jpcb.3c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Despite its rigid structure, DNA is a remarkably flexible molecule. Flexibility is essential for biological functions (such as transcription and gene repair), which require large-amplitude structural changes such as bubble formation. The bubbles thus formed are required to have a certain stability of their own and survive long on the time scale of molecular motions. A molecular understanding of fluctuations leading to quasi-stable structures is not available. Through extensive atomistic molecular dynamics simulations, we identify a sequence of microscopic events that culminate in local bubble formation, which is initiated by base-pair (BP) opening, resulting from the cleavage of native BP hydrogen bonds (HBs). This is followed by the formation of mismatched BPs with non-native contacts. These metastable structures can either revert to their original forms or undergo a flipping transition to form a local bubble that can span across 3-4 BPs. A substantial distortion of the DNA backbone and a disruption of BP stacking are observed because of the structural changes induced by these local perturbations. We also explored how water helps in the entire process. A small number of water molecules undergo rearrangement to stabilize the intermediate states by forming HBs with DNA bases. Water thus acts as a lubricant that counteracts the enthalpic penalty suffered from the loss of native BP contacts. Although the process of bubble formation is reversible, the sequence of steps involved poses an entropic barrier, preventing it from easily retracing the path to the native state.
Collapse
Affiliation(s)
- Sayantan Mondal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum D-44780, Germany
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
30
|
Saak CM, Dreier LB, Machel K, Bonn M, Backus EHG. Biological lipid hydration: distinct mechanisms of interfacial water alignment and charge screening for model lipid membranes. Faraday Discuss 2024; 249:317-333. [PMID: 37795538 DOI: 10.1039/d3fd00117b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Studying lipid monolayers as model biological membranes, we demonstrate that water molecules interfacing with different model membranes can display preferential orientation for two distinct reasons: due to charges on the membrane, and due to large dipole fields resulting from zwitterionic headgroups. This preferential water orientation caused by the charge or the dipolar field can be effectively neutralized to net-zero water orientation by introducing monolayer counter-charges (i.e. lipids with oppositely charged headgroups). Following the Gouy-Chapman model, the effect of monolayer surface charge on water orientation is furthermore strongly dependent on the electrolyte concentration and thus on the counterions in solution. In contrast, the effect of ions in the subphase on the dipolar alignment of water is zero. As a result, the capability of monolayer counter-charges to null the effect of dipolar orientation is strongly electrolyte-dependent. Notably, the different effects are additive for mixed charged/zwitterionic lipid systems occurring in nature. Specifically, for an E. coli lipid membrane extract consisting of both zwitterionic and negatively charged lipids, the water orientation can be explained by the sum of the constituents. Our results can be quantitatively reproduced using Gouy-Chapman theory, revealing the relatively straightforward electrostatic effects on the hydration of complex membrane interfaces.
Collapse
Affiliation(s)
- Clara-Magdalena Saak
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42, 1090, Vienna, Austria.
| | - Lisa B Dreier
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Kevin Machel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ellen H G Backus
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42, 1090, Vienna, Austria.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
31
|
Li P, Lu H. An entropy trap model of thermodynamic anomalies for dual-amorphous water undergoing liquid-liquid phase transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185102. [PMID: 38277676 DOI: 10.1088/1361-648x/ad22f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Water displays numerous anomalously thermodynamic behaviors. However, the working principles behind these anomalies are not well understood, and the liquid-liquid phase transition (LLPT) is often regarded as the potential reason. In this study, we developed an entropy trap model to characterize the thermodynamic LLPT in dual-amorphous water, i.e. having both low-density and high-density liquid water. From the Adam-Gibbs model and free-volume theory, thermodynamic behaviors of water have been described using the proposed model, in which the constitutive relationships among density, heat capacity, thermal expansivity and glass transition temperature have been formulated. Moreover, the glass transition and its connection to thermodynamic behaviors were also investigated for dual-amorphous water. Finally, experimental data reported in the literature were used to verify effectiveness of the proposed model. This study is expected to provide a physical insight into the anomalous thermodynamics of dual-amorphous water undergoing the LLPT.
Collapse
Affiliation(s)
- Peizhao Li
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haibao Lu
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
32
|
Valle JVL, Mendonça BHS, Barbosa MC, Chacham H, de Moraes EE. Accuracy of TIP4P/2005 and SPC/Fw Water Models. J Phys Chem B 2024; 128:1091-1097. [PMID: 38253517 DOI: 10.1021/acs.jpcb.3c07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Water is used as the main solvent in model systems containing bioorganic molecules. Choosing the right water model is an important step in the study of the biophysical and biochemical processes that occur in cells. In the present work, we perform molecular dynamics simulations using two distinct force fields for water: the rigid model TIP4P/2005, where only intermolecular interactions are considered, and the flexible model SPC/Fw, where intramolecular interactions are also taken into account. The simulations aim to determine the effect of the inclusion of intramolecular interactions on the accuracy of calculated properties of bulk water (density and thermal expansion coefficient, self-diffusion coefficients, shear viscosity, radial distribution functions, and dielectric constant), as compared to experimental results, over a temperature range between 250 and 370 K. We find that the results of the rigid model present the smallest deviations relative to experiments for most of the calculated quantities, except for the shear viscosity of supercooled water and the water dielectric constant, where the flexible model presents better agreement with experiments.
Collapse
Affiliation(s)
- João V L Valle
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador 40210-340, BA, Brazil
| | - Bruno H S Mendonça
- Departamento de Física, ICEX, Universidade Federal de Minas Gerais, CP 702, Belo Horizonte 30123-970, MG, Brazil
| | - Marcia C Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Helio Chacham
- Departamento de Física, ICEX, Universidade Federal de Minas Gerais, CP 702, 30123-970 Belo Horizonte, MG, Brazil
| | - Elizane E de Moraes
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador 40210-340, BA, Brazil
| |
Collapse
|
33
|
Ryan M, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the Selectivity Filter of a K + Ion Channel: Structural Heterogeneity, Picosecond Dynamics, and Hydrogen Bonding. J Am Chem Soc 2024; 146:1543-1553. [PMID: 38181505 PMCID: PMC10797622 DOI: 10.1021/jacs.3c11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Biswal S, Agmon N. Collagen Structured Hydration. Biomolecules 2023; 13:1744. [PMID: 38136615 PMCID: PMC10742079 DOI: 10.3390/biom13121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Collagen is a triple-helical protein unique to the extracellular matrix, conferring rigidity and stability to tissues such as bone and tendon. For the [(PPG)10]3 collagen-mimetic peptide at room temperature, our molecular dynamics simulations show that these properties result in a remarkably ordered first hydration layer of water molecules hydrogen bonded to the backbone carbonyl (bb-CO) oxygen atoms. This originates from the following observations. The radius of gyration attests that the PPG triplets are organized along a straight line, so that all triplets (excepting the ends) are equivalent. The solvent-accessible surface area (SASA) for the bb-CO oxygens shows a repetitive regularity for every triplet. This leads to water occupancy of the bb-CO sites following a similar regularity. In the crystal-phase X-ray data, as well as in our 100 K simulations, we observe a 0-2-1 water occupancy in the P-P-G triplet. Surprisingly, a similar (0-1.7-1) regularity is maintained in the liquid phase, in spite of the sub-nsec water exchange rates, because the bb-CO sites rarely remain vacant. The manifested ordered first-shell water molecules are expected to produce a cylindrical electrostatic potential around the peptide, to be investigated in future work.
Collapse
Affiliation(s)
| | - Noam Agmon
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| |
Collapse
|
35
|
Ryan MJ, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the selectivity filter of a K + ion channel: structural heterogeneity, picosecond dynamics, and hydrogen-bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567415. [PMID: 38014355 PMCID: PMC10680850 DOI: 10.1101/2023.11.16.567415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water inside biological ion channels regulates the key properties of these proteins such as selectivity, ion conductance, and gating. In this Article we measure the picosecond spectral diffusion of amide I vibrations of an isotope labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100 - 2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D lineshapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent, or non-adjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations were observed on a picosecond timescale. These dynamics are in stark contrast with liquid water that remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
36
|
Skinner JL. Raman imaging of water in biological cells. Proc Natl Acad Sci U S A 2023; 120:e2316387120. [PMID: 37878685 PMCID: PMC10636297 DOI: 10.1073/pnas.2316387120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Affiliation(s)
- J. L. Skinner
- Department of Chemistry, University of Wisconsin, Madison, WI53704
| |
Collapse
|
37
|
Watson JL, Seinkmane E, Styles CT, Mihut A, Krüger LK, McNally KE, Planelles-Herrero VJ, Dudek M, McCall PM, Barbiero S, Vanden Oever M, Peak-Chew SY, Porebski BT, Zeng A, Rzechorzek NM, Wong DCS, Beale AD, Stangherlin A, Riggi M, Iwasa J, Morf J, Miliotis C, Guna A, Inglis AJ, Brugués J, Voorhees RM, Chambers JE, Meng QJ, O'Neill JS, Edgar RS, Derivery E. Macromolecular condensation buffers intracellular water potential. Nature 2023; 623:842-852. [PMID: 37853127 PMCID: PMC10665201 DOI: 10.1038/s41586-023-06626-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.
Collapse
Affiliation(s)
| | | | | | - Andrei Mihut
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
| | - Patrick M McCall
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | | | | | | | | - Aiwei Zeng
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Alessandra Stangherlin
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Margot Riggi
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jörg Morf
- Laboratory of Nuclear Dynamics, Babraham Institute, Cambridge, UK
| | | | - Alina Guna
- California Institute of Technology, Pasadena, CA, USA
| | | | - Jan Brugués
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | | | | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
| | | | - Rachel S Edgar
- Department of Infectious Disease, Imperial College London, London, UK.
| | | |
Collapse
|
38
|
Fransson T, Pettersson LGM. Calibrating TDDFT Calculations of the X-ray Emission Spectrum of Liquid Water: The Effects of Hartree-Fock Exchange. J Chem Theory Comput 2023; 19:7333-7342. [PMID: 37787584 PMCID: PMC10601479 DOI: 10.1021/acs.jctc.3c00728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 10/04/2023]
Abstract
The structure and dynamics of liquid water continue to be debated, with insight provided by, among others, X-ray emission spectroscopy (XES), which shows a split in the high-energy 1b1 feature. This split is yet to be reproduced by theory, and it remains unclear if these difficulties are related to inaccuracies in dynamics simulations, spectrum calculations, or both. We investigate the performance of different methods for calculating XES of liquid water, focusing on the ability of time-dependent density functional theory (TDDFT) to reproduce reference spectra obtained by high-level coupled cluster and algebraic-diagrammatic construction scheme calculations. A metric for evaluating the agreement between theoretical spectra termed the integrated absolute difference (IAD), which considers the integral of shifted difference spectra, is introduced and used to investigate the performance of different exchange-correlation functionals. We find that computed spectra of symmetric and asymmetric model water structures are strongly and differently influenced by the amount of Hartree-Fock exchange, with best agreement to reference spectra for ∼40-50%. Lower percentages tend to yield high density of contributing states, resulting in too broad features. The method introduced here is useful also for other spectrum calculations, in particular where the performance for ensembles of structures are evaluated.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Physics, AlbaNova
University Center, Stockholm University, 109 61 Stockholm, Sweden
| | - Lars G. M. Pettersson
- Department of Physics, AlbaNova
University Center, Stockholm University, 109 61 Stockholm, Sweden
| |
Collapse
|
39
|
Ramos S, Lee JC. Water bend-libration as a cellular Raman imaging probe of hydration. Proc Natl Acad Sci U S A 2023; 120:e2313133120. [PMID: 37812697 PMCID: PMC10589711 DOI: 10.1073/pnas.2313133120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Water is a ubiquitous and vital component of living systems. Hydration, which is the interaction between water and intracellular biomolecules, plays an important role in cellular processes. However, it is technically challenging to study water structure within cells directly. Here, we demonstrate the utility and power of the water bend-libration combination band as a unique Raman spectral imaging probe of cellular hydration. Hydration maps reveal distinct water environments within subcellular compartments (e.g., nucleolus and lipid droplet) due to the spectral sensitivity of this coupled vibrational band. Spectroscopic studies using the water bend-libration are broadly applicable, offering the potential to capture the chemical complexity of hydration in numerous systems.
Collapse
Affiliation(s)
- Sashary Ramos
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Jennifer C. Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| |
Collapse
|
40
|
Prasad A, Sreedharan S, Bakthavachalu B, Laxman S. Eggs of the mosquito Aedes aegypti survive desiccation by rewiring their polyamine and lipid metabolism. PLoS Biol 2023; 21:e3002342. [PMID: 37874799 PMCID: PMC10597479 DOI: 10.1371/journal.pbio.3002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Upon water loss, some organisms pause their life cycles and escape death. While widespread in microbes, this is less common in animals. Aedes mosquitoes are vectors for viral diseases. Aedes eggs can survive dry environments, but molecular and cellular principles enabling egg survival through desiccation remain unknown. In this report, we find that Aedes aegypti eggs, in contrast to Anopheles stephensi, survive desiccation by acquiring desiccation tolerance at a late developmental stage. We uncover unique proteome and metabolic state changes in Aedes embryos during desiccation that reflect reduced central carbon metabolism, rewiring towards polyamine production, and enhanced lipid utilisation for energy and polyamine synthesis. Using inhibitors targeting these processes in blood-fed mosquitoes that lay eggs, we infer a two-step process of desiccation tolerance in Aedes eggs. The metabolic rewiring towards lipid breakdown and dependent polyamine accumulation confers resistance to desiccation. Furthermore, rapid lipid breakdown is required to fuel energetic requirements upon water reentry to enable larval hatching and survival upon rehydration. This study is fundamental to understanding Aedes embryo survival and in controlling the spread of these mosquitoes.
Collapse
Affiliation(s)
- Anjana Prasad
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| |
Collapse
|
41
|
Zhou Y, Zhou W, Ren Z, Zhang Y, Gong H, Shen C, Chen RP, Albert J. In-situ monitoring of refractive index change during water-ice phase transition with a multiresonant fiber grating. OPTICS EXPRESS 2023; 31:31231-31242. [PMID: 37710647 DOI: 10.1364/oe.497679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
In-situ monitoring of refractive index changes during a liquid-solid phase transition is achieved by measurement of the transmission spectrum from a single tilted fiber Bragg grating immersed in water. Differential wavelength shifts of multiple mode resonances are used to eliminate cross-talk from temperature, throughout the phase transition, and from strains occurring after solidification. The measured sudden shift of refractive index at the phase transition is shown to be consistent with the expected difference from water to ice, in spite of the observed onset of compressive strain on the fiber by the frozen water. Beyond the obvious application to research on the dynamics of liquid-solid phase transitions, this work demonstrates the multiparameter measurement capabilities of multiresonant gratings.
Collapse
|
42
|
Yang B, Ren P, Xing L, Wang S, Sun C. Roles of hydrogen bonding interactions and hydrophobic effects on enhanced water structure in aqueous solutions of amphiphilic organic molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122605. [PMID: 37004424 DOI: 10.1016/j.saa.2023.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Insights into the solute-induced water structural transformations are essential to understand the role of water in biological and chemical reaction processes. Herein, the structural changes in water induced by amphiphilic organic molecules were investigated using concentration-dependent derivative Raman spectroscopy (DRS) combined with two-dimensional Raman correlation spectroscopy (2D Raman-COS). We shall restrict our attention in this work to binary mixtures of water with dimethyl sulfoxide (DMSO), acetone, and isopropanol (IPA), all of which have similar chemical structures. The spectral changes in O:H and OH stretching modes illustrate that the solute molecules induce an enhancement of the water structure in dilute solutions, where the enhanced degree of water structure is closely related to the size of the dipole moment of organic molecules. In addition, the transformations of solute-induced water-specific structures were evaluated by 2D Raman-COS, which shows that the strong hydrogen bond (H-bond) structure of water is more sensitive to organic molecules and induces a transition to the weak H-bond structure of water.
Collapse
Affiliation(s)
- Bo Yang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Panpan Ren
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Lu Xing
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China.
| | - Shenghan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.
| | - Chenglin Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
43
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023; 24:11784. [PMID: 37511543 PMCID: PMC10381018 DOI: 10.3390/ijms241411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Water is a key actor of various processes of nature and, therefore, molecular engineering has to take the structural and energetic consequences of hydration into account. While the present review focuses on the target-ligand interactions in drug design, with a focus on biomolecules, these methods and applications can be easily adapted to other fields of the molecular engineering of molecular complexes, including solid hydrates. The review starts with the problems and solutions of the determination of water structures. The experimental approaches and theoretical calculations are summarized, including conceptual classifications. The implementations and applications of water models are featured for the calculation of the binding thermodynamics and computational ligand docking. It is concluded that theoretical approaches not only reproduce or complete experimental water structures, but also provide key information on the contribution of individual water molecules and are indispensable tools in molecular engineering.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Viktor Szél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| |
Collapse
|
44
|
Mackie CJ, Lu W, Liang J, Kostko O, Bandyopadhyay B, Gupta I, Ahmed M, Head-Gordon M. Magic Numbers and Stabilities of Photoionized Water Clusters: Computational and Experimental Characterization of the Nanosolvated Hydronium Ion. J Phys Chem A 2023. [PMID: 37441795 DOI: 10.1021/acs.jpca.3c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The stability and distributions of small water clusters generated in a supersonic beam expansion are interrogated by tunable vacuum ultraviolet (VUV) radiation generated at a synchrotron. Time-of-flight mass spectrometry reveals enhanced population of various protonated water clusters (H+(H2O)n) based upon ionization energy and photoionization distance from source, suggesting there are "magic" numbers below the traditional n = 21 that predominates in the literature. These intensity distributions suggest that VUV threshold photoionization (11.0-11.5 eV) of neutral water clusters close to the nozzle exit leads to a different nonequilibrium state compared to a skimmed molecular beam. This results in the appearance of a new magic number at 14. Metadynamics conformer searches coupled with modern density functional calculations are used to identify the global minimum energy structures of protonated water clusters between n = 2 and 21, as well as the manifold of low-lying metastable minima. New lowest energy structures are reported for the cases of n = 5, 6, 11, 12, 16, and 18, and special stability is identified by several measures. These theoretical results are in agreement with the experiments performed in this work in that n = 14 is shown to exhibit additional stability, based on the computed second-order stabilization energy relative to most cluster sizes, though not to the extent of the well-known n = 21 cluster. Other cluster sizes that show some additional energetic stability are n = 7, 9, 12, 17, and 19. To gain insight into the balance between ion-water and water-water interactions as a function of the cluster size, an analysis of the effective two-body interactions (which sum exactly to the total interaction energy) was performed. This analysis reveals a crossover as a function of cluster size between a water-hydronium-dominated regime for small clusters and a water-water-dominated regime for larger clusters around n = 17.
Collapse
Affiliation(s)
- Cameron J Mackie
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jiashu Liang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Biswajit Bandyopadhyay
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ishan Gupta
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Matsuura H, Takano K, Shirakashi R. Slow water dynamics in dehydrated human Jurkat T cells evaluated by dielectric spectroscopy with the Bruggeman-Hanai equation. RSC Adv 2023; 13:20934-20940. [PMID: 37441032 PMCID: PMC10334875 DOI: 10.1039/d3ra02892e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The picosecond orientational dynamics of intracellular water was measured by dielectric spectroscopy, with the aim of revealing the effects of cryoprotective agents (CPAs) on biological cells. As a first step, Jurkat cells (human T lymphocyte cells) suspended in aqueous sucrose solutions of different concentrations ranging from 0.3 M (isotonic) to 0.9 M (hypertonic) were examined at 25 °C with a frequency range up to 43.5 GHz. The Bruggeman-Hanai equation was employed to obtain a cellular dielectric spectrum without extracellular contributions from the measured complex permittivity of the cell suspensions. By analyzing the γ process around 1010 Hz based on the Debye relaxation function, two types of water (bulk-like water and hydration water with slower molecular dynamics) were observed. An increase in the fraction of intracellular slower water was observed in the dehydrated cells which had a highly concentrated environment of biomolecules.
Collapse
Affiliation(s)
- Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
- Research Fellow of the Japan Society for the Promotion of Science Chiyoda Tokyo 102-0083 Japan
| | - Kiyoshi Takano
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| |
Collapse
|
46
|
Yang L, Guo S, Liao C, Hou C, Jiang S, Li J, Ma X, Shi L, Ye L, He X. Spatial Layouts of Low-Entropy Hydration Shells Guide Protein Binding. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300022. [PMID: 37483413 PMCID: PMC10362119 DOI: 10.1002/gch2.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Indexed: 07/25/2023]
Abstract
Protein-protein binding enables orderly biological self-organization and is therefore considered a miracle of nature. Protein‒protein binding is driven by electrostatic forces, hydrogen bonding, van der Waals force, and hydrophobic interactions. Among these physical forces, only hydrophobic interactions can be considered long-range intermolecular attractions between proteins due to the electrostatic shielding of surrounding water molecules. Low-entropy hydration shells around proteins drive hydrophobic attraction among them that essentially coordinate protein‒protein binding. Here, an innovative method is developed for identifying low-entropy regions of hydration shells of proteins by screening off pseudohydrophilic groups on protein surfaces and revealing that large low-entropy regions of the hydration shells typically cover the binding sites of individual proteins. According to an analysis of determined protein complex structures, shape matching between a large low-entropy hydration shell region of a protein and that of its partner at the binding sites is revealed as a universal law. Protein‒protein binding is thus found to be mainly guided by hydrophobic collapse between the shape-matched low-entropy hydration shells that is verified by bioinformatics analyses of hundreds of structures of protein complexes, which cover four test systems. A simple algorithm is proposed to accurately predict protein binding sites.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- School of AerospaceMechanical and Mechatronic EngineeringThe University of SydneyNSW2006Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chenchen Liao
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chengyu Hou
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Jiacheng Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lin Ye
- School of System Design and Intelligent ManufacturingSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- Shenzhen STRONG Advanced Materials Research Institute Co., LtdShenzhen518035P. R. China
| |
Collapse
|
47
|
Farag H, Peters B. Engulfment Avalanches and Thermal Hysteresis for Antifreeze Proteins on Supercooled Ice. J Phys Chem B 2023. [PMID: 37294871 DOI: 10.1021/acs.jpcb.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antifreeze proteins (AFPs) bind to the ice-water surface and prevent ice growth at temperatures below 0 °C through a Gibbs-Thomson effect. Each adsorbed AFP creates a metastable depression on the surface that locally resists ice growth, until ice engulfs the AFP. We recently predicted the susceptibility to engulfment as a function of AFP size, distance between AFPs, and supercooling [ J. Chem. Phys. 2023, 158, 094501]. For an ensemble of AFPs adsorbed on the ice surface, the most isolated AFPs are the most susceptible, and when an isolated AFP gets engulfed, its former neighbors become more isolated and more susceptible to engulfment. Thus, an initial engulfment event can trigger an avalanche of subsequent engulfment events, leading to a sudden surge of unrestrained ice growth. This work develops a model to predict the supercooling at which the first engulfment event will occur for an ensemble of randomly distributed AFP pinning sites on an ice surface. Specifically, we formulate an inhomogeneous survival probability that accounts for the AFP coverage, the distribution of AFP neighbor distances, the resulting ensemble of engulfment rates, the ice surface area, and the cooling rate. We use the model to predict thermal hysteresis trends and compare with experimental data.
Collapse
Affiliation(s)
- Hossam Farag
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
48
|
Hallsworth JE, Udaondo Z, Pedrós‐Alió C, Höfer J, Benison KC, Lloyd KG, Cordero RJB, de Campos CBL, Yakimov MM, Amils R. Scientific novelty beyond the experiment. Microb Biotechnol 2023; 16:1131-1173. [PMID: 36786388 PMCID: PMC10221578 DOI: 10.1111/1751-7915.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Höfer
- Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Kathleen C. Benison
- Department of Geology and GeographyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Karen G. Lloyd
- Microbiology DepartmentUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Radamés J. B. Cordero
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Claudia B. L. de Campos
- Institute of Science and TechnologyUniversidade Federal de Sao Paulo (UNIFESP)São José dos CamposSPBrazil
| | | | - Ricardo Amils
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Nicolás Cabrera n° 1, Universidad Autónoma de MadridMadridSpain
- Department of Planetology and HabitabilityCentro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| |
Collapse
|
49
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
50
|
Steelman ZA, Martens S, Tran J, Coker ZN, Sedelnikova A, Kiester AS, O’Connor SP, Ibey BL, Bixler JN. Rapid and precise tracking of water influx and efflux across cell membranes induced by a pulsed electric field. BIOMEDICAL OPTICS EXPRESS 2023; 14:1894-1910. [PMID: 37206120 PMCID: PMC10191652 DOI: 10.1364/boe.485627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Quantitative measurements of water content within a single cell are notoriously difficult. In this work, we introduce a single-shot optical method for tracking the intracellular water content, by mass and volume, of a single cell at video rate. We utilize quantitative phase imaging and a priori knowledge of a spherical cellular geometry, leveraging a two-component mixture model to compute the intracellular water content. We apply this technique to study CHO-K1 cells responding to a pulsed electric field, which induces membrane permeabilization and rapid water influx or efflux depending upon the osmotic environment. The effects of mercury and gadolinium on water uptake in Jurkat cells following electropermeabilization are also examined.
Collapse
Affiliation(s)
| | - Stacey Martens
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | - Jennifer Tran
- University of Wisconsin-Madison School of Pharmacy, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | | - Allen S. Kiester
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | | | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| |
Collapse
|