1
|
Li B, Srivastava S, Shaikh M, Mereddy G, Garcia MR, Shah A, Ofori-Anyinam N, Chu T, Cheney N, Yang JH. Bioenergetic stress potentiates antimicrobial resistance and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603336. [PMID: 39026737 PMCID: PMC11257553 DOI: 10.1101/2024.07.12.603336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Antimicrobial resistance (AMR) is a global health crisis and there is an urgent need to better understand AMR mechanisms. Antibiotic treatment alters several aspects of bacterial physiology, including increased ATP utilization, carbon metabolism, and reactive oxygen species (ROS) formation. However, how the "bioenergetic stress" induced by increased ATP utilization affects treatment outcomes is unknown. Here we utilized a synthetic biology approach to study the direct effects of bioenergetic stress on antibiotic efficacy. We engineered a genetic system that constitutively hydrolyzes ATP or NADH in Escherichia coli. We found that bioenergetic stress potentiates AMR evolution via enhanced ROS production, mutagenic break repair, and transcription-coupled repair. We also find that bioenergetic stress potentiates antimicrobial persistence via potentiated stringent response activation. We propose a unifying model that antibiotic-induced antimicrobial resistance and persistence is caused by antibiotic-induced. This has important implications for preventing or curbing the spread of AMR infections.
Collapse
|
2
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, DuMont AL, Zwack EE, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. eLife 2024; 12:RP89098. [PMID: 38687677 PMCID: PMC11060713 DOI: 10.7554/elife.89098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andrew I Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Ashley L DuMont
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Erin E Zwack
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Robert J Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Theodora K Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of MedicineNew YorkUnited States
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andreas F Haag
- School of Medicine, University of St AndrewsSt AndrewsUnited Kingdom
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory A Wasserman
- Department of Surgery, Northwell Health Lenox Hill HospitalNew YorkUnited States
| | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of PittsburghPittsburghUnited States
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Carla R Nowosad
- Department of Pathology, NYU Grossman School of MedicineNew YorkUnited States
| | - Desmond S Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers UniversityCamdenUnited States
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen UniversityXiamenChina
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers UniversityNew YprkUnited States
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers UniversityNewarkUnited States
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
3
|
Bombaywala S, Bajaj A, Dafale NA. Deterministic effect of oxygen level variation on shaping antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133047. [PMID: 38000281 DOI: 10.1016/j.jhazmat.2023.133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L-1), normoxic (2-4 mg L-1), and hypoxic (0.5-1 mg L-1) conditions using lab-scale bioreactor. Composite inoculums in the reactor were designed to represent comprehensive microbial community and AR profile from selected activated sludge. RT-qPCR and metagenomic analysis showed an increase in ARG count (100.98 ppm) with enrichment of multidrug efflux pumps (acrAB, mexAB) in hyperoxic condition. Conversely, total ARGs decreased (0.11 ppm) under hypoxic condition marked by a major decline in int1 abundance. Prevalence of global priority pathogens increased in hyperoxic (22.5%), compared to hypoxic (0.9%) wherein major decrease were observed in Pseudomonas, Shigella, and Borrelia. The study observed an increase in superoxide dismutase (sodA, sodB), DNA repair genes (nfo, polA, recA, recB), and ROS (10.4 µmol L-1) in adapted biomass with spiked antibiotics. This suggests oxidative damage that facilitates stress-induced mutagenesis providing evidence for observed hyperoxic enrichment of ARGs. Moreover, predominance of catalase (katE, katG) likely limit oxidative damage that deplete ARG breeding in hypoxic condition. The study proposes a link between oxygen levels and AR development that offers insights into mitigation and intervention of AR by controlling oxygen-related stress and strategic selection of bacterial communities.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay Bajaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, Dumont A, Zwack E, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544038. [PMID: 37333372 PMCID: PMC10274873 DOI: 10.1101/2023.06.08.544038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andrew I. Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Ashley Dumont
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodora K. Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of Medicine, New York, NY, USA
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Carla R. Nowosad
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Desmond S. Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Wang Y, Fu H, Shi XJ, Zhao GP, Lyu LD. Genome-wide screen reveals cellular functions that counteract rifampicin lethality in Escherichia coli. Microbiol Spectr 2024; 12:e0289523. [PMID: 38054714 PMCID: PMC10782999 DOI: 10.1128/spectrum.02895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rifamycins are a group of antibiotics with a wide antibacterial spectrum. Although the binding target of rifamycin has been well characterized, the mechanisms underlying the discrepant killing efficacy between gram-negative and gram-positive bacteria remain poorly understood. Using a high-throughput screen combined with targeted gene knockouts in the gram-negative model organism Escherichia coli, we established that rifampicin efficacy is strongly dependent on several cellular pathways, including iron acquisition, DNA repair, aerobic respiration, and carbon metabolism. In addition, we provide evidence that these pathways modulate rifampicin efficacy in a manner distinct from redox-related killing. Our findings provide insights into the mechanism of rifamycin efficacy and may aid in the development of new antimicrobial adjuvants.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Fu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jie Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission, School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
6
|
Fan L, Pan Z, Zhong Y, Guo J, Liao X, Pang R, Xu Q, Ye G, Su Y. L-glutamine sensitizes Gram-positive-resistant bacteria to gentamicin killing. Microbiol Spectr 2023; 11:e0161923. [PMID: 37882580 PMCID: PMC10715002 DOI: 10.1128/spectrum.01619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) infection severely threatens human health due to high morbidity and mortality; it is urgent to develop novel strategies to tackle this problem. Metabolites belong to antibiotic adjuvants which improve the effect of antibiotics. Despite reports of L-glutamine being applied in antibiotic adjuvant for Gram-negative bacteria, how L-glutamine affects antibiotics against Gram-positive-resistant bacteria is still unclear. In this study, L-glutamine increases the antibacterial effect of gentamicin on MRSA, and it links to membrane permeability and pH gradient (ΔpH), resulting in uptake of more gentamicin. Of great interest, reduced reactive oxygen species (ROS) by glutathione was found under L-glutamine treatment; USA300 becomes sensitive again to gentamicin. This study not only offers deep understanding on ΔpH and ROS on bacterial resistance but also provides potential treatment solutions for targeting MRSA infection.
Collapse
Affiliation(s)
- Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Xu Liao
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingqiang Xu
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology,Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Hong S, Su S, Gao Q, Chen M, Xiao L, Cui R, Guo Y, Xue Y, Wang D, Niu J, Huang H, Zhao X. Enhancement of β-Lactam-Mediated Killing of Gram-Negative Bacteria by Lysine Hydrochloride. Microbiol Spectr 2023; 11:e0119823. [PMID: 37310274 PMCID: PMC10434284 DOI: 10.1128/spectrum.01198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Widespread bacterial resistance among Gram-negative bacteria is rapidly depleting our antimicrobial arsenal. Adjuvants that enhance the bactericidal activity of existing antibiotics provide a way to alleviate the resistance crisis, as new antimicrobials are becoming increasingly difficult to develop. The present work with Escherichia coli revealed that neutralized lysine (lysine hydrochloride) enhances the bactericidal activity of β-lactams in addition to increasing bacteriostatic activity. When combined, lysine hydrochloride and β-lactam increased expression of genes involved in the tricarboxylic acid (TCA) cycle and raised reactive oxygen species (ROS) levels; as expected, agents known to mitigate bactericidal effects of ROS reduced lethality from the combination treatment. Lysine hydrochloride had no enhancing effect on the lethal action of fluoroquinolones or aminoglycosides. Characterization of a tolerant mutant indicated involvement of the FtsH/HflkC membrane-embedded protease complex in lethality enhancement. The tolerant mutant, which carried a V86F substitution in FtsH, exhibited decreased lipopolysaccharide levels, reduced expression of TCA cycle genes, and reduced levels of ROS. Lethality enhancement by lysine hydrochloride was abolished by treating cultures with Ca2+ or Mg2+, cations known to stabilize the outer membrane. These data, plus damage observed by scanning electron microscopy, indicate that lysine stimulates β-lactam lethality by disrupting the outer membrane. Lethality enhancement of β-lactams by lysine hydrochloride was also observed with Acinetobacter baumannii and Pseudomonas aeruginosa, thereby suggesting that the phenomenon is common among Gram-negative bacteria. Arginine hydrochloride behaved in a similar way. Overall, the combination of lysine or arginine hydrochloride and β-lactam offers a new way to increase β-lactam lethality with Gram-negative pathogens. IMPORTANCE Antibiotic resistance among Gram-negative pathogens is a serious medical problem. The present work describes a new study in which a nontoxic nutrient increases the lethal action of clinically important β-lactams. Elevated lethality is expected to reduce the emergence of resistant mutants. The effects were observed with significant pathogens (Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa), indicating widespread applicability. Examination of tolerant mutants and biochemical measurements revealed involvement of endogenous reactive oxygen species in response to outer membrane perturbation. These lysine hydrochloride-β-lactam data support the hypothesis that lethal stressors can stimulate the accumulation of ROS. Genetic and biochemical work also revealed how an alteration in a membrane protease, FtsH, abolishes lysine stimulation of β-lactam lethality. Overall, the work presents a method for antimicrobial enhancement that should be safe, easy to administer, and likely to apply to other nutrients, such as arginine.
Collapse
Affiliation(s)
- Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Shaopeng Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Qiong Gao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Lisheng Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Runbo Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yinli Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
8
|
Soares JM, Guimarães FEG, Yakovlev VV, Bagnato VS, Blanco KC. Physicochemical mechanisms of bacterial response in the photodynamic potentiation of antibiotic effects. Sci Rep 2022; 12:21146. [PMID: 36476814 PMCID: PMC9729225 DOI: 10.1038/s41598-022-25546-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic failures in treatments of bacterial infections from resistant strains have been a global health concern, mainly due to the proportions they can reach in the coming years. Making microorganisms susceptible to existing antibiotics is an alternative to solve this problem. This study applies a physicochemical method to the standard treatment for modulating the synergistic response towards circumventing the mechanisms of bacterial resistance. Photodynamic inactivation protocols (curcumina 10 µM, 10 J/cm2) and their cellular behavior in the presence of amoxicillin, erythromycin, and gentamicin antibiotics were analyzed from the dynamics of bacterial interaction of a molecule that produces only toxic effects after the absorption of a specific wavelength of light. In addition to bacterial viability, the interaction of curcumin, antibiotics and bacteria were imaged and chemically analyzed using confocal fluorescence microscopy and Fourier-transform infrared spectroscopy (FTIR). The interaction between therapies depended on the sequential order of application, metabolic activity, and binding of bacterial cell surface biomolecules. The results demonstrated a potentiating effect of the antibiotic with up to to 32-fold reduction in minimum inhibitory concentrations and mean reductions of 7 log CFU/ml by physicochemical action at bacterial level after the photodynamic treatment. The changes observed as a result of bacteria-antibiotic interactions, such as membrane permeabilization and increase in susceptibility, may be a possibility for solving the problem of microbial multidrug resistance.
Collapse
Affiliation(s)
- Jennifer M. Soares
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos, São Paulo, Brazil
| | - Francisco E. G. Guimarães
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos, São Paulo, Brazil
| | - Vladislav V. Yakovlev
- grid.264756.40000 0004 4687 2082Biomedical Engineering, Texas A&M University, College Station, TX USA
| | - Vanderlei S. Bagnato
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos, São Paulo, Brazil ,grid.264756.40000 0004 4687 2082Biomedical Engineering, Texas A&M University, College Station, TX USA
| | - Kate C. Blanco
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos, São Paulo, Brazil ,grid.264756.40000 0004 4687 2082Biomedical Engineering, Texas A&M University, College Station, TX USA
| |
Collapse
|
9
|
Singh A, Zhao X, Drlica K. Fluoroquinolone heteroresistance, antimicrobial tolerance, and lethality enhancement. Front Cell Infect Microbiol 2022; 12:938032. [PMID: 36250047 PMCID: PMC9559723 DOI: 10.3389/fcimb.2022.938032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
With tuberculosis, the emergence of fluoroquinolone resistance erodes the ability of treatment to interrupt the progression of MDR-TB to XDR-TB. One way to reduce the emergence of resistance is to identify heteroresistant infections in which subpopulations of resistant mutants are likely to expand and make the infections fully resistant: treatment modification can be instituted to suppress mutant enrichment. Rapid DNA-based detection methods exploit the finding that fluoroquinolone-resistant substitutions occur largely in a few codons of DNA gyrase. A second approach for restricting the emergence of resistance involves understanding fluoroquinolone lethality through studies of antimicrobial tolerance, a condition in which bacteria fail to be killed even though their growth is blocked by lethal agents. Studies with Escherichia coli guide work with Mycobacterium tuberculosis. Lethal action, which is mechanistically distinct from blocking growth, is associated with a surge in respiration and reactive oxygen species (ROS). Mutations in carbohydrate metabolism that attenuate ROS accumulation create pan-tolerance to antimicrobials, disinfectants, and environmental stressors. These observations indicate the existence of a general death pathway with respect to stressors. M. tuberculosis displays a variation on the death pathway idea, as stress-induced ROS is generated by NADH-mediated reductive stress rather than by respiration. A third approach, which emerges from lethality studies, uses a small molecule, N-acetyl cysteine, to artificially increase respiration and additional ROS accumulation. That enhances moxifloxacin lethality with M. tuberculosis in culture, during infection of cultured macrophages, and with infection of mice. Addition of ROS stimulators to fluoroquinolone treatment of tuberculosis constitutes a new direction for suppressing the transition of MDR-TB to XDR-TB.
Collapse
Affiliation(s)
- Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- *Correspondence: Amit Singh, ; Karl Drlica,
| | - Xilin Zhao
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
- *Correspondence: Amit Singh, ; Karl Drlica,
| |
Collapse
|
10
|
Wong F, Stokes JM, Bening SC, Vidoudez C, Trauger SA, Collins JJ. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol Cell 2022; 82:3499-3512.e10. [PMID: 35973427 PMCID: PMC10149100 DOI: 10.1016/j.molcel.2022.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/19/2022] [Accepted: 07/17/2022] [Indexed: 01/21/2023]
Abstract
Understanding how bactericidal antibiotics kill bacteria remains an open question. Previous work has proposed that primary drug-target corruption leads to increased energetic demands, resulting in the generation of reactive metabolic byproducts (RMBs), particularly reactive oxygen species, that contribute to antibiotic-induced cell death. Studies have challenged this hypothesis by pointing to antibiotic lethality under anaerobic conditions. Here, we show that treatment of Escherichia coli with bactericidal antibiotics under anaerobic conditions leads to changes in the intracellular concentrations of central carbon metabolites, as well as the production of RMBs, particularly reactive electrophilic species (RES). We show that antibiotic treatment results in DNA double-strand breaks and membrane damage and demonstrate that antibiotic lethality under anaerobic conditions can be decreased by RMB scavengers, which reduce RES accumulation and mitigate associated macromolecular damage. This work indicates that RMBs, generated in response to antibiotic-induced energetic demands, contribute in part to antibiotic lethality under anaerobic conditions.
Collapse
Affiliation(s)
- Felix Wong
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan M Stokes
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah C Bening
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - James J Collins
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Cell Death in Escherichia coli: Incomplete Base Excision Repair under Depletion of DapB and Dxr Proteins. mBio 2022; 13:e0161122. [PMID: 35766402 PMCID: PMC9426502 DOI: 10.1128/mbio.01611-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The generation of reactive oxygen species (ROS) within the cell is a significantly shared aspect of bacterial cell death against different stress conditions. The main cell death mechanism due to the generation of reactive oxygen species is then the incomplete base excision repair (BER) in response to oxidized nucleotides. In their recent article in mBio, C. C. Gruber, V. M. P. Babu, K. Livingston, H. Joisher, and G. C. Walker (mBio 13[1]:e03756-21, 2022) report two new stress conditions regarding the depletion of DapB and Dxr, which indeed cause similar mechanisms for cell death. These two stress conditions trigger highly distinctive stress response mechanisms within the cell, but the ultimate cell death mechanism is a result of a shared process. These findings prove that the disturbance in the homeostasis of cells under a variety of different stresses initiates cell death mechanisms through the production of ROS, generation of 8-oxo-dG and the incomplete BER.
Collapse
|
12
|
Lobritz MA, Andrews IW, Braff D, Porter CBM, Gutierrez A, Furuta Y, Cortes LBG, Ferrante T, Bening SC, Wong F, Gruber C, Bakerlee C, Lambert G, Walker GC, Dwyer DJ, Collins JJ. Increased energy demand from anabolic-catabolic processes drives β-lactam antibiotic lethality. Cell Chem Biol 2022; 29:276-286.e4. [PMID: 34990601 PMCID: PMC8857051 DOI: 10.1016/j.chembiol.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
β-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that β-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by β-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the β-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for β-lactam antibiotic lethality.
Collapse
Affiliation(s)
- Michael A. Lobritz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA,Present address: Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland,These authors contributed equally
| | - Ian W. Andrews
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,These authors contributed equally
| | - Dana Braff
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA,Present address: GRO Biosciences, Cambridge, MA 02139, USA
| | - Caroline B. M. Porter
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Arnaud Gutierrez
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Present address: Institut Cochin, INSERM U1016 – CNRS UMR8104 – Université Paris Descartes, 75014 Paris, France
| | - Yoshikazu Furuta
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Present address: Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Louis B. G. Cortes
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sarah C. Bening
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Felix Wong
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Charley Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chris Bakerlee
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Guillaume Lambert
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel J. Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, Department of Biomedical Engineering, and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA,Corresponding authors: ,
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA,Lead contact,Corresponding authors: ,
| |
Collapse
|
13
|
DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus. DNA Repair (Amst) 2021; 105:103160. [PMID: 34192601 DOI: 10.1016/j.dnarep.2021.103160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
GO system is part of base excision DNA repair and is required for the correct repair of 8-oxoguanine (8-oxoG), one of the most abundant oxidative lesions. Due to the ability of 8-oxoG to mispair with A, this base is highly mutagenic, and its repair requires two enzymes: Fpg that removes 8-oxoG from 8-oxoG:C pairs, and MutY that excises the normal A from 8-oxoG:A mispairs. Here we characterize the properties of putative GO system DNA glycosylases from Staphylococcus aureus, an important human opportunistic pathogen that causes hospital infections and presents a serious health concern due to quick spread of antibiotic-resistant strains. In addition to Fpg and MutY from the reference NCTC 8325 strain (SauFpg1 and SauMutY), we have also studied an Fpg homolog from a multidrug-resistant C0673 isolate (SauFpg2), which is different from SauFpg1 in its sequence. Both SauFpg enzymes showed the highest activity at pH 7.0-9.0 and NaCl concentrations 25-75 mM (SauFpg1) or 50-100 mM (SauFpg2), whereas SauMutY was active at a broad pH range and had a salt optimum at ∼75 mM NaCl. Both SauFpg1 and SauFpg2 bound and cleaved duplexes containing 8-oxoG, 5-hydroxyuracil, 5,6-dihydrouracil or apurinic/apyrimidinic site paired with C, T, or G, but not with A. For SauFpg1 and SauFpg2, 8-oxoG was the best substrate tested, and 5,6-dihydrouracil was the worst one. SauMutY efficiently excised adenine from duplex substrates containing A:8-oxoG or A:G pairs. SauFpg enzymes were readily trapped on DNA by NaBH4 treatment, indicating formation of a Schiff base reaction intermediate. Surprisingly, SauMutY was also trapped significantly better than its E. coli homolog. All three S. aureus GO glycosylases drastically reduced spontaneous mutagenesis when expressed in an fpg mutY E. coli double mutant. Overall, we conclude that S. aureus possesses an active GO system, which could possibly be targeted for sensitization of this pathogen to oxidative stress.
Collapse
|
14
|
Synergistic Quinolone Sensitization by Targeting the recA SOS Response Gene and Oxidative Stress. Antimicrob Agents Chemother 2021; 65:AAC.02004-20. [PMID: 33526493 DOI: 10.1128/aac.02004-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Suppression of the recA SOS response gene and reactive oxygen species (ROS) overproduction have been shown, separately, to enhance fluoroquinolone activity and lethality. Their putative synergistic impact as a strategy to potentiate the efficacy of bactericidal antimicrobial agents such as fluoroquinolones is unknown. We generated Escherichia coli mutants that exhibited a suppressed ΔrecA gene in combination with inactivated ROS detoxification system genes (ΔsodA, ΔsodB, ΔkatG, ΔkatE, and ΔahpC) or inactivated oxidative stress regulator genes (ΔoxyR and ΔrpoS) to evaluate the interplay of both DNA repair and detoxification systems in drug response. Synergistic sensitization effects, ranging from 7.5- to 30-fold relative to the wild type, were observed with ciprofloxacin in double knockouts of recA and inactivated detoxification system genes. Compared to recA knockout, inactivation of an additional detoxification system gene reduced MIC values up to 8-fold. In growth curves, no growth was evident in mutants doubly deficient for recA gene and oxidative detoxification systems at subinhibitory concentrations of ciprofloxacin, in contrast to the recA-deficient strain. There was a marked reduction of viable bacteria in a short period of time when the recA gene and other detoxification system genes (katG, sodA, or ahpC) were inactivated (using absolute ciprofloxacin concentrations). At 4 h, a bactericidal effect of ciprofloxacin was observed for ΔkatG ΔrecA and ΔahpC ΔrecA double mutants compared to the single ΔrecA mutant (Δ3.4 log10 CFU/ml). Synergistic quinolone sensitization, by targeting the recA gene and oxidative detoxification stress systems, reinforces the role of both DNA repair systems and ROS in antibiotic-induced bacterial cell death, opening up a new pathway for antimicrobial sensitization.
Collapse
|
15
|
Abstract
Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic acids necessary for DNA replication and RNA transcription. Recent studies demonstrate that nucleotide metabolism also proactively contributes to antibiotic-induced lethality in bacterial pathogens and that disruptions to nucleotide metabolism contributes to antibiotic treatment failure in the clinic. As antimicrobial resistance continues to grow unchecked, new approaches are needed to study the molecular mechanisms responsible for antibiotic efficacy. Here we review emerging technologies poised to transform understanding into why antibiotics may fail in the clinic. We discuss how these technologies led to the discovery that nucleotide metabolism regulates antibiotic drug responses and why these are relevant to human infections. We highlight opportunities for how studies into nucleotide metabolism may enhance understanding of antibiotic failure mechanisms.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biology, Barnard College, New York, NY, United States.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States.,Data Science Institute, Columbia University, New York, NY, United States
| | - Jason H Yang
- Ruy V. Lourenço Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
16
|
Degradation of the Escherichia coli Essential Proteins DapB and Dxr Results in Oxidative Stress, which Contributes to Lethality through Incomplete Base Excision Repair. mBio 2021; 13:e0375621. [PMID: 35130721 PMCID: PMC8822343 DOI: 10.1128/mbio.03756-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various lethal stresses, including bactericidal antibiotics, can trigger the production of reactive oxygen species (ROS) that contribute to killing. Incomplete base excision repair (BER) of oxidized nucleotides, especially 8-oxo-dG, has been identified as a major component of ROS-induced lethality. However, the relative contributions of this pathway to death vary widely between stresses, due in part to poorly understood complex differences in the physiological changes caused by these stresses. To identify new lethal stresses that kill cells through this pathway, we screened an essential protein degradation library and found that depletion of either DapB or Dxr leads to cell death through incomplete BER; the contribution of this pathway to overall cell death is greater for DapB than for Dxr. Depletion of either protein generates oxidative stress, which increases incorporation of 8-oxo-dG into the genome. This oxidative stress is causally related to cell death, as plating on an antioxidant provided a protective effect. Moreover, incomplete BER was central to this cell death, as mutants lacking the key BER DNA glycosylases MutM and MutY were less susceptible, while overexpression of the nucleotide sanitizer MutT, which degrades 8-oxo-dGTP to prevent its incorporation, was protective. RNA sequencing of cells depleted of these proteins revealed widely different transcriptional responses to these stresses. Our discovery that oxidative stress-induced incomplete BER is highly dependent on the exact physiological changes that the cell experiences helps explain the past confusion that arose concerning the role of ROS in antibiotic lethality. IMPORTANCE Bacterial cell death is a poorly understood process. The generation of reactive oxygen species (ROS) is an apparently common response to challenges by a wide variety of lethal stresses, including bactericidal antibiotics. Incomplete BER of nucleotides damaged by these ROS, especially 8-oxo-dG, is a significant contributing factor to this lethality, but the levels of its contribution vary widely between different lethal stresses. A better understanding of the conditions that cause cells to die because of incomplete BER may lead to improved strategies for targeting this mode of death as an adjunct to antimicrobial therapy.
Collapse
|
17
|
Li H, Zhou X, Huang Y, Liao B, Cheng L, Ren B. Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Front Microbiol 2021; 11:622534. [PMID: 33613470 PMCID: PMC7889972 DOI: 10.3389/fmicb.2020.622534] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are attractive weapons in both antibiotic-mediated killing and host-mediated killing. However, the involvement of ROS in antibiotic-mediated killing and complexities in host environments challenge the paradigm. In the case of bacterial pathogens, the examples of some certain pathogens thriving under ROS conditions prompt us to focus on the adaption mechanism that pathogens evolve to cope with ROS. Based on these, we here summarized the mechanisms of ROS-mediated killing of either antibiotics or the host, the examples of bacterial adaption that successful pathogens evolved to defend or thrive under ROS conditions, and the potential side effects of ROS in pathogen clearance. A brief section for new antibacterial strategies centered around ROS was also addressed.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Drlica K, Zhao X. Bacterial death from treatment with fluoroquinolones and other lethal stressors. Expert Rev Anti Infect Ther 2020; 19:601-618. [PMID: 33081547 DOI: 10.1080/14787210.2021.1840353] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lethal stressors, including antimicrobials, kill bacteria in part through a metabolic response proposed to involve reactive oxygen species (ROS). The quinolone anti-bacterials have served as key experimental tools in developing this idea. AREAS COVERED Bacteriostatic and bactericidal action of quinolones are distinguished, with emphasis on the contribution of chromosome fragmentation and ROS accumulation to bacterial death. Action of non-quinolone antibacterials and non-antimicrobial stressors is described to provide a general framework for understanding stress-mediated, bacterial death. EXPERT OPINION Quinolones trap topoisomerases on DNA in reversible complexes that block DNA replication and bacterial growth. At elevated drug concentrations, DNA ends are released from topoisomerase-mediated constraint, leading to the idea that death arises from chromosome fragmentation. However, DNA ends also stimulate repair, which is energetically expensive. An incompletely understood metabolic shift occurs, and ROS accumulate. Even after quinolone removal, ROS continue to amplify, generating secondary and tertiary damage that overwhelms repair and causes death. Repair may also contribute to death directly via DNA breaks arising from incomplete base-excision repair of ROS-oxidized nucleotides. Remarkably, perturbations that interfere with ROS accumulation confer tolerance to many diverse lethal agents.
Collapse
Affiliation(s)
| | - Xilin Zhao
- Rutgers University, Newark, NJ, USA.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province, China
| |
Collapse
|
19
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
20
|
Lam PL, Wong RSM, Lam KH, Hung LK, Wong MM, Yung LH, Ho YW, Wong WY, Hau DKP, Gambari R, Chui CH. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem Biol Interact 2020; 320:109023. [PMID: 32097615 DOI: 10.1016/j.cbi.2020.109023] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/18/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023]
Abstract
Antimicrobial resistance remains a serious problem that results in high mortality and increased healthcare costs globally. One of the major issues is that resistant pathogens decrease the efficacy of conventional antimicrobials. Accordingly, development of novel antimicrobial agents and therapeutic strategies is urgently needed to overcome the challenge of antimicrobial resistance. A potential strategy is to kill pathogenic microorganisms via the formation of reactive oxygen species (ROS). ROS are defined as a number of highly reactive molecules that comprise molecular oxygen (O2), superoxide anion (O2•-), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH). ROS exhibit antimicrobial actions against a broad range of pathogens through the induction of oxidative stress, which is an imbalance between ROS and the ability of the antioxidant defence system to detoxify ROS. ROS-dependent oxidative stress can damage cellular macromolecules, including DNA, lipids and proteins. This article reviews the antimicrobial action of ROS, challenges to ROS hypothesis, work to solidify ROS-mediated antimicrobial lethality hypothesis, recent developments in antimicrobial agents using ROS as an antimicrobial strategy, safety concerns related to ROS, and future directions in ROS research.
Collapse
Affiliation(s)
- P-L Lam
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - R S-M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - K-H Lam
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - L-K Hung
- Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - M-M Wong
- Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - L-H Yung
- Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - Y-W Ho
- Allways Health Care Medical Centre, Tsuen Wan, Hong Kong, China
| | - W-Y Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - D K-P Hau
- One Health International Limited, Shatin, Hong Kong, China.
| | - R Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy.
| | - C-H Chui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China.
| |
Collapse
|
21
|
Abstract
Cells in all domains of life must translocate newly synthesized proteins both across membranes and into membranes. In eukaryotes, proteins are translocated into the lumen of the ER or the ER membrane. In prokaryotes, proteins are translocated into the cytoplasmic membrane or through the membrane into the periplasm for Gram-negative bacteria or the extracellular space for Gram-positive bacteria. Much of what we know about protein translocation was learned through genetic selections and screens utilizing lacZ gene fusions in Escherichia coli. This review covers the basic principles of protein translocation and how they were discovered and developed. In particular, we discuss how lacZ gene fusions and the phenotypes conferred were exploited to identify the genes involved in protein translocation and provide insights into their mechanisms of action. These approaches, which allowed the elucidation of processes that are conserved throughout the domains of life, illustrate the power of seemingly simple experiments.
Collapse
|
22
|
Zhao H, Sachla AJ, Helmann JD. Mutations of the Bacillus subtilis YidC1 (SpoIIIJ) insertase alleviate stress associated with σM-dependent membrane protein overproduction. PLoS Genet 2019; 15:e1008263. [PMID: 31626625 PMCID: PMC6827917 DOI: 10.1371/journal.pgen.1008263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
In Bacillus subtilis, the extracytoplasmic function σ factor σM regulates cell wall synthesis and is critical for intrinsic resistance to cell wall targeting antibiotics. The anti-σ factors YhdL and YhdK form a complex that restricts the basal activity of σM, and the absence of YhdL leads to runaway expression of the σM regulon and cell death. Here, we report that this lethality can be suppressed by gain-of-function mutations in yidC1 (spoIIIJ), which encodes the major YidC membrane protein insertase in B. subtilis. B. subtilis PY79 YidC1 (SpoIIIJ) contains a single amino acid substitution in a functionally important hydrophilic groove (Q140K), and this allele suppresses the lethality of high σM. Analysis of a library of YidC1 variants reveals that increased charge (+2 or +3) in the hydrophilic groove can compensate for high expression of the σM regulon. Derepression of the σM regulon induces secretion stress, oxidative stress and DNA damage responses, all of which can be alleviated by the YidC1Q140K substitution. We further show that the fitness defect caused by high σM activity is exacerbated in the absence of the SecDF protein translocase or σM-dependent induction of the Spx oxidative stress regulon. Conversely, cell growth is improved by mutation of specific σM-dependent promoters controlling operons encoding integral membrane proteins. Collectively, these results reveal how the σM regulon has evolved to up-regulate membrane-localized complexes involved in cell wall synthesis, and to simultaneously counter the resulting stresses imposed by regulon induction. Bacteria frequently produce antibiotics that inhibit the growth of competitors, and many naturally occurring antibiotics target cell wall synthesis. In Bacillus subtilis, the alternative σ factor σM is induced by cell wall antibiotics, and upregulates genes for peptidoglycan and cell envelope synthesis. However, dysregulation of the σM regulon, resulting from loss of the YhdL anti-σM protein, is lethal. We here identify charge variants of the YidC1 (SpoIIIJ) membrane protein insertase that suppress the lethal effects of high σM activity. Further analyses reveal that induction of the σM regulon leads to high level expression of membrane proteins that trigger envelope stress, and this stress is countered by specific genes in the σM regulon.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
23
|
Liu X, Zhang B, Sohal IS, Bello D, Chen H. Is "nano safe to eat or not"? A review of the state-of-the art in soft engineered nanoparticle (sENP) formulation and delivery in foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:299-335. [PMID: 31151727 DOI: 10.1016/bs.afnr.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With superior physicochemical properties, soft engineered nanoparticles (sENP) (protein, carbohydrate, lipids and other biomaterials) are widely used in foods. The preparation, functionalities, applications, transformations in gastrointestinal (GI) tract, and effects on gut microbiota of sENP directly incorporated for ingestion are reviewed herein. At the time of this review, there is no notable report of safety concerns of these nanomaterials found in the literature. Meanwhile, various beneficial effects have been demonstrated for the application of sENP. To address public perception and safety concerns of nanoscale materials in food, methodologies for evaluation of physiological effects of nanomaterials are reviewed. The combination of these complementary methods will be useful for the establishment of a comprehensive risk assessment system.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Boce Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States.
| | - Ikjot Singh Sohal
- Purdue University, Center for Cancer Research, West Lafayette, IN, United States
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States.
| | - Hongda Chen
- U.S. Department of Agriculture, National Institute of Food and Agriculture, Washington DC, United States.
| |
Collapse
|
24
|
Abstract
Antimicrobial efficacy, which is central to many aspects of medicine, is being rapidly eroded by bacterial resistance. Since new resistance can be induced by antimicrobial action, highly lethal agents that rapidly reduce bacterial burden during infection should help restrict the emergence of resistance. To improve lethal activity, recent work has focused on toxic reactive oxygen species (ROS) as part of the bactericidal activity of diverse antimicrobials. We report that when Escherichia coli was subjected to antimicrobial stress and the stressor was subsequently removed, both ROS accumulation and cell death continued to occur. Blocking ROS accumulation by exogenous mitigating agents slowed or inhibited poststressor death. Similar results were obtained with a temperature-sensitive mutational inhibition of DNA replication. Thus, bacteria exposed to lethal stressors may not die during treatment, as has long been thought; instead, death can occur after plating on drug-free agar due to poststress ROS-mediated toxicity. Examples are described in which (i) primary stress-mediated damage was insufficient to kill bacteria due to repair; (ii) ROS overcame repair (i.e., protection from anti-ROS agents was reduced by repair deficiencies); and (iii) killing was reduced by anti-oxidative stress genes acting before stress exposure. Enzymatic suppression of poststress ROS-mediated lethality by exogenous catalase supports a causal rather than a coincidental role for ROS in stress-mediated lethality, thereby countering challenges to ROS involvement in antimicrobial killing. We conclude that for a variety of stressors, lethal action derives, at least in part, from stimulation of a self-amplifying accumulation of ROS that overwhelms the repair of primary damage.
Collapse
|
25
|
Coping with Reactive Oxygen Species to Ensure Genome Stability in Escherichia coli. Genes (Basel) 2018; 9:genes9110565. [PMID: 30469410 PMCID: PMC6267047 DOI: 10.3390/genes9110565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The facultative aerobic bacterium Escherichia coli adjusts its cell cycle to environmental conditions. Because of its lifestyle, the bacterium has to balance the use of oxygen with the potential lethal effects of its poisonous derivatives. Oxidative damages perpetrated by molecules such as hydrogen peroxide and superoxide anions directly incapacitate metabolic activities relying on enzymes co-factored with iron and flavins. Consequently, growth is inhibited when the bacterium faces substantial reactive oxygen insults coming from environmental or cellular sources. Although hydrogen peroxide and superoxide anions do not oxidize DNA directly, these molecules feed directly or indirectly the generation of the highly reactive hydroxyl radical that damages the bacterial chromosome. Oxidized bases are normally excised and the single strand gap repaired by the base excision repair pathway (BER). This process is especially problematic in E. coli because replication forks do not sense the presence of damages or a stalled fork ahead of them. As consequence, single-strand breaks are turned into double-strand breaks (DSB) through replication. Since E. coli tolerates the presence of DSBs poorly, BER can become toxic during oxidative stress. Here we review the repair strategies that E. coli adopts to preserve genome integrity during oxidative stress and their relation to cell cycle control of DNA replication.
Collapse
|
26
|
Gruber CC, Walker GC. Incomplete base excision repair contributes to cell death from antibiotics and other stresses. DNA Repair (Amst) 2018; 71:108-117. [PMID: 30181041 DOI: 10.1016/j.dnarep.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous lethal stresses in bacteria including antibiotics, thymineless death, and MalE-LacZ expression trigger an increase in the production of reactive oxygen species. This results in the oxidation of the nucleotide pool by radicals produced by Fenton chemistry. Following the incorporation of these oxidized nucleotides into the genome, the cell's unsuccessful attempt to repair these lesions through base excision repair (BER) contributes causally to the lethality of these stresses. We review the evidence for this phenomenon of incomplete BER-mediated cell death and discuss how better understanding this pathway could contribute to the development of new antibiotics.
Collapse
Affiliation(s)
- Charley C Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
27
|
Iron chelation increases the tolerance of Escherichia coli to hyper-replication stress. Sci Rep 2018; 8:10550. [PMID: 30002429 PMCID: PMC6043582 DOI: 10.1038/s41598-018-28841-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022] Open
Abstract
In Escherichia coli, an increase in the frequency of chromosome replication is lethal. In order to identify compounds that affect chromosome replication, we screened for molecules capable of restoring the viability of hyper-replicating cells. We made use of two E. coli strains that over-initiate DNA replication by keeping the DnaA initiator protein in its active ATP bound state. While viable under anaerobic growth or when grown on poor media, these strains become inviable when grown in rich media. Extracts from actinomycetes strains were screened, leading to the identification of deferoxamine (DFO) as the active compound in one of them. We show that DFO does not affect chromosomal replication initiation and suggest that it was identified due to its ability to chelate cellular iron. This limits the formation of reactive oxygen species, reduce oxidative DNA damage and promote processivity of DNA replication. We argue that the benzazepine derivate (±)-6-Chloro-PB hydrobromide acts in a similar manner.
Collapse
|
28
|
Influence of Reactive Oxygen Species on De Novo Acquisition of Resistance to Bactericidal Antibiotics. Antimicrob Agents Chemother 2018; 62:AAC.02354-17. [PMID: 29581120 DOI: 10.1128/aac.02354-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
The radical-based theory proposes that three major classes of bactericidal antibiotics, i.e., β-lactams, quinolones, and aminoglycosides, have in common the downstream formation of lethal levels of reactive oxygen species (ROS) as part of the killing mechanism. If bactericidal antibiotics exhibit a common mechanism, then it is to be expected that the acquisition of resistance against these drugs would have some shared traits as well. Indeed, cells made resistant to one bactericidal antibiotic more rapidly became resistant to another. This effect was absent after induced resistance to a bacteriostatic drug. De novo acquisition of resistance to one bactericidal antibiotic provided partial protection to killing by bactericidal antibiotics from a different class. This protective effect was observed in short-term experiments. No protective effect was detected during 24-h exposures, suggesting that cross-resistance did not occur. In the wild-type strain, exposure to bactericidal antibiotics increased intracellular ROS levels. This increase in ROS levels was not observed when strains resistant to these drugs were exposed to the same concentrations. These results indicate that de novo acquisition of resistance to the bactericidal drugs tested involves a common cellular response that provides protection against ROS accumulation upon exposure to this type of antibiotics. A central mechanism or at least a few common elements within the separate mechanisms possibly play a role during the acquisition of antibiotic resistance.
Collapse
|
29
|
Antibiotic killing through oxidized nucleotides. Proc Natl Acad Sci U S A 2018; 115:1967-1969. [PMID: 29444858 DOI: 10.1073/pnas.1800255115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Oxidation of dCTP contributes to antibiotic lethality in stationary-phase mycobacteria. Proc Natl Acad Sci U S A 2018; 115:2210-2215. [PMID: 29382762 DOI: 10.1073/pnas.1719627115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growing evidence shows that generation of reactive oxygen species (ROS) derived from antibiotic-induced metabolic perturbation contribute to antibiotic lethality. However, our knowledge of the mechanisms by which antibiotic-induced oxidative stress actually kills cells remains elusive. Here, we show that oxidation of dCTP underlies ROS-mediated antibiotic lethality via induction of DNA double-strand breaks (DSBs). Deletion of mazG-encoded 5-OH-dCTP-specific pyrophosphohydrolase potentiates antibiotic killing of stationary-phase mycobacteria, but did not affect antibiotic efficacy in exponentially growing cultures. Critically, the effect of mazG deletion on potentiating antibiotic killing is associated with antibiotic-induced ROS and accumulation of 5-OH-dCTP. Independent lines of evidence presented here indicate that the increased level of DSBs observed in the ΔmazG mutant is a dead-end event accounting for enhanced antibiotic killing. Moreover, we provided genetic evidence that 5-OH-dCTP is incorporated into genomic DNA via error-prone DNA polymerase DnaE2 and repair of 5-OH-dC lesions via the endonuclease Nth leads to the generation of lethal DSBs. This work provides a mechanistic view of ROS-mediated antibiotic lethality in stationary phase and may have broad implications not only with respect to antibiotic lethality but also to the mechanism of stress-induced mutagenesis in bacteria.
Collapse
|
31
|
Matic I. The major contribution of the DNA damage-triggered reactive oxygen species production to cell death: implications for antimicrobial and cancer therapy. Curr Genet 2017; 64:567-569. [PMID: 29181628 DOI: 10.1007/s00294-017-0787-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Genotoxic agents damage DNA, block DNA replication and provoke cell death. However, there is growing evidence that an important part of their cytotoxicity results from metabolic disturbances induced by treatment. This review article describes how increased production of the reactive oxygen species (ROS) induced by different genotoxic agents contribute to death of prokaryotic and eukaryotic cells. ROS are byproducts of normal cellular functioning. Because ROS are damaging cellular macromolecules, they are constantly eliminated by protective antioxidant mechanisms. However, even a small increase in ROS production may have deleterious consequences because cells possess just enough defensive mechanisms to protect themselves against endogenously produced ROS. Therefore, it may be possible to enhance cytotoxic potential of antimicrobial and anticancer drugs by increasing ROS production or by inhibiting cellular antioxidant systems.
Collapse
Affiliation(s)
- Ivan Matic
- Faculté de Médecine Paris Descartes, INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, Paris, 75014, France. .,Department of Life Sciences, Centre National de la Recherche Scientifique, 75016, Paris, France.
| |
Collapse
|
32
|
Ter Kuile BH, Hoeksema M. Antibiotic Killing through Incomplete DNA Repair. Trends Microbiol 2017; 26:2-4. [PMID: 29157966 DOI: 10.1016/j.tim.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022]
Abstract
Two recent studies show that incomplete repair of DNA damage due to oxidized nucleotides is crucial for reactive oxygen species (ROS)-related antimicrobial lethality. Using widely different experimental approaches they both reach the same conclusions on the role of downstream ROS production in cell killing upon exposure to bactericidal antimicrobials.
Collapse
Affiliation(s)
- Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands.
| | - Marloes Hoeksema
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Yang JH, Bening SC, Collins JJ. Antibiotic efficacy-context matters. Curr Opin Microbiol 2017; 39:73-80. [PMID: 29049930 DOI: 10.1016/j.mib.2017.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 02/01/2023]
Abstract
Antibiotic lethality is a complex physiological process, sensitive to external cues. Recent advances using systems approaches have revealed how events downstream of primary target inhibition actively participate in antibiotic death processes. In particular, altered metabolism, translational stress and DNA damage each contribute to antibiotic-induced cell death. Moreover, environmental factors such as oxygen availability, extracellular metabolites, population heterogeneity and multidrug contexts alter antibiotic efficacy by impacting bacterial metabolism and stress responses. Here we review recent studies on antibiotic efficacy and highlight insights gained on the involvement of cellular respiration, redox stress and altered metabolism in antibiotic lethality. We discuss the complexity found in natural environments and highlight knowledge gaps in antibiotic lethality that may be addressed using systems approaches.
Collapse
Affiliation(s)
- Jason H Yang
- Institute for Medical Engineering & Science, Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA
| | - Sarah C Bening
- Institute for Medical Engineering & Science, Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Cir, Boston, MA 02115, USA.
| |
Collapse
|