1
|
Huang C, Jiang H, Dong J, Jiang L, Li J, Xu J, Cui T, Wang L, Li X, Feng G, Zhang Y, Li T, Li W, Zhou Q. Functional mouse hepatocytes derived from interspecies chimeric livers effectively mitigate chronic liver fibrosis. Stem Cell Reports 2024; 19:877-889. [PMID: 38729156 PMCID: PMC11390683 DOI: 10.1016/j.stemcr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Liver disease is a major global health challenge. There is a shortage of liver donors worldwide, and hepatocyte transplantation (HT) may be an effective treatment to overcome this problem. However, the present approaches for generation of hepatocytes are associated with challenges, and interspecies chimera-derived hepatocytes produced by interspecies blastocyst complementation (IBC) may be promising donor hepatocytes because of their more comprehensive hepatic functions. In this study, we isolated mouse hepatocytes from mouse-rat chimeric livers using IBC and found that interspecies chimera-derived hepatocytes exhibited mature hepatic functions in terms of lipid accumulation, glycogen storage, and urea synthesis. Meanwhile, they were more similar to endogenous hepatocytes than hepatocytes derived in vitro. Interspecies chimera-derived hepatocytes could relieve chronic liver fibrosis and reside in the injured liver after transplantation. Our results suggest that interspecies chimera-derived hepatocytes are a potentially reliable source of hepatocytes and can be applied as a therapeutic approach for HT.
Collapse
Affiliation(s)
- Cheng Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liyuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
2
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Yuri S, Murase Y, Isotani A. Generation of rat-derived lung epithelial cells in Fgfr2b-deficient mice retains species-specific development. Development 2024; 151:dev202081. [PMID: 38179792 DOI: 10.1242/dev.202081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Regenerative medicine is a tool to compensate for the shortage of lungs for transplantation, but it remains difficult to construct a lung in vitro due to the complex three-dimensional structures and multiple cell types required. A blastocyst complementation method using interspecies chimeric animals has been attracting attention as a way to create complex organs in animals, although successful lung formation using interspecies chimeric animals has not yet been achieved. Here, we applied a reverse-blastocyst complementation method to clarify the conditions required to form lungs in an Fgfr2b-deficient mouse model. We then successfully formed a rat-derived lung in the mouse model by applying a tetraploid-based organ-complementation method. Importantly, rat lung epithelial cells retained their developmental timing even in the mouse body. These findings provide useful insights to overcome the barrier of species-specific developmental timing to generate functional lungs in interspecies chimeras.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yuki Murase
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
4
|
Lee J, Cai L, Kim M, Choi H, Oh D, Jawad A, Lee E, Hyun SH. Tetraploid embryo aggregation produces high-quality blastocysts with an increased trophectoderm in pigs. Front Cell Dev Biol 2023; 11:1239448. [PMID: 38033873 PMCID: PMC10687364 DOI: 10.3389/fcell.2023.1239448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Tetraploid complementation is an ideal method for demonstrating the differentiation potential of pluripotent stem cells. In this study, we selected the most efficient tetraploid production method for porcine embryos and investigated whether tetraploid blastomere aggregation could enhance the quality of tetraploid embryos. Three methods were investigated to produce tetraploid embryos: First, tetraploid embryos were produced using electro-fusion of two-cell stage parthenogenetic blastomere (FUTP). Second, somatic cell was injected into the mature oocyte and fused to produce tetraploid embryos. Third, oocytes were matured with Cytochalasin B (CB) for the late 22 h of in vitro maturation to inhibit the first polar body (PB1). Following that, non-PB1 oocytes were treated with CB for 4 h after parthenogenetic activation. There was no significant difference in the blastocyst development rate and tetraploid production rate of the embryos produced through the three methods. However, FUTP-derived blastocysts had a significantly lower percentage of apoptotic cells compared to other methods. The developmental competence of embryos, expression of trophectoderm cell marker genes, and distribution of YAP1 protein were investigated in tetraploid embryos produced using the FUTP method. The FUTP method most effectively prevented apoptosis during porcine tetraploid embryo formation. Tetraploid aggregation-derived blastocysts have a high proportion of trophectoderm with increased expression of the CDX2 mRNA and high YAP1 intensity. High-quality blastocysts derived from a tetraploid embryo aggregation can serve as suitable source material for testing the differentiation potential of pluripotent stem cells for blastocyst complementation in pigs.
Collapse
Affiliation(s)
- Joohyeong Lee
- Department of Companion Animal Industry, College of Healthcare and Biotechnology, Semyung University, Jecheon, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Menzorov AG. Pluripotent Stem Cells of Order Carnivora: Technical Perspective. Int J Mol Sci 2023; 24:ijms24043905. [PMID: 36835318 PMCID: PMC9963171 DOI: 10.3390/ijms24043905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Human and mouse induced pluripotent stem cells (PSCs) are widely used for studying early embryonic development and for modeling of human diseases. Derivation and studying of PSCs from model organisms beyond commonly used mice and rats may provide new insights into the modeling and treating human diseases. The order Carnivora representatives possess unique features and are already used for modeling human-related traits. This review focuses on the technical aspects of derivation of the Carnivora species PSCs as well as their characterization. Current data on dog, feline, ferret, and American mink PSCs are summarized.
Collapse
Affiliation(s)
- Aleksei G. Menzorov
- Sector of Cell Collections, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Oikawa M, Kobayashi H, Sanbo M, Mizuno N, Iwatsuki K, Takashima T, Yamauchi K, Yoshida F, Yamamoto T, Shinohara T, Nakauchi H, Kurimoto K, Hirabayashi M, Kobayashi T. Functional primordial germ cell-like cells from pluripotent stem cells in rats. Science 2022; 376:176-179. [PMID: 35389778 DOI: 10.1126/science.abl4412] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The in vitro generation of germ cells from pluripotent stem cells (PSCs) can have a substantial effect on future reproductive medicine and animal breeding. A decade ago, in vitro gametogenesis was established in the mouse. However, induction of primordial germ cell-like cells (PGCLCs) to produce gametes has not been achieved in any other species. Here, we demonstrate the induction of functional PGCLCs from rat PSCs. We show that epiblast-like cells in floating aggregates form rat PGCLCs. The gonadal somatic cells support maturation and epigenetic reprogramming of the PGCLCs. When rat PGCLCs are transplanted into the seminiferous tubules of germline-less rats, functional spermatids-that is, those capable of siring viable offspring-are generated. Insights from our rat model will elucidate conserved and divergent mechanisms essential for the broad applicability of in vitro gametogenesis.
Collapse
Affiliation(s)
- Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomoya Takashima
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan.,Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiko Yamauchi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Fumika Yoshida
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.,The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
7
|
Xu M, Zhao Y, Zhang W, Geng M, Liu Q, Gao Q, Shuai L. Genome-scale screening in a rat haploid system identifies Thop1 as a modulator of pluripotency exit. Cell Prolif 2022; 55:e13209. [PMID: 35274380 PMCID: PMC9055895 DOI: 10.1111/cpr.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The rats are crucial animal models for the basic medical researches. Rat embryonic stem cells (ESCs), which are widely studied, can self-renew and exhibit pluripotency in long-term culture, but the mechanism underlying how they exit pluripotency remains obscure. To investigate the key modulators on pluripotency exiting in rat ESCs, we perform genome-wide screening using a unique rat haploid system. MATERIALS AND METHODS Rat haploid ESCs (haESCs) enable advances in the discovery of unknown functional genes owing to their homozygous and pluripotent characteristics. REX1 is a sensitive marker for the naïve pluripotency that is often utilized to monitor pluripotency exit, thus rat haESCs carrying a Rex1-GFP reporter are used for genetic screening. Genome-wide mutations are introduced into the genomes of rat Rex1-GFP haESCs via piggyBac transposon, and differentiation-retarded mutants are obtained after random differentiation selection. The exact mutations are elucidated by high-throughput sequencing and bioinformatic analysis. The role of candidate mutation is validated in rat ESCs by knockout and overexpression experiments, and the phosphorylation of ERK1/2 (p-ERK1/2) is determined by western blotting. RESULTS High-throughput sequencing analysis reveals numerous insertions related to various pathways affecting random differentiation. Thereafter, deletion of Thop1 (one candidate gene in the screened list) arrests the differentiation of rat ESCs by inhibiting the p-ERK1/2, whereas overexpression of Thop1 promotes rat ESCs to exit from pluripotency. CONCLUSIONS Our findings provide an ideal tool to study functional genomics in rats: a homozygous haploid system carrying a pluripotency reporter that facilitates robust discovery of the mechanisms involved in the self-renewal or pluripotency of rat ESCs.
Collapse
Affiliation(s)
- Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Central Hospital of Gynecology Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nat Commun 2021; 12:1328. [PMID: 33637711 PMCID: PMC7910474 DOI: 10.1038/s41467-021-21557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Murine animal models from genetically modified pluripotent stem cells (PSCs) are essential for functional genomics and biomedical research, which require germline transmission for the establishment of colonies. However, the quality of PSCs, and donor-host cell competition in chimeras often present strong barriers for germline transmission. Here, we report efficient germline transmission of recalcitrant PSCs via blastocyst complementation, a method to compensate for missing tissues or organs in genetically modified animals via blastocyst injection of PSCs. We show that blastocysts from germline-deficient Prdm14 knockout rats provide a niche for the development of gametes originating entirely from the donor PSCs without any detriment to somatic development. We demonstrate the potential of this approach by creating PSC-derived Pax2/Pax8 double mutant anephric rats, and rescuing germline transmission of a PSC carrying a mouse artificial chromosome. Furthermore, we generate mouse PSC-derived functional spermatids in rats, which provides a proof-of-principle for the generation of xenogenic gametes in vivo. We believe this approach will become a useful system for generating PSC-derived germ cells in the future.
Collapse
|
9
|
Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein Cell 2019; 11:97-107. [PMID: 31781970 PMCID: PMC6954905 DOI: 10.1007/s13238-019-00676-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Blastocyst complementation by pluripotent stem cell (PSC) injection is believed to be the most promising method to generate xenogeneic organs. However, ethical issues prevent the study of human chimeras in the late embryonic stage of development. Primate embryonic stem cells (ESCs), which have similar pluripotency to human ESCs, are a good model for studying interspecies chimerism and organ generation. However, whether primate ESCs can be used in xenogenous grafts remains unclear. In this study, we evaluated the chimeric ability of cynomolgus monkey (Macaca fascicularis) ESCs (cmESCs) in pigs, which are excellent hosts because of their many similarities to humans. We report an optimized culture medium that enhanced the anti-apoptotic ability of cmESCs and improved the development of chimeric embryos, in which domesticated cmESCs (D-ESCs) injected into pig blastocysts differentiated into cells of all three germ layers. In addition, we obtained two neonatal interspecies chimeras, in which we observed tissue-specific D-ESC differentiation. Taken together, the results demonstrate the capability of D-ESCs to integrate and differentiate into functional cells in a porcine model, with a chimeric ratio of 0.001–0.0001 in different neonate tissues. We believe this work will facilitate future developments in xenogeneic organogenesis, bringing us one step closer to producing tissue-specific functional cells and organs in a large animal model through interspecies blastocyst complementation.
Collapse
|
10
|
Li X, Li MJ, Yang Y, Bai Y. Effects of reprogramming on genomic imprinting and the application of pluripotent stem cells. Stem Cell Res 2019; 41:101655. [PMID: 31734645 DOI: 10.1016/j.scr.2019.101655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells are considered to be the ideal candidates for cell-based therapies in humans. In this regard, both nuclear transfer embryonic stem (ntES) cells and induced pluripotent stem (iPS) cells are particularly advantageous because patient-specific autologous ntES and iPS cells can avoid immunorejection and other side effects that may be present in the allogenic pluripotent stem cells derived from unrelated sources. However, they have been found to contain deleterious genetic and epigenetic changes that may hinder their therapeutic applications. Indeed, deregulation of genomic imprinting has been frequently observed in reprogrammed ntES and iPS cells. We will survey the recent studies on genomic imprinting in pluripotent stem cells, particularly in iPS cells. In a previous study published about six years ago, genomic imprinting was found to be variably lost in mouse iPS clones. Intriguingly, de novo DNA methylation also occurred at the previously unmethylated imprinting control regions (ICRs) in a high percentage of iPS clones. These unexpected results were confirmed by a recent independent study with a similar approach. Since dysregulation of genomic imprinting can cause many human diseases including cancer and neurological disorders, these recent findings on genomic imprinting in reprogramming may have some implications for therapeutic applications of pluripotent stem cells.
Collapse
Affiliation(s)
- Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Max Jiahua Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Li Y, Kang XJ, Pang JKS, Soh BS, Yu Y, Fan Y. Human germline editing: Insights to future clinical treatment of diseases. Protein Cell 2019; 10:470-475. [PMID: 30430420 PMCID: PMC6588666 DOI: 10.1007/s13238-018-0594-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yanni Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiang Jin Kang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon Seng Soh
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
12
|
Yu D, Wang J, Zou H, Feng T, Chen L, Li J, Qi X, Li Z, Duan X, Xu C, Zhang L, Long X, Lan J, Chen C, Wang C, Xu X, Ren J, Zhao Y, Hu X, Lian Z, Men H, Pan D, Li N, Capecchi MR, Du X, Zhao Y, Wu S. Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning. Proc Natl Acad Sci U S A 2018; 115:E11071-E11080. [PMID: 30381455 PMCID: PMC6255163 DOI: 10.1073/pnas.1814514115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Substantial rates of fetal loss plague all in vitro procedures involving embryo manipulations, including human-assisted reproduction, and are especially problematic for mammalian cloning where over 90% of reconstructed nuclear transfer embryos are typically lost during pregnancy. However, the epigenetic mechanism of these pregnancy failures has not been well described. Here we performed methylome and transcriptome analyses of pig induced pluripotent stem cells and associated cloned embryos, and revealed that aberrant silencing of imprinted genes, in particular the retrotransposon-derived RTL1 gene, is the principal epigenetic cause of pregnancy failure. Remarkably, restoration of RTL1 expression in pig induced pluripotent stem cells rescued fetal loss. Furthermore, in other mammals, including humans, low RTL1 levels appear to be the main epigenetic cause of pregnancy failure.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Huiying Zou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Tao Feng
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193 Beijing, China
| | - Lei Chen
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030
| | - Xiaolan Qi
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193 Beijing, China
| | - Zhifang Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xiaoyue Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Chunlong Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Liang Zhang
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Xi Long
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Jing Lan
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Chao Chen
- Tang Tang Biomedical Technology (Beijing) Co., 100101 Beijing, China
| | - Chao Wang
- Department of Computer and Technology, Tsinghua University, 100101 Beijing, China
| | - Xinyu Xu
- School of Life Sciences, Tsinghua University, 100101 Beijing, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agriculture University, 100193 Beijing, China
| | - Hongsheng Men
- Rat Resource and Research Center, University of Missouri, Columbia, MO 65201
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65201
| | - Dengke Pan
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China;
- College of Animal Science and Technology, China Agriculture University, 100193 Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China;
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China;
| |
Collapse
|
13
|
Li H, Zhao C, Xu J, Xu Y, Cheng C, Liu Y, Wang T, Du Y, Xie L, Zhao J, Han Y, Wang X, Bai Y, Deng H. Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. Protein Cell 2018; 10:20-30. [PMID: 29948855 PMCID: PMC6321812 DOI: 10.1007/s13238-018-0556-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/16/2018] [Indexed: 11/30/2022] Open
Abstract
One major strategy to generate genetically modified mouse models is gene targeting in mouse embryonic stem (ES) cells, which is used to produce gene-targeted mice for wide applications in biomedicine. However, a major bottleneck in this approach is that the robustness of germline transmission of gene-targeted ES cells can be significantly reduced by their genetic and epigenetic instability after long-term culturing, which impairs the efficiency and robustness of mouse model generation. Recently, we have established a new type of pluripotent cells termed extended pluripotent stem (EPS) cells, which have superior developmental potency and robust germline competence compared to conventional mouse ES cells. In this study, we demonstrate that mouse EPS cells well maintain developmental potency and genetic stability after long-term passage. Based on gene targeting in mouse EPS cells, we established a new approach to directly and rapidly generate gene-targeted mouse models through tetraploid complementation, which could be accomplished in approximately 2 months. Importantly, using this approach, we successfully constructed mouse models in which the human interleukin 3 (IL3) or interleukin 6 (IL6) gene was knocked into its corresponding locus in the mouse genome. Our study demonstrates the feasibility of using mouse EPS cells to rapidly generate mouse models by gene targeting, which have great application potential in biomedical research.
Collapse
Affiliation(s)
- Haibo Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Chaoran Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yaxing Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Chunmei Cheng
- BeiHao Stem Cell and Regenerative Medicine Translational Research Institute, Beijing, China
| | - Yinan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yaqin Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Liangfu Xie
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Jingru Zhao
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yanchuang Han
- BeiHao Stem Cell and Regenerative Medicine Translational Research Institute, Beijing, China
| | - Xiaobao Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.
| | - Hongkui Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China. .,Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|