1
|
Xie P. Effect of small molecular crowders on dynamics of kinesin molecular motors. J Theor Biol 2024; 578:111685. [PMID: 38061488 DOI: 10.1016/j.jtbi.2023.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 10/15/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Kinesin is a motor protein that can convert chemical energy of ATP hydrolysis into mechanical energy of moving processively on microtubules. Apart from the load and ATP concentration affecting the dynamics of the motor such as velocity, run length, dissociation rate, etc., the increase of solution viscosity by supplementing crowding agents of low molecular weight into the buffer can also affect the dynamics. Here, based on our proposed model for the chemomechanical coupling of the kinesin motor, a systematically theoretical study of the motor dynamics under the variation of the viscosity and load is presented. Both the load on the motor's stalk and that on one of the two heads are considered. The theoretical results provide a consistent explanation of the available contradictory experimental results, with some showing that increasing viscosity decreases sensitively the velocity whereas others showing that increasing viscosity has little effect on the velocity. The theoretical results reproduce quantitatively the puzzling experimental data showing that under different directions of the load on the stalk, increasing viscosity has very different effects on the change of run length or dissociation rate. The theoretical results predict that in both the pure and crowded buffers the dependence of the run length on the load acting one of the two heads has very different feature from that on the load acting on the stalk.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Vardanyan VH, Wang Q, Kolomeisky AB. Dynamics of single-base editing: Theoretical analysis. J Chem Phys 2023; 158:245101. [PMID: 37347132 PMCID: PMC10908558 DOI: 10.1063/5.0157193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Recent experimental advances led to the development of DNA base editors (BEs) with single-nucleotide precision, which is critical for future progress in various scientific and technological fields. The molecular mechanisms of single-base discrimination, however, remain poorly understood. Using a recently developed stochastic approach, we theoretically investigated the dynamics of single-base editing. More specifically, transient and mean times to edit "TC" motifs by cytosine BEs are explicitly evaluated for correct (target) and incorrect (bystander) locations on DNA. In addition, the effect of mutations on the dynamics of the single-base edition is also analyzed. It is found that for most ranges of parameters, it is possible to temporarily separate target and bystander products of base editing, supporting the idea of dynamic selectivity as a method of improving the precision of single-base editing. We conclude that to improve the efficiency of single-base editing, selecting the probability or selecting the time requires different strategies. Physical-chemical arguments to explain the observed dynamic properties are presented. The theoretical analysis clarifies some important aspects of the molecular mechanisms of selective base editing.
Collapse
Affiliation(s)
| | - Qian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | | |
Collapse
|
3
|
Vardanyan VH, Wang Q, Kolomeisky AB. Dynamics of Single-Base Editing: Theoretical Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539865. [PMID: 37215008 PMCID: PMC10197563 DOI: 10.1101/2023.05.08.539865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent experimental advances led to the development of DNA base editors (BEs) with a single-nucleotide precision that is critical for future progress in various scientific and technological fields. The molecular mechanisms of single-base discrimination, however, remain not well understood. Using a recently developed stochastic approach, we theoretically investigated the dynamics of single-base editing. More specifically, transient and mean times to edit "TC" motifs by cytosine BEs are explicitly evaluated for correct (target) and incorrect (bystander) locations on DNA. In addition, the effect of mutations on the dynamics of the single-base edition is also analyzed. It is found that for most ranges of parameters, it is possible to temporarily separate target and bystander products of base editing, supporting the idea of dynamic selectivity as a method of improving the precision of single-base editing. We conclude that to improve the efficiency of single-base editing, selecting the probability or selecting the time requires different strategies. Physical-chemical arguments to explain the observed dynamic properties are presented. The theoretical analysis clarifies some important aspects of molecular mechanisms of selective base editing.
Collapse
|
4
|
Xie K, Wang Q. Cooperation and Competition Coexist in Bidirectional Transport by Motor Proteins. J Phys Chem Lett 2022; 13:7336-7341. [PMID: 35920721 DOI: 10.1021/acs.jpclett.2c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In intracellular transport, the cargo is usually simultaneously carried by two types of motor proteins that move oppositely, widely described as a "tug-of-war". We show theoretically that apart from the apparent competition, there is also a unintuitive cooperation between motors with opposite directionality. The model reproduces the in vivo experimental data with high accuracy. Under certain conditions, the cooperation can significantly increase the transport distance, rationalizing the choice of bidirectional over unidirectional transport in evolution. We further derive the exact analytical solution for the transport distance. Our results pave the road to understanding the physical nature of intracellular transport by motor proteins.
Collapse
Affiliation(s)
- Kewei Xie
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Wang Q, Wang L, Zhang Y, Zhang X, Zhang L, Shang W, Bai F. Probing the Allosteric Inhibition Mechanism of a Spike Protein Using Molecular Dynamics Simulations and Active Compound Identifications. J Med Chem 2022; 65:2827-2835. [PMID: 34415156 PMCID: PMC8409148 DOI: 10.1021/acs.jmedchem.1c00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/21/2022]
Abstract
The receptor recognition of the novel coronavirus SARS-CoV-2 relies on the "down-to-up" conformational change in the receptor-binding domain (RBD) of the spike (S) protein. Therefore, understanding the process of this change at the molecular level facilitates the design of therapeutic agents. With the help of coarse-grained molecular dynamic simulations, we provide evidence showing that the conformational dynamics of the S protein are globally cooperative. Importantly, an allosteric path was discovered that correlates the motion of the RBD with the motion of the junction between the subdomain 1 (SD1) and the subdomain 2 (SD2) of the S protein. Building on this finding, we designed non-RBD binding modulators to inhibit SARS-CoV-2 by prohibiting the conformational change of the S protein. Their inhibition effect and function stages at inhibiting SARS-CoV-2 were evaluated experimentally. In summary, our studies establish a molecular basis for future therapeutic agent design through allosteric effects.
Collapse
Affiliation(s)
- Qian Wang
- Hefei National Laboratory for Physical Sciences at the
Microscale and Department of Physics, University of Science and Technology of
China, Hefei, Anhui 230026, China
| | - Lin Wang
- School of Life Science and Technology and Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech
University, Shanghai 201210, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071,
China
| | - XiangLei Zhang
- School of Life Science and Technology and Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech
University, Shanghai 201210, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071,
China
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071,
China
| | - Fang Bai
- School of Life Science and Technology and Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|
6
|
Contessoto VG, de Oliveira VM, Leite VBP. Coarse-Grained Simulations of Protein Folding: Bridging Theory and Experiments. Methods Mol Biol 2022; 2376:303-315. [PMID: 34845616 DOI: 10.1007/978-1-0716-1716-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Computational coarse-grained models play a fundamental role as a research tool in protein folding, and they are important in bridging theory and experiments. Folding mechanisms are generally discussed using the energy landscape framework, which is well mapped within a class of simplified structure-based models. In this chapter, simplified computer models are discussed with special focus on structure-based ones.
Collapse
Affiliation(s)
| | - Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, LNBio/CNPEM, Campinas, SP, Brazil
- São Paulo State University, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Vitor B P Leite
- São Paulo State University, IBILCE/UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
7
|
Xie P. Dynamics of kinesin motor proteins under longitudinal and sideways loads. J Theor Biol 2021; 530:110879. [PMID: 34437882 DOI: 10.1016/j.jtbi.2021.110879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
The available single-molecule data showed that different species of N-terminal kinesin molecular motors have very different features on dependences of run length and dissociation rate upon longitudinal load acting on stalks of the motors. The prior single-molecule data for Loligo pealei kinesin-1 indicated that the sideways load has only a weak effect on the velocity, but even a small sideways load can cause a large reduction in the run length. However, these puzzling experimental data remain to be explained and the underlying physical mechanisms are unclear. Here, based on our proposed model we study analytically the dynamics of the N-terminal kinesin motors such as Loligo pealei kinesin-1, Drosophila kinesin-1, truncated kinesin-5/Eg5, truncated kinesin-12/Kif15, kinesin-2/Kif17 and kinesin-2/Kif3AB dimers under both longitudinal and sideways loads. The theoretical results explain quantitatively the available experimental data and provide predictions. The physical mechanism of different kinesin species showing very different features on the load-dependent dynamics and the physical mechanism of the effect of the sideways load on the dynamics are revealed.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
8
|
Wang Q, Yang J, Zhong Z, Vanegas JA, Gao X, Kolomeisky AB. A general theoretical framework to design base editors with reduced bystander effects. Nat Commun 2021; 12:6529. [PMID: 34764246 PMCID: PMC8586357 DOI: 10.1038/s41467-021-26789-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
Base editors (BEs) hold great potential for medical applications of gene therapy. However, high precision base editing requires BEs that can discriminate between the target base and multiple bystander bases within a narrow active window (4 - 10 nucleotides). Here, to assist in the design of these optimized editors, we propose a discrete-state stochastic approach to build an analytical model that explicitly evaluates the probabilities of editing the target base and bystanders. Combined with all-atom molecular dynamic simulations, our model reproduces the experimental data of A3A-BE3 and its variants for targeting the "TC" motif and bystander editing. Analyzing this approach, we propose several general principles that can guide the design of BEs with a reduced bystander effect. These principles are then applied to design a series of point mutations at T218 position of A3G-BEs to further reduce its bystander editing. We verify experimentally that the new mutations provide different levels of stringency on reducing the bystander editing at different genomic loci, which is consistent with our theoretical model. Thus, our study provides a computational-aided platform to assist in the scientifically-based design of BEs with reduced bystander effects.
Collapse
Affiliation(s)
- Qian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.
| | - Jie Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Zhicheng Zhong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jeffrey A Vanegas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
9
|
Abstract
Kinesin-1 is a motor protein that can step processively on microtubule by hydrolyzing ATP molecules, playing an essential role in intracellular transports. To better understand the mechanochemical coupling of the motor stepping cycle, numerous structural, biochemical, single molecule, theoretical modeling and numerical simulation studies have been undertaken for the kinesin-1 motor. Recently, a novel ultraresolution optical trapping method was employed to study the mechanics of the kinesin-1 motor and new results were supplemented to its stepping dynamics. In this commentary, the new single molecule results are explained well theoretically with one of the models presented in the literature for the mechanochemical coupling of the kinesin-1 motor. With the model, various prior experimental results for dynamics of different families of N-terminal kinesin motors have also been explained quantitatively.
Collapse
|
10
|
Dutta M, Jana B. Computational modeling of dynein motor proteins at work. Chem Commun (Camb) 2021; 57:272-283. [PMID: 33332489 DOI: 10.1039/d0cc05857b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with various experimental methods, a combination of theoretical and computational methods is essential to explore different length-scale and time-scale processes in the biological system. The functional mechanism of a dynein, an ATP-fueled motor protein, working in a multiprotein complex, involves a wide range of length/time-scale events. It generates mechanical force from chemical energy and moves on microtubules towards the minus end direction while performing a large number of biological processes including ciliary beating, intracellular material transport, and cell division. Like in the cases of other conventional motor proteins, a combination of experimental techniques including X-crystallography, cryo-electron microscopy, and single molecular assay have provided a wealth of information about the mechanochemical cycle of a dynein. Dyneins have a large and complex structural architecture and therefore, computational modeling of different aspects of a dynein is extremely challenging. As the process of dynein movement involves varying length and timescales, it demands, like in experiments, a combination of computational methods covering such a wide range of processes for the comprehensive investigation of the mechanochemical cycle. In this review article, we will summarize how the use of state-of-the-art computational methods can provide a detailed molecular understanding of the mechanochemical cycle of the dynein. We implemented all-atom molecular dynamics simulations and hybrid quantum-mechanics/molecular-mechanics simulations to explore the ATP hydrolysis mechanisms at the primary ATPase site (AAA1) of dynein. To investigate the large-scale conformational changes we employed coarse-grained structure-based molecular dynamics simulations to capture the domain motions. Here we explored the conformational changes upon binding of ATP at AAA1, nucleotide state-dependent regulation of the mechanochemical cycle, and inter-head coordination by inter-head tension. Additionally, implementing a phenomenological theoretical model we explore the force-dependent detachment rate of a motorhead from the microtubule and the principle of multi-dynein cooperation during cargo transport.
Collapse
Affiliation(s)
- Mandira Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | | |
Collapse
|
11
|
Xie P. A model of processive walking and slipping of kinesin-8 molecular motors. Sci Rep 2021; 11:8081. [PMID: 33850247 PMCID: PMC8044202 DOI: 10.1038/s41598-021-87532-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Kinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick-slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
12
|
Mechanistic basis of propofol-induced disruption of kinesin processivity. Proc Natl Acad Sci U S A 2021; 118:2023659118. [PMID: 33495322 DOI: 10.1073/pnas.2023659118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Propofol is a widely used general anesthetic to induce and maintain anesthesia, and its effects are thought to occur through impact on the ligand-gated channels including the GABAA receptor. Propofol also interacts with a large number of proteins including molecular motors and inhibits kinesin processivity, resulting in significant decrease in the run length for conventional kinesin-1 and kinesin-2. However, the molecular mechanism by which propofol achieves this outcome is not known. The structural transition in the kinesin neck-linker region is crucial for its processivity. In this study, we analyzed the effect of propofol and its fluorine derivative (fropofol) on the transition in the neck-linker region of kinesin. Propofol binds at two crucial surfaces in the leading head: one at the microtubule-binding interface and the other in the neck-linker region. We observed in both the cases the order-disorder transition of the neck-linker was disrupted and kinesin lost its signal for forward movement. In contrast, there was not an effect on the neck-linker transition with propofol binding at the trailing head. Free-energy calculations show that propofol at the microtubule-binding surface significantly reduces the microtubule-binding affinity of the kinesin head. While propofol makes pi-pi stacking and H-bond interactions with the propofol binding cavity, fropofol is unable to make a suitable interaction at this binding surface. Therefore, the binding affinity of fropofol is much lower compared to propofol. Hence, this study provides a mechanism by which propofol disrupts kinesin processivity and identifies transitions in the ATPase stepping cycle likely affected.
Collapse
|
13
|
Xie P. A common ATP-dependent stepping model for kinesin-5 and kinesin-1: Mechanism of bi-directionality of kinesin-5. Biophys Chem 2021; 271:106548. [PMID: 33486269 DOI: 10.1016/j.bpc.2021.106548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 01/21/2023]
Abstract
Kinesin-5 and kinesin-1 proteins are two families of kinesin superfamily molecular motors that can move processively on microtubules powered by ATP hydrolysis. Kinesin-1 is a unidirectional motor. By contrast, some yeast kinesin-5 motors are bidirectional and the directionality can be switched by changing the experimental conditions. Here, on the basis of a common chemomechanical coupling model, the dynamics of kinesin-1 and in particular the dynamics of kinesin-5 is studied theoretically, explaining the available experimental data. For example, the experimental data about different movement directions under different experimental conditions for kinesin-5 are explained well. The origin of why kinesin-1 can only make unidirectional movement and kinesin-5 can make bidirectional movements is revealed. The origin of mutations or deletions of several structural elements affecting the directionality of kinesin-5 is revealed. Moreover, some predicted results for kinesin-5 are provided.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
14
|
Chen K, Nam W, Epureanu BI. Collective intracellular cargo transport by multiple kinesins on multiple microtubules. Phys Rev E 2020; 101:052413. [PMID: 32575243 DOI: 10.1103/physreve.101.052413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The transport of intracellular organelles is accomplished by groups of molecular motors, such as kinesin, myosin, and dynein. Previous studies have demonstrated that the cooperation between kinesins on a track is beneficial for long transport. However, within crowded three-dimensional (3D) cytoskeletal networks, surplus motors could impair transport and lead to traffic jams of cargos. Comprehensive understanding of the effects of the interactions among molecular motors, cargo, and tracks on the 3D cargo transport dynamics is still lack. In this work, a 3D stochastic multiphysics model is introduced to study the synergistic and antagonistic motions of kinesin motors walking on multiple mircotubules (MTs). Based on the model, we show that kinesins attaching to a common cargo can interact mechanically through the transient forces in their cargo linkers. Under different environmental conditions, such as different MT topologies and kinesin concentrations, the transient forces in the kinesins, the stepping frequency and the binding and unbinding probabilities of kinesins are changed substantially. Therefore, the macroscopic transport properties, specifically the stall force of the cargo, the transport direction at track intersections, and the mean-square displacement (MSD) of the cargo along the MT bundles vary over the environmental conditions. In general, conditions that improve the synergistic motion of kinesins increase the stall force of the cargo and the capability of maintaining the transport. In contrast, the antagonistic motion of kinesins temporarily traps the cargo and slows down the transport. Furthermore, this study predicts an optimal number of kinesins for the cargo transport at MT intersections and along MT bundles.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Woochul Nam
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bogdan I Epureanu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
15
|
Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Proc Natl Acad Sci U S A 2020; 117:3610-3620. [PMID: 32024753 PMCID: PMC7035488 DOI: 10.1073/pnas.1904469117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elongation factor Tu (EF-Tu) facilitates rapid and accurate selection of aminoacyl-tRNA (aa-tRNA) by the bacterial ribosome during protein synthesis. We show that EF-Tu dissociates from the ribosome as aa-tRNA navigates the accommodation corridor en route to peptide bond formation. We find that EF-Tu’s release from the ribosome during aa-tRNA selection can be reversible. We also demonstrate that new ternary complex formation, accompanied by futile cycles of GTP hydrolysis, can occur on aa-tRNA bound within the ribosome. These findings inform on the decoding mechanism, the contributions of EF-Tu to the fidelity of translation, and the potential consequences of reduced rates of peptide bond formation on cellular physiology. The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis. Our investigations reveal that conformational changes in EF-Tu coordinate the rate-limiting passage of aa-tRNA through the accommodation corridor en route to the peptidyl transferase center of the large ribosomal subunit. Experiments using distinct inhibitors of the accommodation process further show that aa-tRNA must at least partially transit the accommodation corridor for EF-Tu⋅GDP to release. aa-tRNAs failing to undergo peptide bond formation at the end of accommodation corridor passage after EF-Tu release can be reengaged by EF-Tu⋅GTP from solution, coupled to GTP hydrolysis. These observations suggest that additional rounds of ternary complex formation can occur on the ribosome during proofreading, particularly when peptide bond formation is slow, which may serve to increase both the rate and fidelity of protein synthesis at the expense of GTP hydrolysis.
Collapse
|
16
|
Uçar MC, Lipowsky R. Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding. NANO LETTERS 2020; 20:669-676. [PMID: 31797672 DOI: 10.1021/acs.nanolett.9b04445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria , Am Campus 1 , 3400 Klosterneuburg , Austria
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|
17
|
Dutta M, Jana B. Role of AAA3 Domain in Allosteric Communication of Dynein Motor Proteins. ACS OMEGA 2019; 4:21921-21930. [PMID: 31891071 PMCID: PMC6933798 DOI: 10.1021/acsomega.9b02946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Cytoplasmic dynein, an AAA+ motif containing motor, generates force and movement along the microtubule to execute important biological functions including intracellular material transport and cell division by hydrolyzing ATP. Among the six AAA+ domains, AAA1 is the primary ATPase site where a single ATP hydrolysis generates a single step. Nucleotide states in AAA3 gate dynein's activity, suggesting that AAA3 acts as a regulatory switch. However, the comprehensive structural perspective of AAA3 in dynein's mechanochemical cycle remains unclear. Here, we explored the allosteric transition path of dynein involving AAA3 using a coarse-grained structure-based model. ATP binding to the AAA1 domain creates a cascade of conformational changes through the other domains of the ring, which leads to the pre-power stroke formation. The linker domain, which is the mechanical element of dynein, shifts from a straight to a bent conformation during this process. In our present study, we observe that AAA3 gates the allosteric communication from AAA1 to the microtubule binding domain (MTBD) through AAA4 and AAA5. The MTBD is linked to the AAA+ ring via a coiled-coil stalk and a buttress domain, which are extended from AAA4 and AAA5, respectively. Further analysis also uncovers the role of AAA3 in the linker movement. The free energy calculation shows that the linker prefers the straight conformation when AAA3 remains in the ATP-bound condition. As AAA3 restricts the motion of AAA4 and AAA5, the linker/AAA5 interactions get stabilized, and the linker cannot move to the pre-power stroke state that halts the complete structural transition required for the mechanochemical cycle. Therefore, we suggest that AAA3 governs dynein's mechanochemical cycle and motility by controlling the AAA4 and AAA5 domains that further regulate the linker movement and the power stroke formation.
Collapse
|
18
|
Wang Q, Kolomeisky AB. Theoretical Analysis of Run Length Distributions for Coupled Motor Proteins. J Phys Chem B 2019; 123:5805-5813. [PMID: 31246472 DOI: 10.1021/acs.jpcb.9b04710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Motor proteins, also known as biological molecular motors, play important roles in various biological processes. In recent years, properties of single-motor proteins have been intensively investigated using multiple experimental and theoretical tools. However, in real cellular systems biological motors typically function in groups, but the mechanisms of their collective dynamics remain not well understood. Here we investigate theoretically distributions of run lengths for coupled motor proteins that move along linear tracks. Our approach utilizes a method of first-passage processes, which is supplemented by Monte Carlo computer simulations. Theoretical analysis allowed us to clarify several aspects of the cooperativity mechanisms for coupled biological molecular motors. It is found that the run length distribution for two motors, in contrast to single motors, is nonmonotonic. In addition, the transport efficiency of two-motor complexes might be strongly increased. We also argue that the degree of cooperativity is influenced by several characteristics of motor proteins such as the strength of intermolecular interactions, stall forces, dissociations constants, and the detachment forces. The application of our theoretical analysis for several motor proteins is also discussed.
Collapse
|
19
|
Chaudhary AR, Lu H, Krementsova EB, Bookwalter CS, Trybus KM, Hendricks AG. MAP7 regulates organelle transport by recruiting kinesin-1 to microtubules. J Biol Chem 2019; 294:10160-10171. [PMID: 31085585 PMCID: PMC6664170 DOI: 10.1074/jbc.ra119.008052] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated proteins (MAPs) regulate microtubule polymerization, dynamics, and organization. In addition, MAPs alter the motility of kinesin and dynein to control trafficking along microtubules. MAP7 (ensconsin, E-MAP-115) is a ubiquitous MAP that organizes the microtubule cytoskeleton in mitosis and neuronal branching. MAP7 also recruits kinesin-1 to microtubules. To understand how the activation of kinesin-1 by MAP7 regulates the motility of organelles transported by ensembles of kinesin and dynein, we isolated organelles and reconstituted their motility in vitro In the absence of MAP7, isolated phagosomes exhibit approximately equal fractions of plus- and minus-end-directed motility along microtubules. MAP7 causes a pronounced shift in motility; phagosomes move toward the plus-end ∼80% of the time, and kinesin teams generate more force. To dissect MAP7-mediated regulation of kinesin-driven transport, we examined its effects on the motility and force generation of single and teams of full-length kinesin-1 motors. We find that MAP7 does not alter the force exerted by a single kinesin-1 motor, but instead increases its binding rate to the microtubule. For ensembles of kinesin, a greater number of kinesin motors are simultaneously engaged and generating force to preferentially target organelles toward the microtubule plus-end.
Collapse
Affiliation(s)
- Abdullah R Chaudhary
- From the Department of Bioengineering, McGill University, Montréal, Quebec H3A 0C3, Canada and
| | - Hailong Lu
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405-0075
| | - Elena B Krementsova
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405-0075
| | - Carol S Bookwalter
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405-0075
| | - Kathleen M Trybus
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405-0075
| | - Adam G Hendricks
- From the Department of Bioengineering, McGill University, Montréal, Quebec H3A 0C3, Canada and
| |
Collapse
|
20
|
Uçar MC, Lipowsky R. Force sharing and force generation by two teams of elastically coupled molecular motors. Sci Rep 2019; 9:454. [PMID: 30679693 PMCID: PMC6345805 DOI: 10.1038/s41598-018-37126-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Many active cellular processes such as long-distance cargo transport, spindle organization, as well as flagellar and ciliary beating are driven by molecular motors. These motor proteins act collectively and typically work in small teams. One particularly interesting example is two teams of antagonistic motors that pull a common cargo into opposite directions, thereby generating mutual interaction forces. Important issues regarding such multiple motor systems are whether or not motors from the same team share their load equally, and how the collectively generated forces depend on the single motor properties. Here we address these questions by introducing a stochastic model for cargo transport by an arbitrary number of elastically coupled molecular motors. We determine the state space of this motor system and show that this space has a rather complex and nested structure, consisting of multiple activity states and a large number of elastic substates, even for the relatively small system of two identical motors working against one antagonistic motor. We focus on this latter case because it represents the simplest tug-of-war that involves force sharing between motors from the same team. We show that the most likely motor configuration is characterized by equal force sharing between identical motors and that the most likely separation of these motors corresponds to a single motor step. These likelihoods apply to different types of motors and to different elastic force potentials acting between the motors. Furthermore, these features are observed both in the steady state and during the initial build-up of elastic strains. The latter build-up is non-monotonic and exhibits a maximum at intermediate times, a striking consequence of mutual unbinding of the elastically coupled motors. Mutual strain-induced unbinding also reduces the magnitude of the collectively generated forces. Our computational approach is quite general and can be extended to other motor systems such as motor teams working against an optical trap or mixed teams of motors with different single motor properties.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| | - Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
21
|
Srinivas B, Gopalakrishnan M. Temporal cooperativity of motor proteins under constant force: insights from Kramers’ escape problem. Phys Biol 2018; 16:016006. [DOI: 10.1088/1478-3975/aaefa6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Wang Q, Jana B, Diehl MR, Cheung MS, Kolomeisky AB, Onuchic JN. Molecular mechanisms of the interhead coordination by interhead tension in cytoplasmic dyneins. Proc Natl Acad Sci U S A 2018; 115:10052-10057. [PMID: 30224489 PMCID: PMC6176594 DOI: 10.1073/pnas.1806688115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic dyneins play a major role in retrograde cellular transport by moving vesicles and organelles along microtubule filaments. Dyneins are multidomain motor proteins with two heads that coordinate their motion via their interhead tension. Compared with the leading head, the trailing head has a higher detachment rate from microtubules, facilitating the movement. However, the molecular mechanism of such coordination is unknown. To elucidate this mechanism, we performed molecular dynamics simulations on a cytoplasmic dynein with a structure-based coarse-grained model that probes the effect of the interhead tension on the structure. The tension creates a torque that influences the head rotating about its stalk. The conformation of the stalk switches from the α registry to the β registry during the rotation, weakening the binding affinity to microtubules. The directions of the tension and the torque of the leading head are opposite to those of the trailing head, breaking the structural symmetry between the heads. The leading head transitions less often to the β registry than the trailing head. The former thus has a greater binding affinity to the microtubule than the latter. We measured the moment arm of the torque from a dynein structure in the simulations to develop a phenomenological model that captures the influence of the head rotating about its stalk on the differential detachment rates of the two heads. Our study provides a consistent molecular picture for interhead coordination via interhead tension.
Collapse
Affiliation(s)
- Qian Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, 700032 Kolkata, India
| | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Chemistry, Rice University, Houston, TX 77030
| | - Margaret S Cheung
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Physics, University of Houston, Houston, TX 77204
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Chemistry, Rice University, Houston, TX 77030
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77030
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
23
|
Misiura M, Wang Q, Cheung MS, Kolomeisky AB. Theoretical Investigations of the Role of Mutations in Dynamics of Kinesin Motor Proteins. J Phys Chem B 2018; 122:4653-4661. [PMID: 29630822 DOI: 10.1021/acs.jpcb.8b00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Motor proteins are active enzymatic molecules that are critically important for a variety of biological phenomena. It is known that some neurodegenerative diseases are caused by specific mutations in motor proteins that lead to their malfunctioning. Hereditary spastic paraplegia is one of such diseases, and it is associated with the mutations in the neuronal conventional kinesin gene, producing the decreased speed and processivity of this motor protein. Despite the importance of this problem, there is no clear understanding on the role of mutations in modifying dynamic properties of motor proteins. In this work, we investigate theoretically the molecular basis for negative effects of two specific mutations, N256S and R280S, on the dynamics of kinesin motor proteins. We hypothesize that these mutations might accelerate the adenosine triphosphate (ATP) release by increasing the probability of open conformations for the ATP-binding pocket. Our approach is based on the use of coarse-grained structure-based molecular dynamics simulations to analyze the conformational changes and chemical transitions in the kinesin molecule, which is also supplemented by investigation of a mesoscopic discrete-state stochastic model. Computer simulations suggest that mutations N256S and R280S can decrease the free energy difference between open and closed biochemical states, making the open conformation more stable and the ATP release faster, which is in agreement with our hypothesis. Furthermore, we show that in the case of N256S mutation, this effect is caused by disruption of interactions between α helix and switch I and loop L11 structural elements. Our computational results are qualitatively supported by the explicit analysis of the discrete-state stochastic model.
Collapse
Affiliation(s)
| | | | - Margaret S Cheung
- Department of Physics , University of Houston , Houston , Texas 77204 , United States
| | | |
Collapse
|
24
|
Gilbert SP, Guzik-Lendrum S, Rayment I. Kinesin-2 motors: Kinetics and biophysics. J Biol Chem 2018; 293:4510-4518. [PMID: 29444824 DOI: 10.1074/jbc.r117.001324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kinesin-2s are major transporters of cellular cargoes. This subfamily contains both homodimeric kinesins whose catalytic domains result from the same gene product and heterodimeric kinesins with motor domains derived from two different gene products. In this Minireview, we focus on the progress to define the biochemical and biophysical properties of the kinesin-2 family members. Our understanding of their mechanochemical capabilities has been advanced by the ability to identify the kinesin-2 genes in multiple species, expression and purification of these motors for single-molecule and ensemble assays, and development of new technologies enabling quantitative measurements of kinesin activity with greater sensitivity.
Collapse
Affiliation(s)
- Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Stephanie Guzik-Lendrum
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
25
|
Brown AI, Sivak DA. Allocating and Splitting Free Energy to Maximize Molecular Machine Flux. J Phys Chem B 2018; 122:1387-1393. [PMID: 29290114 DOI: 10.1021/acs.jpcb.7b10621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomolecular machines transduce between different forms of energy. These machines make directed progress and increase their speed by consuming free energy, typically in the form of nonequilibrium chemical concentrations. Machine dynamics are often modeled by transitions between a set of discrete metastable conformational states. In general, the free-energy change associated with each transition can increase the forward rate constant, decrease the reverse rate constant, or both. In contrast to previous optimizations, we find that in general flux is maximized neither by devoting all free-energy changes to increasing forward rate constants nor by solely decreasing reverse rate constants. Instead, the optimal free-energy splitting depends on the detailed dynamics. Extending our analysis to machines with vulnerable states (from which they can break down), in the strong driving corresponding to in vivo cellular conditions, processivity is maximized by reducing the occupation of the vulnerable state.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics, Simon Fraser University , Burnaby, British Columbia V5A1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University , Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|