1
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Tkatch T, Pauza DH. Local stimulation of pyramidal neurons in deep cortical layers of anesthetized rats enhances cortical visual information processing. Sci Rep 2024; 14:22862. [PMID: 39354096 PMCID: PMC11445437 DOI: 10.1038/s41598-024-73995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In the primary visual cortex area V1 activation of inhibitory interneurons, which provide negative feedback for excitatory pyramidal neurons, can improve visual response reliability and orientation selectivity. Moreover, optogenetic activation of one class of interneurons, parvalbumin (PV) positive cells, reduces the receptive field (RF) width. These data suggest that in V1 the negative feedback improves visual information processing. However, according to information theory, noise can limit information content in a signal, and to the best of our knowledge, in V1 signal-to-noise ratio (SNR) has never been estimated following either pyramidal or inhibitory neuron activation. Therefore, we optogenetically activated pyramidal or PV neurons in the deep layers of cortical area V1 and measured the SNR and RF area in nearby pyramidal neurons. Activation of pyramidal or PV neurons increased the SNR by 267% and 318%, respectively, and reduced the RF area to 60.1% and 77.5%, respectively, of that of the control. A simple integrate-and-fire neuron model demonstrated that an improved SNR and a reduced RF area can increase the amount of information encoded by neurons. We conclude that in V1 activation of pyramidal neurons improves visual information processing since the location of the visual stimulus can be pinpointed more accurately (via a reduced RF area), and more information is encoded by neurons (due to increased SNR).
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tatiana Tkatch
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. eNeuro 2024; 11:ENEURO.0255-24.2024. [PMID: 38926084 PMCID: PMC11236587 DOI: 10.1523/eneuro.0255-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extrasensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in CT neurons projecting to the dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) located in lower L6a than VPm-only-projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
- Luis E Martinetti
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
3
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590613. [PMID: 38712153 PMCID: PMC11071411 DOI: 10.1101/2024.04.22.590613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extra-sensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in Dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) projecting CT neurons located in lower L6a than VPm-only projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
| | - Dawn M. Autio
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| | - Shane R. Crandall
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
4
|
Adusei M, Callaway EM, Usrey WM, Briggs F. Parallel Streams of Direct Corticogeniculate Feedback from Mid-level Extrastriate Cortex in the Macaque Monkey. eNeuro 2024; 11:ENEURO.0364-23.2024. [PMID: 38479809 PMCID: PMC10946028 DOI: 10.1523/eneuro.0364-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
First-order thalamic nuclei receive feedforward signals from peripheral receptors and relay these signals to primary sensory cortex. Primary sensory cortex, in turn, provides reciprocal feedback to first-order thalamus. Because the vast majority of sensory thalamocortical inputs target primary sensory cortex, their complementary corticothalamic neurons are assumed to be similarly restricted to primary sensory cortex. We upend this assumption by characterizing morphologically diverse neurons in multiple mid-level visual cortical areas of the primate (Macaca mulatta) brain that provide direct feedback to the primary visual thalamus, the dorsal lateral geniculate nucleus (LGN). Although the majority of geniculocortical neurons project to primary visual cortex (V1), a minority, located mainly in the koniocellular LGN layers, provide direct input to extrastriate visual cortex. These "V1-bypassing" projections may be implicated in blindsight. We hypothesized that geniculocortical inputs directly targeting extrastriate cortex should be complemented by reciprocal corticogeniculate circuits. Using virus-mediated circuit tracing, we discovered corticogeniculate neurons throughout three mid-level extrastriate areas: MT, MST, and V4. Quantitative morphological analyses revealed nonuniform distributions of unique cell types across areas. Many extrastriate corticogeniculate neurons had spiny stellate morphology, suggesting possible targeting of koniocellular LGN layers. Importantly though, multiple morphological types were observed across areas. Such morphological diversity could suggest parallel streams of V1-bypassing corticogeniculate feedback at multiple stages of the visual processing hierarchy. Furthermore, the presence of corticogeniculate neurons across visual cortex necessitates a reevaluation of the LGN as a hub for visual information rather than a simple relay.
Collapse
Affiliation(s)
- Matthew Adusei
- Neuroscience Graduate Program, University of Rochester, Rochester, New York 14642
| | - Edward M Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California 92037
| | - W Martin Usrey
- Center for Neuroscience, University of California Davis, Davis, California 95618
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California 95616
- Department of Neurology, University of California Davis, Davis, California 95618
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, New York 14642
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| |
Collapse
|
5
|
Casanova C, Chalupa LM. The dorsal lateral geniculate nucleus and the pulvinar as essential partners for visual cortical functions. Front Neurosci 2023; 17:1258393. [PMID: 37712093 PMCID: PMC10498387 DOI: 10.3389/fnins.2023.1258393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
In most neuroscience textbooks, the thalamus is presented as a structure that relays sensory signals from visual, auditory, somatosensory, and gustatory receptors to the cerebral cortex. But the function of the thalamic nuclei goes beyond the simple transfer of information. This is especially true for the second-order nuclei, but also applies to first-order nuclei. First order thalamic nuclei receive information from the periphery, like the dorsal lateral geniculate nucleus (dLGN), which receives a direct input from the retina. In contrast, second order thalamic nuclei, like the pulvinar, receive minor or no input from the periphery, with the bulk of their input derived from cortical areas. The dLGN refines the information received from the retina by temporal decorrelation, thereby transmitting the most "relevant" signals to the visual cortex. The pulvinar is closely linked to virtually all visual cortical areas, and there is growing evidence that it is necessary for normal cortical processing and for aspects of visual cognition. In this article, we will discuss what we know and do not know about these structures and propose some thoughts based on the knowledge gained during the course of our careers. We hope that these thoughts will arouse curiosity about the visual thalamus and its important role, especially for the next generation of neuroscientists.
Collapse
Affiliation(s)
| | - Leo M. Chalupa
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
6
|
Daumail L, Carlson BM, Mitchell BA, Cox MA, Westerberg JA, Johnson C, Martin PR, Tong F, Maier A, Dougherty K. Rapid adaptation of primate LGN neurons to drifting grating stimulation. J Neurophysiol 2023; 129:1447-1467. [PMID: 37162181 PMCID: PMC10259864 DOI: 10.1152/jn.00058.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023] Open
Abstract
The visual system needs to dynamically adapt to changing environments. Much is known about the adaptive effects of constant stimulation over prolonged periods. However, there are open questions regarding adaptation to stimuli that are changing over time, interrupted, or repeated. Feature-specific adaptation to repeating stimuli has been shown to occur as early as primary visual cortex (V1), but there is also evidence for more generalized, fatigue-like adaptation that might occur at an earlier stage of processing. Here, we show adaptation in the lateral geniculate nucleus (LGN) of awake, fixating monkeys following brief (1 s) exposure to repeated cycles of a 4-Hz drifting grating. We examined the relative change of each neuron's response across successive (repeated) grating cycles. We found that neurons from all cell classes (parvocellular, magnocellular, and koniocellular) showed significant adaptation. However, only magnocellular neurons showed adaptation when responses were averaged to a population response. In contrast to firing rates, response variability was largely unaffected. Finally, adaptation was comparable between monocular and binocular stimulation, suggesting that rapid LGN adaptation is monocular in nature.NEW & NOTEWORTHY Neural adaptation can be defined as reduction of spiking responses following repeated or prolonged stimulation. Adaptation helps adjust neural responsiveness to avoid saturation and has been suggested to improve perceptual selectivity, information transmission, and predictive coding. Here, we report rapid adaptation to repeated cycles of gratings drifting over the receptive field of neurons at the earliest site of postretinal processing, the lateral geniculate nucleus of the thalamus.
Collapse
Affiliation(s)
- Loïc Daumail
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Brock M Carlson
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Blake A Mitchell
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Michele A Cox
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States
| | - Jacob A Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Cortez Johnson
- Kaiser Permanente Bernard J. Tyson School of Medicine in Pasadena, Pasadena, California, United States
| | - Paul R Martin
- Save Sight Institute and Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank Tong
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Kacie Dougherty
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States
| |
Collapse
|
7
|
Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J, Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat Commun 2023; 14:2999. [PMID: 37225702 DOI: 10.1038/s41467-023-38798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.
Collapse
Affiliation(s)
- Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ross Folkard
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Antonio J Gonzalez
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Burghardt
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sailaja Antharvedi-Goda
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Emilio Isaías-Camacho
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sanjeev Kaushalya
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
8
|
Reynaert B, Morales C, Mpodozis J, Letelier JC, Marín GJ. A blinking focal pattern of re-entrant activity in the avian tectum. Curr Biol 2023; 33:1-14.e4. [PMID: 36446352 DOI: 10.1016/j.cub.2022.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Re-entrant connections are inherent to nervous system organization; however, a comprehensive understanding of their operation is still lacking. In birds, topographically organized re-entrant signals, carried by axons from the nucleus-isthmi-parvocellularis (Ipc), are distinctly recorded as bursting discharges across the optic tectum (TeO). Here, we used up to 48 microelectrodes regularly spaced on the superficial tectal layers of anesthetized pigeons to characterize the spatial-temporal pattern of this axonal re-entrant activity in response to different visual stimulation. We found that a brief luminous spot triggered repetitive waves of bursting discharges that, appearing from initial sources, propagated horizontally to areas representing up to 28° of visual space, widely exceeding the area activated by the retinal fibers. In response to visual motion, successive burst waves started along and around the stimulated tectal path, tracking the stimulus in discontinuous steps. When two stimuli were presented, the burst-wave sources alternated between the activated tectal loci, as if only one source could be active at any given time. Because these re-entrant signals boost the retinal input to higher visual areas, their peculiar dynamics mimic a blinking "spotlight," similar to the internal searching mechanism classically used to explain spatial attention. Tectal re-entry from Ipc is thus highly structured and intrinsically discontinuous, and higher tectofugal areas, which lack retinotopic organization, will thus receive incoming visual activity in a sequential and piecemeal fashion. We anticipate that analogous re-entrant patterns, perhaps hidden in less bi-dimensionally organized topographies, may organize the flow of neural activity in other parts of the brain as well.
Collapse
Affiliation(s)
- Bryan Reynaert
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Juan Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile.
| |
Collapse
|
9
|
Moreno-Juan V, Aníbal-Martínez M, Herrero-Navarro Á, Valdeolmillos M, Martini FJ, López-Bendito G. Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus. Neuroscience 2023; 508:87-97. [PMID: 35878717 DOI: 10.1016/j.neuroscience.2022.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/17/2023]
Abstract
Sensory processing relies on the correct development of thalamocortical loops. Visual corticothalamic axons (CTAs) invade the dorsolateral geniculate nucleus (dLGN) of the thalamus in early postnatal mice according to a regulated program that includes activity-dependent mechanisms. Spontaneous retinal activity influences the thalamic incursion of CTAs, yet the perinatal thalamus also generates intrinsic patterns of spontaneous activity whose role in modulating afferent connectivity remains unknown. Here, we found that patterned spontaneous activity in the dLGN contributes to proper spatial and temporal innervation of CTAs. Disrupting patterned spontaneous activity in the dLGN delays corticogeniculate innervation under normal conditions and upon eye enucleation. The delayed innervation was evident throughout the first two postnatal weeks but resumes after eye-opening, suggesting that visual experience is necessary for the homeostatic recovery of corticogeniculate innervation.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Álvaro Herrero-Navarro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
10
|
Vasile F, Petreanu L. The perfect timing for multimodal integration is not the same in all L5 neurons. Neuron 2022; 110:3648-3650. [PMID: 36395750 DOI: 10.1016/j.neuron.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this issue of Neuron, Rindner et al. (2022) demonstrate that subclasses of layer 5 pyramidal neurons in the parietal cortex integrate inputs from frontal and sensory areas supralinearly and with distinct temporal dynamics.
Collapse
Affiliation(s)
- Flora Vasile
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
11
|
Shen S, Jiang X, Scala F, Fu J, Fahey P, Kobak D, Tan Z, Zhou N, Reimer J, Sinz F, Tolias AS. Distinct organization of two cortico-cortical feedback pathways. Nat Commun 2022; 13:6389. [PMID: 36302912 PMCID: PMC9613627 DOI: 10.1038/s41467-022-33883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase-followed by a prolonged decrease-in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations.
Collapse
Affiliation(s)
- Shan Shen
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Federico Scala
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Paul Fahey
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Zhenghuan Tan
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Reimer
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Fabian Sinz
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Andreas S Tolias
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computational Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
12
|
Dash S, Autio DM, Crandall SR. State-Dependent Modulation of Activity in Distinct Layer 6 Corticothalamic Neurons in Barrel Cortex of Awake Mice. J Neurosci 2022; 42:6551-6565. [PMID: 35863890 PMCID: PMC9410757 DOI: 10.1523/jneurosci.2219-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomic, physiological, and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior. To address this gap, we performed juxtacellular recordings from optogenetically identified CT neurons in whisker-related primary somatosensory cortex (wS1) of awake, head-fixed mice (either sex) free to rest quietly or self-initiate bouts of whisking and locomotion. We found a rich diversity of response profiles exhibited by CT cells. Their spiking patterns were either modulated by whisking-related behavior (∼28%) or not (∼72%). Whisking-responsive neurons exhibited both increases (activated-type) and decreases in firing rates (suppressed-type) that aligned with whisking onset better than locomotion. We also encountered responsive neurons with preceding modulations in firing rate before whisking onset. Overall, whisking better explained these changes in rates than overall changes in arousal. Whisking-unresponsive CT cells were generally quiet, with many having low spontaneous firing rates (sparse-type) and others being completely silent (silent-type). Remarkably, the sparse firing CT population preferentially spiked at the state transition point when pupil diameter constricted, and the mouse entered quiet wakefulness. Thus, our results demonstrate that L6 CT cells in wS1 show diverse spiking patterns, perhaps subserving distinct functional roles related to precisely timed responses during complex behaviors and transitions between discrete waking states.SIGNIFICANCE STATEMENT Layer 6 corticothalamic neurons provide a massive input to the sensory thalamus and local connectivity within cortex, but their role in thalamocortical processing remains unclear because of difficulty accessing and isolating their activity. Although several recent optogenetic studies reveal that the net influence of corticothalamic actions, suppression versus enhancement, depends critically on the rate these neurons fire, the factors that influence their spiking are poorly understood, particularly during wakefulness. Using the well-established Ntsr1-Cre line to target this elusive population in the whisker somatosensory cortex of awake mice, we found that corticothalamic neurons show diverse state-related responses and modulations in firing rate. These results suggest separate corticothalamic populations can differentially influence thalamocortical excitability during rapid state transitions in awake, behaving animals.
Collapse
Affiliation(s)
- Suryadeep Dash
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
13
|
Spacek MA, Crombie D, Bauer Y, Born G, Liu X, Katzner S, Busse L. Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN. eLife 2022; 11:e70469. [PMID: 35315775 PMCID: PMC9020820 DOI: 10.7554/elife.70469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus receive a substantial proportion of modulatory inputs from corticothalamic (CT) feedback and brain stem nuclei. Hypothesizing that these modulatory influences might be differentially engaged depending on the visual stimulus and behavioral state, we performed in vivo extracellular recordings from mouse dLGN while optogenetically suppressing CT feedback and monitoring behavioral state by locomotion and pupil dilation. For naturalistic movie clips, we found CT feedback to consistently increase dLGN response gain and promote tonic firing. In contrast, for gratings, CT feedback effects on firing rates were mixed. For both stimulus types, the neural signatures of CT feedback closely resembled those of behavioral state, yet effects of behavioral state on responses to movies persisted even when CT feedback was suppressed. We conclude that CT feedback modulates visual information on its way to cortex in a stimulus-dependent manner, but largely independently of behavioral state.
Collapse
Affiliation(s)
- Martin A Spacek
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
| | - Davide Crombie
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Yannik Bauer
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Gregory Born
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Xinyu Liu
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Graduate School of Systemic Neurosciences, LMU MunichMunichGermany
| | - Steffen Katzner
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU MunichPlanegg-MartinsriedGermany
- Bernstein Centre for Computational NeuroscienceMunichGermany
| |
Collapse
|
14
|
Morphological evidence for multiple distinct channels of corticogeniculate feedback originating in mid-level extrastriate visual areas of the ferret. Brain Struct Funct 2021; 226:2777-2791. [PMID: 34636984 PMCID: PMC9845063 DOI: 10.1007/s00429-021-02385-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/11/2021] [Indexed: 01/19/2023]
Abstract
Complementary reciprocal feedforward and feedback circuits connecting the visual thalamus with the visual cortex are essential for visual perception. These circuits predominantly connect primary and secondary visual cortex with the dorsal lateral geniculate nucleus (LGN). Although there are direct geniculocortical inputs to extrastriate visual cortex, whether reciprocal corticogeniculate neurons exist in extrastriate cortex is not known. Here we utilized virus-mediated retrograde tracing to reveal the presence of corticogeniculate neurons in three mid-level extrastriate visual cortical areas in ferrets: PMLS, PLLS, and 21a. We observed corticogeniculate neurons in all three extrastriate areas, although the density of virus-labeled corticogeniculate neurons in extrastriate cortex was an order of magnitude less than that in areas 17 and 18. A cluster analysis of morphological metrics quantified following reconstructions of the full dendritic arborizations of virus-labeled corticogeniculate neurons revealed six distinct cell types. Similar corticogeniculate cell types to those observed in areas 17 and 18 were also observed in PMLS, PLLS, and 21a. However, these unique cell types were not equally distributed across the three extrastriate areas. The majority of corticogeniculate neurons per cluster originated in a single area, suggesting unique parallel organizations for corticogeniculate feedback from each extrastriate area to the LGN. Together, our findings demonstrate direct feedback connections from mid-level extrastriate visual cortex to the LGN, supporting complementary reciprocal circuits at multiple processing stages along the visual hierarchy. Importantly, direct reciprocal connections between the LGN and extrastriate cortex, that bypass V1, could provide a substrate for residual vision following V1 damage.
Collapse
|
15
|
Corticothalamic feedback sculpts visual spatial integration in mouse thalamus. Nat Neurosci 2021; 24:1711-1720. [PMID: 34764474 DOI: 10.1038/s41593-021-00943-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
En route from the retina to the cortex, visual information passes through the dorsolateral geniculate nucleus (dLGN) of the thalamus, where extensive corticothalamic (CT) feedback has been suggested to modulate spatial processing. How this modulation arises from direct excitatory and indirect inhibitory CT feedback pathways remains enigmatic. Here, we show that in awake mice, retinotopically organized cortical feedback sharpens receptive fields (RFs) and increases surround suppression in the dLGN. Guided by a network model indicating that widespread inhibitory CT feedback is necessary to reproduce these effects, we targeted the visual sector of the thalamic reticular nucleus (visTRN) for recordings. We found that visTRN neurons have large RFs, show little surround suppression and exhibit strong feedback-dependent responses to large stimuli. These features make them an ideal candidate for mediating feedback-enhanced surround suppression in the dLGN. We conclude that cortical feedback sculpts spatial integration in the dLGN, likely via recruitment of neurons in the visTRN.
Collapse
|
16
|
Rapid and Bihemispheric Reorganization of Neuronal Activity in Premotor Cortex after Brain Injury. J Neurosci 2021; 41:9112-9128. [PMID: 34556488 PMCID: PMC8570830 DOI: 10.1523/jneurosci.0196-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Brain injuries cause hemodynamic changes in several distant, spared areas from the lesion. Our objective was to better understand the neuronal correlates of this reorganization in awake, behaving female monkeys. We used reversible inactivation techniques to “injure” the primary motor cortex, while continuously recording neuronal activity of the ventral premotor cortex in the two hemispheres, before and after the onset of behavioral impairments. Inactivation rapidly induced profound alterations of neuronal discharges that were heterogeneous within each and across the two hemispheres, occurred during movements of either the affected or nonaffected arm, and varied during different phases of grasping. Our results support that extensive, and much more complex than expected, neuronal reorganization takes place in spared areas of the bihemispheric cortical network involved in the control of hand movements. This broad pattern of reorganization offers potential targets that should be considered for the development of neuromodulation protocols applied early after brain injury. SIGNIFICANCE STATEMENT It is well known that brain injuries cause changes in several distant, spared areas of the network, often in the premotor cortex. This reorganization is greater early after the injury and the magnitude of early changes correlates with impairments. However, studies to date have used noninvasive brain imaging approaches or have been conducted in sedated animals. Therefore, we do not know how brain injuries specifically affect the activity of neurons during the generation of movements. Our study clearly shows how a lesion rapidly impacts neurons in the premotor cortex of both hemispheres. A better understanding of these complex changes can help formulate hypotheses for the development of new treatments that specifically target neuronal reorganization induced by lesions in the brain.
Collapse
|
17
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Delineating the organization of projection neuron subsets in primary visual cortex with multiple fluorescent rabies virus tracing. Brain Struct Funct 2021; 226:951-961. [PMID: 33710409 DOI: 10.1007/s00429-021-02250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The impressive functions of the brain rely on an extensive connectivity matrix between specific neurons, the architecture of which is frequently characterized by one brain nucleus/region connecting to multiple targets, either via collaterals of the same projection neuron or several, differentially specified neurons. Delineating the fine architecture of projection neuron subsets in a specific brain region could greatly facilitate its circuit, computational, and functional resolution. Here, we developed multiple fluorescent rabies viruses (RV) to delineate the fine organization of corticothalamic projection neuron subsets in the primary visual cortex (V1). By simultaneously retrograde labeling multiple distinct subsets of corticothalamic projection neurons in V1 from their target nuclei in thalamus (dLGN, LP, LD), we observed that V1-dLGN corticothalamic projection neurons were densely concentrated in layer VI, except for several sparsely scattered neurons in layer V, while V1-LP and V1-LD corticothalamic projection neurons were localized to both layers V and VI. Meanwhile, we observed a fraction of V1 corticothalamic projection neurons targeting two thalamic nuclei, which was further confirmed by fMOST whole-brain imaging. The multiple fluorescent RV tracing tools can be extensively applied to resolve the architecture of projection neuron subsets in certain brain regions, with a strong potential to delineate the computational and functional organization of these brain regions.
Collapse
|
19
|
Abstract
The physiological response properties of neurons in the visual system are inherited mainly from feedforward inputs. Interestingly, feedback inputs often outnumber feedforward inputs. Although they are numerous, feedback connections are weaker, slower, and considered to be modulatory, in contrast to fast, high-efficacy feedforward connections. Accordingly, the functional role of feedback in visual processing has remained a fundamental mystery in vision science. At the core of this mystery are questions about whether feedback circuits regulate spatial receptive field properties versus temporal responses among target neurons, or whether feedback serves a more global role in arousal or attention. These proposed functions are not mutually exclusive, and there is compelling evidence to support multiple functional roles for feedback. In this review, the role of feedback in vision will be explored mainly from the perspective of corticothalamic feedback. Further generalized principles of feedback applicable to corticocortical connections will also be considered.
Collapse
Affiliation(s)
- Farran Briggs
- Departments of Neuroscience and Brain and Cognitive Sciences, Del Monte Institute for Neuroscience, and Center for Visual Science, University of Rochester, Rochester, New York 14642, USA;
| |
Collapse
|
20
|
Augustinaite S, Kuhn B. Complementary Ca 2+ Activity of Sensory Activated and Suppressed Layer 6 Corticothalamic Neurons Reflects Behavioral State. Curr Biol 2020; 30:3945-3960.e5. [PMID: 32822605 DOI: 10.1016/j.cub.2020.07.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023]
Abstract
Layer 6 (L6) corticothalamic neurons project to thalamus, where they are thought to regulate sensory information transmission to cortex. However, the activity of these neurons during different behavioral states has not been described. Here, we imaged calcium changes in visual cortex L6 primary corticothalamic neurons with two-photon microscopy in head-fixed mice in response to passive viewing during a range of behavioral states, from locomotion to sleep. In addition to a substantial fraction of quiet neurons, we found sensory-activated and suppressed neurons, comprising two functionally distinct L6 feedback channels. Quiet neurons could be dynamically recruited to one or another functional channel, and the opposite, functional neurons could become quiet under different stimulation conditions or behavior states. The state dependence of neuronal activity was heterogeneous with respect to locomotion or level of alertness, although the average activity was largest during highest vigilance within populations of functional neurons. Interestingly, complementary activity of these distinct populations kept the overall corticothalamic feedback relatively constant during any given behavioral state. Thereby, in addition to sensory and non-sensory information, a constant activity level characteristic of behavioral state is conveyed to thalamus, where it can regulate signal transmission from the periphery to cortex.
Collapse
Affiliation(s)
- Sigita Augustinaite
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan.
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan.
| |
Collapse
|
21
|
Murphy AJ, Hasse JM, Briggs F. Physiological characterization of a rare subpopulation of doublet-spiking neurons in the ferret lateral geniculate nucleus. J Neurophysiol 2020; 124:432-442. [PMID: 32667229 DOI: 10.1152/jn.00191.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interest in exploring homologies in the early visual pathways of rodents, carnivores, and primates has recently grown. Retinas of these species contain morphologically and physiologically heterogeneous retinal ganglion cells that form the basis for parallel visual information processing streams. Whether rare retinal ganglion cells with unusual visual response properties in carnivores and primates project to the visual thalamus and drive unusual visual responses among thalamic relay neurons is poorly understood. We surveyed neurophysiological responses among hundreds of lateral geniculate nucleus (LGN) neurons in ferrets and observed a novel subpopulation of LGN neurons displaying doublet-spiking waveforms. Some visual response properties of doublet-spiking LGN neurons, like contrast and temporal frequency tuning, were intermediate to those of X and Y LGN neurons. Interestingly, most doublet-spiking LGN neurons were tuned for orientation and displayed direction selectivity for horizontal motion. Spatiotemporal receptive fields of doublet-spiking neurons were diverse and included center/surround organization, On/Off responses, and elongated separate On and Off subregions. Optogenetic activation of corticogeniculate feedback did not alter the tuning or spatiotemporal receptive fields of doublet-spiking neurons, suggesting that their unusual tuning properties were inherited from retinal inputs. The doublet-spiking LGN neurons were found throughout the depth of LGN recording penetrations. Together these findings suggest that while extremely rare (<2% of recorded LGN neurons), unique subpopulations of LGN neurons in carnivores receive retinal inputs that confer them with nonstandard visual response properties like direction selectivity. These results suggest that neuronal circuits for nonstandard visual computations are common across a variety of species, even though their proportions vary.NEW & NOTEWORTHY Interest in visual system homologies across species has recently increased. Across species, retinas contain diverse retinal ganglion cells including cells with unusual visual response properties. It is unclear whether rare retinal ganglion cells in carnivores project to and drive similarly unique visual responses in the visual thalamus. We discovered a rare subpopulation of thalamic neurons defined by unique spike shape and visual response properties, suggesting that nonstandard visual computations are common to many species.
Collapse
Affiliation(s)
- Allison J Murphy
- Neuroscience Graduate Program, University of Rochester, Rochester, New York.,Center for Visual Science, University of Rochester, Rochester, New York
| | - J Michael Hasse
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Center for Neural Science, New York University, New York, New York
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, New York.,Center for Visual Science, University of Rochester, Rochester, New York.,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York
| |
Collapse
|
22
|
Murphy AJ, Shaw L, Hasse JM, Goris RLT, Briggs F. Optogenetic activation of corticogeniculate feedback stabilizes response gain and increases information coding in LGN neurons. J Comput Neurosci 2020; 49:259-271. [PMID: 32632511 DOI: 10.1007/s10827-020-00754-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
In spite of their anatomical robustness, it has been difficult to establish the functional role of corticogeniculate circuits connecting primary visual cortex with the lateral geniculate nucleus of the thalamus (LGN) in the feedback direction. Growing evidence suggests that corticogeniculate feedback does not directly shape the spatial receptive field properties of LGN neurons, but rather regulates the timing and precision of LGN responses and the information coding capacity of LGN neurons. We propose that corticogeniculate feedback specifically stabilizes the response gain of LGN neurons, thereby increasing their information coding capacity. Inspired by early work by McClurkin et al. (1994), we manipulated the activity of corticogeniculate neurons to test this hypothesis. We used optogenetic methods to selectively and reversibly enhance the activity of corticogeniculate neurons in anesthetized ferrets while recording responses of LGN neurons to drifting gratings and white noise stimuli. We found that optogenetic activation of corticogeniculate feedback systematically reduced LGN gain variability and increased information coding capacity among LGN neurons. Optogenetic activation of corticogeniculate neurons generated similar increases in information encoded in LGN responses to drifting gratings and white noise stimuli. Together, these findings suggest that the influence of corticogeniculate feedback on LGN response precision and information coding capacity could be mediated through reductions in gain variability.
Collapse
Affiliation(s)
- Allison J Murphy
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA.,Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
| | - Luke Shaw
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA
| | - J Michael Hasse
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, 601 Elmwood Ave., Box 603, Rochester, NY, 14642, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Robbe L T Goris
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.,Department of Psychology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA. .,Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA. .,Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, 601 Elmwood Ave., Box 603, Rochester, NY, 14642, USA. .,Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY, 14642, USA. .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
23
|
Context-dependent and dynamic functional influence of corticothalamic pathways to first- and higher-order visual thalamus. Proc Natl Acad Sci U S A 2020; 117:13066-13077. [PMID: 32461374 DOI: 10.1073/pnas.2002080117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Layer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from the primary visual cortex to the dorsolateral geniculate nucleus (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10 Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to the dorsolateral geniculate nucleus and pulvinar, as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.
Collapse
|
24
|
Orlowska-Feuer P, Smyk MK, Palus-Chramiec K, Dyl K, Lewandowski MH. Orexin A as a modulator of dorsal lateral geniculate neuronal activity: a comprehensive electrophysiological study on adult rats. Sci Rep 2019; 9:16729. [PMID: 31723155 PMCID: PMC6853907 DOI: 10.1038/s41598-019-53012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Orexins (OXA, OXB) are hypothalamic peptides playing crucial roles in arousal, feeding, social and reward-related behaviours. A recent study on juvenile rats suggested their involvement in vision modulation due to their direct action on dorsal lateral geniculate (dLGN) neurons. The present study aimed to verify whether a similar action of OXA can be observed in adulthood. Thus, in vivo and in vitro electrophysiological recordings on adult Wistar rats across light-dark and cortical cycles were conducted under urethane anaesthesia. OXA influenced ~28% of dLGN neurons recorded in vivo by either excitation or suppression of neuronal firing. OXA-responsive neurons did not show any spatial distribution nor represent a coherent group of dLGN cells, and responded to OXA similarly across the light-dark cycle. Interestingly, some OXA-responsive neurons worked in a cortical state-dependent manner, especially during the dark phase, and 'preferred' cortical activation over slow-wave activity induced by urethane. The corresponding patch clamp study confirmed these results by showing that < 20% of dLGN neurons were excited by OXA under both light regimes. The results suggest that OXA is involved in the development of the visual system rather than in visual processes and further implicate OXA in the mediation of circadian and arousal-related activity.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland.
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| | - Magdalena Kinga Smyk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Dyl
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
25
|
Modulation of Spontaneous and Light-Induced Activity in the Rat Dorsal Lateral Geniculate Nucleus by General Brain State Alterations under Urethane Anesthesia. Neuroscience 2019; 413:279-293. [DOI: 10.1016/j.neuroscience.2019.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
|
26
|
Chevée M, Robertson JDJ, Cannon GH, Brown SP, Goff LA. Variation in Activity State, Axonal Projection, and Position Define the Transcriptional Identity of Individual Neocortical Projection Neurons. Cell Rep 2019; 22:441-455. [PMID: 29320739 DOI: 10.1016/j.celrep.2017.12.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Single-cell RNA sequencing has generated catalogs of transcriptionally defined neuronal subtypes of the brain. However, the cellular processes that contribute to neuronal subtype specification and transcriptional heterogeneity remain unclear. By comparing the gene expression profiles of single layer 6 corticothalamic neurons in somatosensory cortex, we show that transcriptional subtypes primarily reflect axonal projection pattern, laminar position within the cortex, and neuronal activity state. Pseudotemporal ordering of 1,023 cellular responses to sensory manipulation demonstrates that changes in expression of activity-induced genes both reinforced cell-type identity and contributed to increased transcriptional heterogeneity within each cell type. This is due to cell-type biased choices of transcriptional states following manipulation of neuronal activity. These results reveal that axonal projection pattern, laminar position, and activity state define significant axes of variation that contribute both to the transcriptional identity of individual neurons and to the transcriptional heterogeneity within each neuronal subtype.
Collapse
Affiliation(s)
- Maxime Chevée
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Johanna De Jong Robertson
- Human Genetics Training Program, McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle Heather Cannon
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solange Pezon Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Loyal Andrew Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Mobarhan MH, Halnes G, Martínez-Cañada P, Hafting T, Fyhn M, Einevoll GT. Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spatiotemporal response properties of relay cells. PLoS Comput Biol 2018; 14:e1006156. [PMID: 29771919 PMCID: PMC5976212 DOI: 10.1371/journal.pcbi.1006156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/30/2018] [Accepted: 04/23/2018] [Indexed: 12/01/2022] Open
Abstract
Visually evoked signals in the retina pass through the dorsal geniculate nucleus (dLGN) on the way to the visual cortex. This is however not a simple feedforward flow of information: there is a significant feedback from cortical cells back to both relay cells and interneurons in the dLGN. Despite four decades of experimental and theoretical studies, the functional role of this feedback is still debated. Here we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. For this model the responses are found by direct evaluation of two- or three-dimensional integrals allowing for fast and comprehensive studies of putative effects of different candidate organizations of the cortical feedback. Our analysis identifies a special mixed configuration of excitatory and inhibitory cortical feedback which seems to best account for available experimental data. This configuration consists of (i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with (ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the excitatory/inhibitory ON-ON connections are accompanied respectively by inhibitory/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The recent development of optogenetic and pharmacogenetic methods has provided new tools for more precise manipulation and investigation of the thalamocortical circuit, in particular for mice. Such data will expectedly allow the eDOG model to be better constrained by data from specific animal model systems than has been possible until now for cat. We have therefore made the Python tool pyLGN which allows for easy adaptation of the eDOG model to new situations. On route from the retina to primary visual cortex, visually evoked signals have to pass through the dorsal lateral geniculate nucleus (dLGN). However, this is not an exclusive feedforward flow of information as feedback exists from neurons in the cortex back to both relay cells and interneurons in the dLGN. The functional role of this feedback remains mostly unresolved. Here, we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. Our analysis indicates that a particular mix of excitatory and inhibitory cortical feedback agrees best with available experimental observations. In this configuration ON-center relay cells receive both excitatory and (indirect) inhibitory feedback from ON-center cortical cells (ON-ON feedback) where the excitatory feedback is fast and spatially narrow while the inhibitory feedback is slow and spatially widespread. In addition to the ON-ON feedback, the connections are accompanied by OFF-ON connections following a so-called phase-reversed (push-pull) arrangement. To facilitate further applications of the model, we have made the Python tool pyLGN which allows for easy modification and evaluation of the a priori quite general eDOG model to new situations.
Collapse
Affiliation(s)
- Milad Hobbi Mobarhan
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Geir Halnes
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Pablo Martínez-Cañada
- Centro de Investigación en Tecnologías de la Información y de las Comunicaciones (CITIC), University of Granada, Granada, Spain
| | - Torkel Hafting
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Gaute T. Einevoll
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
28
|
Hasse JM, Bragg EM, Murphy AJ, Briggs F. Morphological heterogeneity among corticogeniculate neurons in ferrets: quantification and comparison with a previous report in macaque monkeys. J Comp Neurol 2018; 527:546-557. [PMID: 29664120 DOI: 10.1002/cne.24451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022]
Abstract
The corticogeniculate (CG) pathway links the visual cortex with the lateral geniculate nucleus (LGN) of the thalamus and is the first feedback connection in the mammalian visual system. Whether functional connections between CG neurons and LGN relay neurons obey or ignore the separation of feedforward visual signals into parallel processing streams is not known. Accordingly, there is some debate about whether CG neurons are morphologically heterogeneous or homogenous. Here we characterized the morphology of CG neurons in the ferret, a visual carnivore with distinct feedforward parallel processing streams, and compared the morphology of ferret CG neurons with CG neuronal morphology previously described in macaque monkeys [Briggs et al. (2016) Neuron, 90, 388]. We used a G-deleted rabies virus as a retrograde tracer to label CG neurons in adult ferrets. We then reconstructed complete dendritic morphologies for a large sample of virus-labeled CG neurons. Quantification of CG morphology revealed three distinct CG neuronal subtypes with striking similarities to the CG neuronal subtypes observed in macaques. These findings suggest that CG neurons may be morphologically diverse in a variety of highly visual mammals in which feedforward visual pathways are organized into parallel processing streams. Accordingly, these results provide support for the notion that CG feedback is functionally parallel stream-specific in ferrets and macaques.
Collapse
Affiliation(s)
- J Michael Hasse
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Center for Visual Science, University of Rochester, Rochester, New York
| | - Elise M Bragg
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Allison J Murphy
- Neuroscience Graduate Program, University of Rochester School of Medicine, Rochester, New York
| | - Farran Briggs
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience, University of Rochester School of Medicine, Rochester, New York.,Center for Visual Science, University of Rochester, Rochester, New York
| |
Collapse
|