1
|
Kneip JS, Kniepkamp N, Jang J, Mortaro MG, Jin E, Kruse O, Baier T. CRISPR/Cas9-Mediated Knockout of the Lycopene ε-Cyclase for Efficient Astaxanthin Production in the Green Microalga Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1393. [PMID: 38794462 PMCID: PMC11125023 DOI: 10.3390/plants13101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Carotenoids are valuable pigments naturally occurring in all photosynthetic plants and microalgae as well as in selected fungi, bacteria, and archaea. Green microalgae developed a complex carotenoid profile suitable for efficient light harvesting and light protection and harbor great capacity for carotenoid production through the substantial power of the endogenous 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Previous works established successful genome editing and induced significant changes in the cellular carotenoid content in Chlamydomonas reinhardtii. This study employs a tailored carotenoid pathway for engineered bioproduction of the valuable ketocarotenoid astaxanthin. Functional knockout of lycopene ε-cyclase (LCYE) and non-homologous end joining (NHEJ)-based integration of donor DNA at the target site inhibit the accumulation of α-carotene and consequently lutein and loroxanthin, abundant carotenoids in C. reinhardtii without changes in cellular fitness. PCR-based screening indicated that 4 of 96 regenerated candidate lines carried (partial) integrations of donor DNA and increased ß-carotene as well as derived carotenoid contents. Iterative overexpression of CrBKT, PacrtB, and CrCHYB resulted in a 2.3-fold increase in astaxanthin accumulation in mutant ΔLCYE#3 (1.8 mg/L) compared to the parental strain UVM4, which demonstrates the potential of genome editing for the design of a green cell factory for astaxanthin bioproduction.
Collapse
Affiliation(s)
- Jacob Sebastian Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Niklas Kniepkamp
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Maria Grazia Mortaro
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Zhang P, Wu X, Chen Y, Ji G, Ma X, Zhang Y, Xiang J, Wang Y, Wang Z, Li L, Chen H, Zhang Y. Comparative Transcriptome Combined with Morphophysiological Analyses Revealed Carotenoid Biosynthesis for Differential Chilling Tolerance in Two Contrasting Rice (Oryza sativa L.) Genotypes. RICE (NEW YORK, N.Y.) 2023; 16:52. [PMID: 38006430 PMCID: PMC10676345 DOI: 10.1186/s12284-023-00669-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Early spring cold spells can lead to leaf chlorosis during the rice seedling greening process. However, the physiological and molecular mechanisms underlying the rice greening process under low-temperature conditions remain unknown. In this study, comparative transcriptome and morphophysiological analyses were performed to investigate the mechanisms mediating the responses of the Koshihikari (Kos) and Kasalath (Kas) rice cultivars to chilling stress. According to their growth-related traits, electrolyte leakage, and chlorophyll fluorescence parameters, Kos was more tolerant to low-temperature stress than Kas. Moreover, chloroplast morphology was more normal (e.g., oval) in Kos than in Kas at 17 °C. The comparative transcriptome analysis revealed 610 up-regulated differentially expressed genes that were common to all four comparisons. Furthermore, carotenoid biosynthesis was identified as a critical pathway for the Kos response to chilling stress. The genes in the carotenoid biosynthesis pathway were expressed at higher levels in Kos than in Kas at 17 °C, which was in accordance with the higher leaf carotenoid content in Kos than in Kas. The lycopene β-cyclase and lycopene ε-cyclase activities increased more in Kos than in Kas. Additionally, the increases in the violaxanthin de-epoxidase and carotenoid hydroxylase activities in Kos seedlings resulted in the accumulation of zeaxanthin and lutein and mitigated the effects of chilling stress on chloroplasts. These findings have clarified the molecular mechanisms underlying the chilling tolerance of rice seedlings during the greening process.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056009, Hebei, People's Republic of China
| | - Xiang Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056009, Hebei, People's Republic of China
| | - Yulin Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Guangmei Ji
- Guizhou Rice Research Institute, Guiyang, 550009, Guizhou, People's Republic of China
| | - Xinling Ma
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yuping Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Jing Xiang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yaliang Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhigang Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Liangtao Li
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056009, Hebei, People's Republic of China.
| | - Huizhe Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China.
| | - Yikai Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Li R, He Y, Chen J, Zheng S, Zhuang C. Research Progress in Improving Photosynthetic Efficiency. Int J Mol Sci 2023; 24:ijms24119286. [PMID: 37298238 DOI: 10.3390/ijms24119286] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Photosynthesis is the largest mass- and energy-conversion process on Earth, and it is the material basis for almost all biological activities. The efficiency of converting absorbed light energy into energy substances during photosynthesis is very low compared to theoretical values. Based on the importance of photosynthesis, this article summarizes the latest progress in improving photosynthesis efficiency from various perspectives. The main way to improve photosynthetic efficiency is to optimize the light reactions, including increasing light absorption and conversion, accelerating the recovery of non-photochemical quenching, modifying enzymes in the Calvin cycle, introducing carbon concentration mechanisms into C3 plants, rebuilding the photorespiration pathway, de novo synthesis, and changing stomatal conductance. These developments indicate that there is significant room for improvement in photosynthesis, providing support for improving crop yields and mitigating changes in climate conditions.
Collapse
Affiliation(s)
- Ruiqi Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ying He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junyu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Ghosh D, Mohapatra S, Dogra V. Improving photosynthetic efficiency by modulating non-photochemical quenching. TRENDS IN PLANT SCIENCE 2023; 28:264-266. [PMID: 36581517 DOI: 10.1016/j.tplants.2022.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
High light exposure rapidly activates non-photochemical quenching (NPQ), protecting plants from photooxidative damage. Contrarily, its relaxation upon transition to normal light occurs quite slowly, limiting photosynthetic efficiency. De Souza et al. demonstrated that by overexpressing NPQ-related genes, faster NPQ relaxation and enhanced photosynthesis can be achieved under fluctuating light conditions.
Collapse
Affiliation(s)
- Dipanshu Ghosh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumanta Mohapatra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
New Insight into Short Time Exogenous Formaldehyde Application Mediated Changes in Chlorophytum comosum L. (Spider Plant) Cellular Metabolism. Cells 2023; 12:cells12020232. [PMID: 36672168 PMCID: PMC9857029 DOI: 10.3390/cells12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Chlorophytum comosum L. plants are known to effectively absorb air pollutants, including formaldehyde (HCHO). Since the metabolic and defense responses of C. comosum to HCHO are poorly understood, in the present study, biochemical changes in C. comosum leaves induced by 48 h exposure to exogenous HCHO, applied as 20 mg m-3, were analyzed. The observed changes showed that HCHO treatment caused no visible harmful effects on C. comosum leaves and seemed to be effectively metabolized by this plant. HCHO application caused no changes in total chlorophyll (Chl) and Chl a content, increased Chl a/b ratio, and decreased Chl b and carotenoid content. HCHO treatment affected sugar metabolism, towards the utilization of sucrose and synthesis or accumulation of glucose, and decreased activities of aspartate and alanine aminotransferases, suggesting that these enzymes do not play any pivotal role in amino acid transformations during HCHO assimilation. The total phenolic content in leaf tissues did not change in comparison to the untreated plants. The obtained results suggest that HCHO affects nitrogen and carbohydrate metabolism, effectively influencing photosynthesis, shortly after plant exposure to this volatile compound. It may be suggested that the observed changes are related to early HCHO stress symptoms or an early step of the adaptation of cells to HCHO treatment. The presented results confirm for the first time the direct influence of short time HCHO exposure on the studied parameters in the C. comosum plant leaf tissues.
Collapse
|
6
|
Bowerman AF, Byrt CS, Roy SJ, Whitney SM, Mortimer JC, Ankeny RA, Gilliham M, Zhang D, Millar AA, Rebetzke GJ, Pogson BJ. Potential abiotic stress targets for modern genetic manipulation. THE PLANT CELL 2023; 35:139-161. [PMID: 36377770 PMCID: PMC9806601 DOI: 10.1093/plcell/koac327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 05/06/2023]
Abstract
Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.
Collapse
Affiliation(s)
- Andrew F Bowerman
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Caitlin S Byrt
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stuart John Roy
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Spencer M Whitney
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jenny C Mortimer
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rachel A Ankeny
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Humanities, University of Adelaide, North Terrace, South Australia, Australia
| | - Matthew Gilliham
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Anthony A Millar
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Greg J Rebetzke
- CSIRO Agriculture & Food, Canberra, Australian Capital Territory, Australia
| | - Barry J Pogson
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
7
|
De Souza AP, Burgess SJ, Doran L, Hansen J, Manukyan L, Maryn N, Gotarkar D, Leonelli L, Niyogi KK, Long SP. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science 2022; 377:851-854. [PMID: 35981033 DOI: 10.1126/science.adc9831] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. This protective dissipation continues after the leaf transitions to shade, reducing crop photosynthesis. A bioengineered acceleration of this adjustment increased photosynthetic efficiency and biomass in tobacco in the field. But could that also translate to increased yield in a food crop? Here we bioengineered the same change into soybean. In replicated field trials, photosynthetic efficiency in fluctuating light was higher and seed yield in five independent transformation events increased by up to 33%. Despite increased seed quantity, seed protein and oil content were unaltered. This validates increasing photosynthetic efficiency as a much needed strategy toward sustainably increasing crop yield in support of future global food security.
Collapse
Affiliation(s)
- Amanda P De Souza
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven J Burgess
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Plant Biology, Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lynn Doran
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jeffrey Hansen
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lusya Manukyan
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nina Maryn
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Dhananjay Gotarkar
- Department of Plant Biology, Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lauriebeth Leonelli
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen P Long
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
8
|
Lou Y, Sun H, Zhu C, Yang K, Li X, Gao Z. PeVDE, a violaxanthin de-epoxidase gene from moso bamboo, confers photoprotection ability in transgenic Arabidopsis under high light. FRONTIERS IN PLANT SCIENCE 2022; 13:927949. [PMID: 36035723 PMCID: PMC9403991 DOI: 10.3389/fpls.2022.927949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Plants employ an array of photoprotection mechanisms to alleviate the harmful effects of high light intensity. The violaxanthin cycle, which is associated with non-photochemical quenching (NPQ), involves violaxanthin de-epoxidase (VDE), and zeaxanthin epoxidase (ZEP) and is one of the most rapid and efficient mechanisms protecting plants under high light intensity. Woody bamboo is a class of economically and ecologically important evergreen grass species widely distributed in tropical and subtropical areas. However, the function of VDE in bamboo has not yet been elucidated. In this study, we found that high light intensity increased NPQ and stimulated the de-epoxidation of violaxanthin cycle components in moso bamboo (Phyllostachys edulis), whereas, samples treated with the VDE inhibitor (dithiothreitol) exhibited lower NPQ capacity, suggesting that violaxanthin cycle plays an important role in the photoprotection of bamboo. Further analysis showed that not only high light intensity but also extreme temperatures (4 and 42°C) and drought stress upregulated the expression of PeVDE in bamboo leaves, indicating that PeVDE is induced by multiple abiotic stresses. Overexpression of PeVDE under the control of the CaMV 35S promoter in Arabidopsis mutant npq1 mutant could rescue its NPQ, indicating that PeVDE functions in dissipating the excess absorbed light energy as thermal energy in bamboo. Moreover, compared with wild-type (Col-0) plants, the transgenic plants overexpressing PeVDE displayed enhanced photoprotection ability, higher NPQ capacity, slower decline in the maximum quantum yield of photosystem II (F v /F m ) under high light intensity, and faster recovery under optimal conditions. These results suggest that PeVDE positively regulates the response to high light intensity in bamboo plants growing in the natural environment, which could improve their photoprotection ability through the violaxanthin cycle and NPQ.
Collapse
Affiliation(s)
- Yongfeng Lou
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
- Jiangxi Provincial Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, China
| | - Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
| | - Xueping Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
| |
Collapse
|
9
|
Cia Zeaxanthin Biosynthesis, OsZEP and OsVDE Regulate Striped Leaves Occurring in Response to Deep Transplanting of Rice. Int J Mol Sci 2022; 23:ijms23158340. [PMID: 35955477 PMCID: PMC9369140 DOI: 10.3390/ijms23158340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The rice leaf color mutant B03S was previously generated from the photoperiod- and thermo-sensitive genic male sterile (PTGMS) rice line Efeng 1S, of which male sterility manifests by photoperiod and temperature but exhibits mainly temperature-sensitive characteristics. After these plants were deeply transplanted, the new leaves manifested typical zebra stripe patterns. Here, B03S was subjected to deep and shallow transplanting, shading with soil and aluminum foil, and control conditions in situ to determine the cause of the striped-leaf trait. The direct cause of striped leaves is the base of the leaf sheath being under darkness during deep transplanting, of which the critical shading range reached or exceeds 4 cm above the base. Moreover, typical striped leaves were analyzed based on the targeted metabolome method by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC–MS/MS) combined with transcriptome and real-time quantitative PCR (qPCR)-based verification to clarify the metabolic pathways and transcriptional regulation involved. Carotenoids enter the xanthophyll cycle, and the metabolites that differentially accumulate in the striped leaves include zeaxanthin and its derivatives for photooxidative stress protection, driven by the upregulated expression of OsZEP. These findings improve the understanding of the physiological and metabolic mechanisms underlying the leaf color mutation in rice plants, enrich the theoretical foundation of the nonuniform leaf color phenomenon widely found in nature and highlight key advancements concerning rice production involving the transplanting of seedlings or direct broadcasting of seeds.
Collapse
|
10
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
11
|
Seki S, Yamano Y, Oka N, Kamei Y, Fujii R. Discovery of a novel siphonaxanthin biosynthetic precursor in Codium fragile that accumulates only by exposure to blue-green light. FEBS Lett 2022; 596:1544-1555. [PMID: 35460262 DOI: 10.1002/1873-3468.14357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/02/2023]
Abstract
Photosynthetic organisms adapt to a variety of light conditions. Codium fragile, a macrosiphonous green alga, binds a unique carbonyl carotenoid, siphonaxanthin, to its major photosynthetic light-harvesting complexes, allowing it to utilize dim blue-green light for photosynthesis. Here, we describe the absolute chemical structure of a novel siphonaxanthin biosynthetic precursor, 19-deoxysiphonaxanthin, that accumulates specifically in the photosynthetic antenna only when cultivated under blue-green light. The action spectra of pigment accumulation suggest that siphonaxanthin biosynthesis is regulated by a specific wavelength profile. The results provide clues to a new acclimation mechanism to withstand hours of intense light at low tide and why siphonous algae have been growing invasively on the world's coasts for more than a century.
Collapse
Affiliation(s)
- Soichiro Seki
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Japan
| | - Naohiro Oka
- Bio-innovation Research Center (Naruto Campus), Tokushima University, Naruto, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Ritsuko Fujii
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, Japan.,Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, Japan
| |
Collapse
|
12
|
van den Berg TE, Croce R. The Loroxanthin Cycle: A New Type of Xanthophyll Cycle in Green Algae (Chlorophyta). FRONTIERS IN PLANT SCIENCE 2022; 13:797294. [PMID: 35251077 PMCID: PMC8891138 DOI: 10.3389/fpls.2022.797294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Xanthophyll cycles (XC) have proven to be major contributors to photoacclimation for many organisms. This work describes a light-driven XC operating in the chlorophyte Chlamydomonas reinhardtii and involving the xanthophylls Lutein (L) and Loroxanthin (Lo). Pigments were quantified during a switch from high to low light (LL) and at different time points from cells grown in Day/Night cycle. Trimeric LHCII was purified from cells acclimated to high or LL and their pigment content and spectroscopic properties were characterized. The Lo/(L + Lo) ratio in the cells varies by a factor of 10 between cells grown in low or high light (HL) leading to a change in the Lo/(L + Lo) ratio in trimeric LHCII from .5 in low light to .07 in HL. Trimeric LhcbMs binding Loroxanthin have 5 ± 1% higher excitation energy (EE) transfer (EET) from carotenoid to Chlorophyll as well as higher thermo- and photostability than trimeric LhcbMs that only bind Lutein. The Loroxanthin cycle operates on long time scales (hours to days) and likely evolved as a shade adaptation. It has many similarities with the Lutein-epoxide - Lutein cycle (LLx) of plants.
Collapse
|
13
|
Walter J, Kromdijk J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:564-591. [PMID: 34962073 PMCID: PMC9302994 DOI: 10.1111/jipb.13206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis started to evolve some 3.5 billion years ago CO2 is the substrate for photosynthesis and in the past 200-250 years, atmospheric levels have approximately doubled due to human industrial activities. However, this time span is not sufficient for adaptation mechanisms of photosynthesis to be evolutionarily manifested. Steep increases in human population, shortage of arable land and food, and climate change call for actions, now. Thanks to substantial research efforts and advances in the last century, basic knowledge of photosynthetic and primary metabolic processes can now be translated into strategies to optimize photosynthesis to its full potential in order to improve crop yields and food supply for the future. Many different approaches have been proposed in recent years, some of which have already proven successful in different crop species. Here, we summarize recent advances on modifications of the complex network of photosynthetic light reactions. These are the starting point of all biomass production and supply the energy equivalents necessary for downstream processes as well as the oxygen we breathe.
Collapse
Affiliation(s)
- Julia Walter
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Johannes Kromdijk
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois61801USA
| |
Collapse
|
14
|
Lundquist PK. Tracking subplastidic localization of carotenoid metabolic enzymes with proteomics. Methods Enzymol 2022; 671:327-350. [DOI: 10.1016/bs.mie.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Anwar S, Nayak JJ, Alagoz Y, Wojtalewicz D, Cazzonelli CI. Purification and use of carotenoid standards to quantify cis-trans geometrical carotenoid isomers in plant tissues. Methods Enzymol 2022; 670:57-85. [DOI: 10.1016/bs.mie.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Levin G, Kulikovsky S, Liveanu V, Eichenbaum B, Meir A, Isaacson T, Tadmor Y, Adir N, Schuster G. The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1260-1277. [PMID: 33725388 DOI: 10.1111/tpj.15232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Although light is the driving force of photosynthesis, excessive light can be harmful. One of the main processes that limits photosynthesis is photoinhibition, the process of light-induced photodamage. When the absorbed light exceeds the amount that is dissipated by photosynthetic electron flow and other processes, damaging radicals are formed that mostly inactivate photosystem II (PSII). Damaged PSII must be replaced by a newly repaired complex in order to preserve full photosynthetic activity. Chlorella ohadii is a green microalga, isolated from biological desert soil crusts, that thrives under extreme high light and is highly resistant to photoinhibition. Therefore, C. ohadii is an ideal model for studying the molecular mechanisms underlying protection against photoinhibition. Comparison of the thylakoids of C. ohadii cells that were grown under low light versus extreme high light intensities found that the alga employs all three known photoinhibition protection mechanisms: (i) massive reduction of the PSII antenna size; (ii) accumulation of protective carotenoids; and (iii) very rapid repair of photodamaged reaction center proteins. This work elucidated the molecular mechanisms of photoinhibition resistance in one of the most light-tolerant photosynthetic organisms, and shows how photoinhibition protection mechanisms evolved to marginal conditions, enabling photosynthesis-dependent life in severe habitats.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | | | | | - Ayala Meir
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Tal Isaacson
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Noam Adir
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
- Schulich Faculty of Chemistry, Technion, Haifa, 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa, 32000, Israel
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
| |
Collapse
|
17
|
Wei Z, Duan F, Sun X, Song X, Zhou W. Leaf photosynthetic and anatomical insights into mechanisms of acclimation in rice in response to long-term fluctuating light. PLANT, CELL & ENVIRONMENT 2021; 44:747-761. [PMID: 33215722 DOI: 10.1111/pce.13954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Long-term fluctuating light (FL) conditions are very common in natural environments. The physiological and biochemical mechanisms for acclimation to FL differ between species. However, most of the current conclusions regarding acclimation to FL were made based on studies in algae or Arabidopsis thaliana. It is still unclear how rice (Oryza sativa L.) integrate multiple physiological changes to acclimate to long-term FL. In this study, we found that rice growth was repressed under long-term FL. By systematically measuring phenotypes and physiological parameters, we revealed that: (a) under short-term FL, photosystem I (PSI) was inhibited, while after 1-7 days of long-term FL, both PSI and PSII were inhibited. Higher acceptor-side limitation in electron transport and higher overall nonphotochemical quenching (NPQ) explained the lower efficiencies of PSI and PSII, respectively. (b) An increase in pH differences across the thylakoid membrane and a decrease in thylakoid proton conductivity revealed a reduction of ATP synthase activity. (c) Using electron microscopy, we showed a decrease in membrane stacking and stomatal opening after 7 days of FL treatment. Taken together, our results show that electron flow, ATP synthase activity and NPQ regulation are the major processes determining the growth performance of rice under long-term FL conditions.
Collapse
Affiliation(s)
- Ze Wei
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengying Duan
- State Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuezhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Wenbin Zhou
- State Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Goss R, Latowski D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:455. [PMID: 32425962 PMCID: PMC7212465 DOI: 10.3389/fpls.2020.00455] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 05/11/2023]
Abstract
The xanthophyll cycles of higher plants and algae represent an important photoprotection mechanism. Two main xanthophyll cycles are known, the violaxanthin cycle of higher plants, green and brown algae and the diadinoxanthin cycle of Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. The forward reaction of the xanthophyll cycles consists of the enzymatic de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin or diadinoxanthin to diatoxanthin during periods of high light illumination. It is catalyzed by the enzymes violaxanthin or diadinoxanthin de-epoxidase. During low light or darkness the back reaction of the cycle, which is catalyzed by the enzymes zeaxanthin or diatoxanthin epoxidase, restores the epoxidized xanthophylls by a re-introduction of the epoxy groups. The de-epoxidation reaction takes place in the lipid phase of the thylakoid membrane and thus, depends on the nature, three dimensional structure and function of the thylakoid lipids. As the xanthophyll cycle pigments are usually associated with the photosynthetic light-harvesting proteins, structural re-arrangements of the proteins and changes in the protein-lipid interactions play an additional role for the operation of the xanthophyll cycles. In the present review we give an introduction to the lipid and fatty acid composition of thylakoid membranes of higher plants and algae. We introduce the readers to the reaction sequences, enzymes and function of the different xanthophyll cycles. The main focus of the review lies on the lipid dependence of xanthophyll cycling. We summarize the current knowledge about the role of lipids in the solubilization of xanthophyll cycle pigments. We address the importance of the three-dimensional lipid structures for the enzymatic xanthophyll conversion, with a special focus on non-bilayer lipid phases which are formed by the main thylakoid membrane lipid monogalactosyldiacylglycerol. We additionally describe how lipids and light-harvesting complexes interact in the thylakoid membrane and how these interactions can affect the structure of the thylakoids. In a dedicated chapter we offer a short overview of current membrane models, including the concept of membrane domains. We then use these concepts to present a model of the operative xanthophyll cycle as a transient thylakoid membrane domain which is formed during high light illumination of plants or algal cells.
Collapse
Affiliation(s)
- Reimund Goss
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
19
|
Gupta S, Sutter M, Remesh SG, Dominguez-Martin MA, Bao H, Feng XA, Chan LJG, Petzold CJ, Kerfeld CA, Ralston CY. X-ray radiolytic labeling reveals the molecular basis of orange carotenoid protein photoprotection and its interactions with fluorescence recovery protein. J Biol Chem 2019; 294:8848-8860. [PMID: 30979724 DOI: 10.1074/jbc.ra119.007592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Indexed: 11/06/2022] Open
Abstract
In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.
Collapse
Affiliation(s)
- Sayan Gupta
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Markus Sutter
- From the Molecular Biophysics and Integrated Bioimaging Division.,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Soumya G Remesh
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Maria Agustina Dominguez-Martin
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Han Bao
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xinyu A Feng
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Leanne-Jade G Chan
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Christopher J Petzold
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Cheryl A Kerfeld
- From the Molecular Biophysics and Integrated Bioimaging Division, .,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Corie Y Ralston
- From the Molecular Biophysics and Integrated Bioimaging Division,
| |
Collapse
|
20
|
Ke Q, Kang L, Kim HS, Xie T, Liu C, Ji CY, Kim SH, Park WS, Ahn MJ, Wang S, Li H, Deng X, Kwak SS. Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:52-60. [PMID: 30824061 DOI: 10.1016/j.plantsci.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 05/13/2023]
Abstract
Carotenoids are required for many biological processes in plants and humans. Lycopene ε-cyclase (LCY-ε) catalyzes the conversion of lycopene into lutein via the α-branch carotenoid biosynthesis pathway. Down-regulation of IbLCY-ε by RNAi increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato calli. As the role of IbLCY-ε in carotenoid biosynthesis and environmental stress responses in whole plants is poorly understood, transgenic sweetpotato (RLE plants) with reduced expression of IbLCY-ε were developed. RLE plants contained higher levels of total carotenoid and β-carotene, due to an elevated β-carotene/lutein ratio rather than increased de novo biosynthesis. RLE plants showed high reactive oxygen species/radical-scavenging activity. They also exhibited an enhanced tolerance of both salt and drought stress, which was associated with lower membrane permeability and a higher photosynthetic rate, respectively. Elevated carotenoid accumulation in RLE plants mitigated the reductions in leaf photosystem II efficiency and chlorophyll induced by abiotic stress. Expression of the carotenoid cleavage genes 9-cis-epoxycarotenoid dioxygenase, carotenoid cleavage dioxygenase 1 (CCD1) and CCD4 was higher in RLE plants, as was abscisic acid accumulation. IbLCY-ε silencing thus offers an effective approach for developing sweetpotato plants with increased tolerance to abiotic stress that will grow on global marginal lands with no reduction in nutritional value.
Collapse
Affiliation(s)
- Qingbo Ke
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Le Kang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637002, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Tian Xie
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chunjuan Liu
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Shiwen Wang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongbing Li
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiping Deng
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
21
|
Wurtzel ET. Changing Form and Function through Carotenoids and Synthetic Biology. PLANT PHYSIOLOGY 2019; 179:830-843. [PMID: 30361256 PMCID: PMC6393808 DOI: 10.1104/pp.18.01122] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 05/06/2023]
Abstract
The diverse structures and multifaceted roles of carotenoids make these colorful pigments attractive targets for synthetic biology.
Collapse
Affiliation(s)
- Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468
- The Graduate School and University Center-CUNY, New York, New York 10016-4309
| |
Collapse
|
22
|
Hamdani S, Khan N, Perveen S, Qu M, Jiang J, Zhu XG. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. PHOTOSYNTHESIS RESEARCH 2019; 139:107-121. [PMID: 30456488 DOI: 10.1007/s11120-018-0589-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 05/25/2023]
Abstract
Non-photochemical quenching (NPQ) of the excited state of chlorophyll a is a major photoprotective mechanism plants utilize to survive under high light. Here, we report the impact of long-term light quality treatment on photosynthetic properties, especially NPQ in rice. We used three LED-based light regimes, i.e., red (648-672 nm), blue (438-460 nm), and "warm" white light (529-624 nm), with the incident photon flux density of 300 µmol photons m-2 s-1, the difference in the absorbed photon flux densities by leaves grown under different light quality being less than 7%. Our results show that blue light, as compared to white light, induced a significant decrease in Fv/Fm, a decreased rate of reduction of P700+ after P700 was completely oxidized; furthermore, blue light also induced higher NPQ with an increased initial speed of NPQ induction, which corresponds to the qE component of NPQ, and a lower maximum quantum yield of PSII, i.e., Y(II). In contrast, rice grown under long-term red light showed decreased Y(II) and increased NPQ, but with no change in Fv/Fm. Furthermore, we found that rice grown under either blue or red light showed decreased transcript abundance of both catalase and ascorbate peroxidase, together with an increased H2O2 content, as compared to rice grown under white light. All these data suggest that even under a moderate incident light level, rice grown under blue or red light led to compromised antioxidant system, which contributed to decreased quantum yield of photosystem II and increased NPQ.
Collapse
Affiliation(s)
- Saber Hamdani
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Naveed Khan
- Max-Planck Partner Institute of Computational Biology, Shanghai Institute of Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shahnaz Perveen
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jianjun Jiang
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
23
|
The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochem Soc Trans 2018; 46:1263-1277. [DOI: 10.1042/bst20170304] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Photosynthetic organisms require rapid and reversible down-regulation of light harvesting to avoid photodamage. Response to unpredictable light fluctuations is achieved by inducing energy-dependent quenching, qE, which is the major component of the process known as non-photochemical quenching (NPQ) of chlorophyll fluorescence. qE is controlled by the operation of the xanthophyll cycle and accumulation of specific types of proteins, upon thylakoid lumen acidification. The protein cofactors so far identified to modulate qE in photosynthetic eukaryotes are the photosystem II subunit S (PsbS) and light-harvesting complex stress-related (LHCSR/LHCX) proteins. A transition from LHCSR- to PsbS-dependent qE took place during the evolution of the Viridiplantae (also known as ‘green lineage’ organisms), such as green algae, mosses and vascular plants. Multiple studies showed that LHCSR and PsbS proteins have distinct functions in the mechanism of qE. LHCX(-like) proteins are closely related to LHCSR proteins and found in ‘red lineage’ organisms that contain secondary red plastids, such as diatoms. Although LHCX proteins appear to control qE in diatoms, their role in the mechanism remains poorly understood. Here, we present the current knowledge on the functions and evolution of these crucial proteins, which evolved in photosynthetic eukaryotes to optimise light harvesting.
Collapse
|
24
|
Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 2018; 70:62-93. [PMID: 29679619 DOI: 10.1016/j.plipres.2018.04.004] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.
Collapse
Affiliation(s)
| | - Javier Avalos
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Albert Boronat
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lourdes Gomez-Gomez
- Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Damaso Hornero-Mendez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain
| | - M Carmen Limon
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio J Meléndez-Martínez
- Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain
| | | | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria J Rodrigo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarias
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, Universitat de Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
25
|
Wang S, Zhuang K, Zhang S, Yang M, Kong F, Meng Q. Overexpression of a tomato carotenoid ε-hydroxylase gene (SlLUT1) improved the drought tolerance of transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:103-112. [PMID: 29425813 DOI: 10.1016/j.jplph.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/28/2018] [Accepted: 01/28/2018] [Indexed: 05/23/2023]
Abstract
Drought stress is a considerable environmental factor that restrains photosynthesis. Lutein, the most prolific carotenoid in plant photosynthetic tissues, plays vital roles in the light-harvesting complexes. However, its biological functions under abiotic stresses remain unclear. In our research, transgenic tobacco plants were utilized to investigate the function of the tomato chloroplast-targeted carotenoid epsilon-ring hydroxylase (SlLUT1) in drought stress tolerance. The analysis of SlLUT1-pro-LUC and qRT-PCR showed that drought stress induced SlLUT1 expression. Transgenic tobacco plants exhibit higher lutein content than wild-type (WT) tobacco. Under drought stress, transgenic plants overexpressing SlLUT1 showed better growth performance, higher chlorophyll and relative water contents and more intact chloroplast and PSII supercomplex structures than WT tobacco. The Fv/Fm, Pn, NPQ, and content of D1 protein in transgenic plants were higher than those in WT plants under drought stress. The accumulation of H2O2 and O2- decreased in transgenic tobacco plants. Moreover, transgenic plants exhibited lower MDA accumulation and REL. These results indicate that overexpression of SlLUT1 enhances tolerance to drought stress by maintaining photosynthesis and scavenging ROS in transgenic tobacco.
Collapse
Affiliation(s)
- Shiju Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Kunyang Zhuang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Song Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Minmin Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
26
|
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid Metabolism in Plants: The Role of Plastids. MOLECULAR PLANT 2018; 11:58-74. [PMID: 28958604 DOI: 10.1016/j.molp.2017.09.010] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 05/17/2023]
Abstract
Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mohammad Yazdani
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, P.O. Box 1021, Ramat Yishai 30095, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
27
|
Leuenberger M, Morris JM, Chan AM, Leonelli L, Niyogi KK, Fleming GR. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E7009-E7017. [PMID: 28652334 PMCID: PMC5565437 DOI: 10.1073/pnas.1704502114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH gradient across the thylakoid membrane (∆pH). The response is mediated by the PsbS protein and various xanthophylls. Time-correlated single-photon counting (TCSPC) measurements were performed on Arabidopsis thaliana to quantify the dependence of the response of NPQ to changes in light intensity on the presence and accumulation of zeaxanthin and lutein. Measurements were performed on WT and mutant plants deficient in one or both of the xanthophylls as well as a transgenic line that accumulates lutein via an engineered lutein epoxide cycle. Changes in the response of NPQ to light acclimation in WT and mutant plants were observed between two successive light acclimation cycles, suggesting that the character of the rapid and reversible response of NPQ in fully dark-acclimated plants is substantially different from in conditions plants are likely to experience caused by changes in light intensity during daylight. Mathematical models of the response of zeaxanthin- and lutein-dependent reversible NPQ were constructed that accurately describe the observed differences between the light acclimation periods. Finally, the WT response of NPQ was reconstructed from isolated components present in mutant plants with a single common scaling factor, which enabled deconvolution of the relative contributions of zeaxanthin- and lutein-dependent NPQ.
Collapse
Affiliation(s)
- Michelle Leuenberger
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, Berkeley, CA 94720
| | - Jonathan M Morris
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, Berkeley, CA 94720
- Graduate Group in Applied Science & Technology, University of California, Berkeley, CA 94720
| | - Arnold M Chan
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Lauriebeth Leonelli
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, Berkeley, CA 94720
- Graduate Group in Applied Science & Technology, University of California, Berkeley, CA 94720
| |
Collapse
|