1
|
Huang CF, Yeh ML, Huang CI, Liang PC, Lin YH, Hsieh MY, Chen KY, Ko YM, Lin ZY, Chen SC, Huang JF, Dai CY, Chuang WL, Yu ML. Ribavirin facilitates early viral kinetics in chronic hepatitis C patients receiving daclatasvir/asunaprevir. J Gastroenterol Hepatol 2020; 35:151-156. [PMID: 31373037 DOI: 10.1111/jgh.14815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Ribavirin (RBV) remains crucial in difficult-to-cure chronic hepatitis C patients receiving directly acting antivirals (DAAs). The current study aimed to address whether RBV enhanced early viral kinetics in patients with DAAs. METHODS Hepatitis C virus (HCV) genotype-1b patients were allocated to daclatasvir/asunaprevir +weight-based RBV (1000-1200 mg/day) for 12-24 weeks. HCV RNA levels were compared at day 1, week 1, week 2, and week 4 of treatment. RESULTS The sustained virological response rate was 100% (67/67) and 96.7% (59/61) in the RBV and non-RBV group, respectively. The HCV RNA levels at treatment week 2 (W2) were significantly lower in the RBV group than in the non-RBV group (0.42 ± 0.81 log IU/mL vs 0.79 ± 1.03 log IU/mL, P = 0.04). Among the intermediate responders who remained to have detectable RNA after W1 of treatment, patients with RBV had a significantly higher rate of undetectable HCV RNA (71.4% vs 36.0%, P = 0.003) and lower HCV RNA level at W2 (0.55 ± 0.89 log IU/mL vs 1.32 ± 1.04 log IU/mL, P = 0.001). A more significant magnitude of HCV RNA reduction was also noted from baseline to day 1 (3.15 ± 0.38 log IU/mL vs 2.80 ± 0.70 log IU/mL, P = 0.009) and W1 to W2 (1.40 ± 0.65 log IU/mL vs 0.88 ± 0.78 log IU/mL, P = 0.007) in the RBV group compared to the non-RBV group among the intermediate responders. Logistic regression analysis revealed that adding RBV independently predicted undetectable HCV RNA at W2 (odds ratio/confidence interval: 4.74/1.54-14.57, P = 0.007) in the intermediate responders. CONCLUSIONS Adding RBV to DAAs improved early viral kinetic, in particular, for intermediate responders.
Collapse
Affiliation(s)
- Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Yu Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Min Ko
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Center for Cancer Research, and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) and Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.,Center for Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches. Semin Immunol 2013; 25:193-200. [PMID: 23375135 PMCID: PMC3836867 DOI: 10.1016/j.smim.2012.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/08/2012] [Indexed: 11/23/2022]
Abstract
Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology.
Collapse
|
3
|
Watanabe T, Hiasa Y, Tokumoto Y, Hirooka M, Abe M, Ikeda Y, Matsuura B, Chung RT, Onji M. Protein kinase R modulates c-Fos and c-Jun signaling to promote proliferation of hepatocellular carcinoma with hepatitis C virus infection. PLoS One 2013; 8:e67750. [PMID: 23844083 PMCID: PMC3699507 DOI: 10.1371/journal.pone.0067750] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/22/2013] [Indexed: 12/22/2022] Open
Abstract
Double-stranded RNA-activated protein kinase R (PKR) is known to be upregulated by hepatitis C virus (HCV) and overexpressed in hepatocellular carcinoma (HCC). However, the precise roles of PKR in HCC with HCV infection remain unclear. Two HCV replicating cell lines (JFH-1 and H77s), generated by transfection of Huh7.5.1 cells, were used for experiments reported here. PKR expression was modulated with siRNA and a PKR expression plasmid, and cancer-related genes were assessed by real-time PCR and Western blotting; cell lines were further analyzed using a proliferation assay. Modulation of genes by PKR was also assessed in 34 human HCC specimens. Parallel changes in c-Fos and c-Jun gene expression with PKR were observed. Levels of phosphorylated c-Fos and c-Jun were upregulated by an increase of PKR, and were related to levels of phosphorylated JNK1 and Erk1/2. DNA binding activities of c-Fos and c-Jun also correlated with PKR expression, and cell proliferation was dependent on PKR-modulated c-Fos and c-Jun expression. Coordinate expression of c-Jun and PKR was confirmed in human HCC specimens with HCV infection. PKR upregulated c-Fos and c-Jun activities through activation of Erk1/2 and JNK1, respectively. These modulations resulted in HCC cell proliferation with HCV infection. These findings suggest that PKR-related proliferation pathways could be an attractive therapeutic target.
Collapse
Affiliation(s)
- Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoshio Ikeda
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Bunzo Matsuura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Raymond T. Chung
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Morikazu Onji
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
4
|
|
5
|
Antiviral activity of rChIFN-α against vesicular stomatitis virus and Newcastle disease virus: A novel recombinant chicken interferon-α showed high antiviral activity. Res Vet Sci 2011; 91:e73-9. [DOI: 10.1016/j.rvsc.2010.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 10/27/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022]
|
6
|
Tariq H, Manzoor S, Parvaiz F, Javed F, Fatima K, Qadri I. An overview: in vitro models of HCV replication in different cell cultures. INFECTION GENETICS AND EVOLUTION 2011; 12:13-20. [PMID: 22061839 DOI: 10.1016/j.meegid.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/21/2011] [Accepted: 10/12/2011] [Indexed: 01/14/2023]
Abstract
Although much of productive research has been conducted in the field of molecular virology of Hepatitis C virus (HCV) regarding its genes, gene functions and proteins, development of an efficient cell culture model for its replication remained a focused area. Focus has been directed to establish HCV in vitro replication system. This replication system should mimic its intrahepatic pathogenesis so that antivirals should be screened and in vitro gene profiling of HCV induced pathogenesis should be worked out. Since 1990 various experimental approaches and strategies have been utilized in phase of development of a robust replication model for HCV, and success has been reported for a few genotypes. Still the work is going on to have more success in availing such robust replication models for all the genotypes. This will help to have a common antiviral strategy against HCV induced pathogenesis involving any genotype or subtype.
Collapse
Affiliation(s)
- Huma Tariq
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | | | | | | | | | | |
Collapse
|
7
|
The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C virus-induced host membrane rearrangement. PLoS One 2011; 6:e26300. [PMID: 22022594 PMCID: PMC3192179 DOI: 10.1371/journal.pone.0026300] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/23/2011] [Indexed: 01/17/2023] Open
Abstract
Background Hepatitis C virus (HCV), like other positive-sense RNA viruses, replicates on an altered host membrane compartment that has been called the “membranous web.” The mechanisms by which the membranous web are formed from cellular membranes are poorly understood. Several recent RNA interference screens have demonstrated a critical role for the host phosphatidylinositol 4-kinase PI4KA in HCV replication. We have sought to define the function of PI4KA in viral replication. Methodology/Principal Findings Using a nonreplicative model of membranous web formation, we show that PI4KA silencing leads to aberrant web morphology. Furthermore, we find that PI4KA and its product, phosphatidylinositol 4-phosphate, are enriched on membranous webs and that PI4KA is found in association with NS5A in HCV-infected cells. While the related lipid kinase PI4KB also appears to support HCV replication, it does not interact with NS5A. Silencing of PI4KB does not overtly impair membranous web morphology or phosphatidylinositol 4-phosphate enrichment at webs, suggesting that it acts at a different point in viral replication. Finally, we demonstrate that the aberrant webs induced by PI4KA silencing require the activity of the viral NS3-4A serine protease but not integrity of the host secretory pathway. Conclusions/Significance PI4KA is necessary for the local enrichment of PI 4-phosphate at the HCV membranous web and for the generation of morphologically normal webs. We also show that nonreplicative systems of web formation can be used to order molecular events that drive web assembly.
Collapse
|
8
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
9
|
Bailey J. An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods. Altern Lab Anim 2010; 38:471-94. [DOI: 10.1177/026119291003800602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper ( 1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA, USA
| |
Collapse
|
10
|
Uprichard SL. Hepatitis C virus experimental model systems and antiviral drug research. Virol Sin 2010; 25:227-45. [PMID: 20960298 DOI: 10.1007/s12250-010-3134-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/18/2010] [Indexed: 12/27/2022] Open
Abstract
An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics.
Collapse
Affiliation(s)
- Susan L Uprichard
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Abstract
In the last decade, viral kinetic modeling has played an important role in the analysis of HCV RNA decay after the initiation of antiviral therapy. Models have provided a means of evaluating the antiviral effectiveness of therapy and of estimating parameters, such as the rate of virion clearance and the rate of loss of HCV-infected cells, and they have suggested mechanisms of action for both interferon-alpha and ribavirin. The inclusion of homeostatic proliferation of infected and uninfected hepatocytes in existing viral kinetic models has allowed prediction of most observed HCV RNA profiles under treatment, for example, biphasic and triphasic viral decay and viral rebound to baseline values after the cessation of therapy. In addition, new kinetic models have taken into consideration the different pharmacokinetics of standard and pegylated forms of interferon and have incorporated alanine aminotransferase kinetics and aspects of immune responses to provide a more comprehensive picture of the biology underlying changes in HCV RNA during therapy. Here, we describe our current understanding of the kinetics of HCV infection and treatment.
Collapse
|
12
|
Mondal R, Koev G, Pilot-Matias T, He Y, Ng T, Kati W, Molla A. Development of a cell-based assay for high-throughput screening of inhibitors against HCV genotypes 1a and 1b in a single well. Antiviral Res 2009; 82:82-8. [PMID: 19174175 DOI: 10.1016/j.antiviral.2008.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/26/2022]
Abstract
The Hepatitis C (HCV) replicon system is a useful tool for the high-volume screening of inhibitors of HCV replication. In this report, a cell-based assay has been described, which monitors the inhibition of HCV genotypes 1a and 1b as well as cytotoxicity, from a single well of a 96-well plate. A mixture of two stable replicon cell lines was used: one containing a 1a-H77 replicon expressing a firefly luciferase reporter, and the other one containing a 1b-N replicon with a secreted alkaline phosphatase reporter, thus allowing us to monitor replication of two HCV genotypes in the same well. Cytotoxicity was measured using the Resazurin cytotoxicity assay. The assay was validated with known HCV inhibitors and showed that the antiviral activity and cytotoxicity of compounds were reproducibly measured under screening conditions. It was also showed that the assay's signal-to-noise ratio and Z' coefficient were suitable for high-throughput screening. A panel of HCV inhibitors showed a good correlation between EC(50) and TD(50) values for 1a and 1b replicon activity and cytotoxicity measured using either a single replicon format or mixed replicon format. Thus, the use of this mixed replicon format provides an economical method for simultaneous measurement of compound activity against two HCV genotypes as well as cytotoxicity, thereby reducing cost of reagents and labor as well as improving throughput.
Collapse
Affiliation(s)
- Rubina Mondal
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Subcellular forms and biochemical events triggered in human cells by HCV polyprotein expression from a viral vector. Virol J 2008; 5:102. [PMID: 18793431 PMCID: PMC2553408 DOI: 10.1186/1743-422x-5-102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/15/2008] [Indexed: 12/16/2022] Open
Abstract
To identify the subcellular forms and biochemical events induced in human cells after HCV polyprotein expression, we have used a robust cell culture system based on vaccinia virus (VACV) that efficiently expresses in infected cells the structural and nonstructural proteins of HCV from genotype 1b (VT7-HCV7.9). As determined by confocal microscopy, HCV proteins expressed from VT7-HCV7.9 localize largely in a globular-like distribution pattern in the cytoplasm, with some proteins co-localizing with the endoplasmic reticulum (ER) and mitochondria. As examined by electron microscopy, HCV proteins induced formation of large electron-dense cytoplasmic structures derived from the ER and containing HCV proteins. In the course of HCV protein production, there is disruption of the Golgi apparatus, loss of spatial organization of the ER, appearance of some "virus-like" structures and swelling of mitochondria. Biochemical analysis demonstrate that HCV proteins bring about the activation of initiator and effector caspases followed by severe apoptosis and mitochondria dysfunction, hallmarks of HCV cell injury. Microarray analysis revealed that HCV polyprotein expression modulated transcription of genes associated with lipid metabolism, oxidative stress, apoptosis, and cellular proliferation. Our findings demonstrate the uniqueness of the VT7-HCV7.9 system to characterize morphological and biochemical events related to HCV pathogenesis.
Collapse
|
14
|
Hiasa Y, Kuzuhara H, Tokumoto Y, Konishi I, Yamashita N, Matsuura B, Michitaka K, Chung RT, Onji M. Hepatitis C virus replication is inhibited by 22beta-methoxyolean-12-ene-3beta, 24(4beta)-diol (ME3738) through enhancing interferon-beta. Hepatology 2008; 48:59-69. [PMID: 18459156 DOI: 10.1002/hep.22289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED A derivative of soyasapogenol, 22beta-methoxyolean-12-ene-3beta, 24(4beta)-diol (ME3738), ameliorates liver injury induced by Concanavalin A in mice. We examined whether ME3738 has independent antiviral effects against hepatitis C virus (HCV) using an established HCV replication model that expresses the full-length genotype 1a HCV complementary DNA plasmid (pT7-flHCV-Rz) under the control of a replication-defective adenoviral vector expressing T7 polymerase. Hepatocellular carcinoma (HepG2) cells, human hepatoma (Huh7) cells, or monkey kidney (CV-1) cells were transfected with pT7-flHCV-Rz, and infected with adenoviral vector expressing T7 polymerase. ME3738 or interferon-alpha (IFN-alpha) was added thereafter and then protein and RNA were harvested from the cells at 9 days after infection. HCV-positive and HCV-negative strands were measured by real-time reverse-transcription polymerase chain reaction and HCV core protein expression was measured using an enzyme-linked immunosorbent assay. The messenger RNA levels of innate antiviral response-related genes were assessed using real-time reverse-transcription polymerase chain reaction. ME3738 dose-dependently reduced HCV-RNA and core protein in hepatocyte-derived cell lines. The antiviral effect was more pronounced in HepG2 than in Huh7 cells. ME3738 increased messenger RNA levels of interferon-beta (IFN-beta) and of IFN-stimulated genes (2'-5' oligoadenylate synthetase, myxovirus resistance protein A [MxA]). Interferon-beta knockdown by small interfering RNA abrogated the anti-HCV effect of ME3738. Moreover, the anti-HCV effects were synergistic when ME3738 was combined with IFN-alpha. CONCLUSION ME3738 has antiviral effects against HCV. The enhancement of autocrine IFN-beta suggests that ME3738 exerts antiviral action along the type I IFN pathway. This anti-HCV action by ME3738 was synergistically enhanced when combined with IFN-alpha. ME3738 might be a useful anti-HCV drug either with or without IFN-alpha.
Collapse
Affiliation(s)
- Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yao X, Han Q, Song J, Liang C, Wakita T, Yang R, Chen X. Baculovirus Mediated Production of Infectious Hepatitis C Virus in Human Hepatoma Cells Stably Expressing T7 RNA Polymerase. Mol Biotechnol 2008; 40:186-94. [DOI: 10.1007/s12033-008-9075-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/21/2008] [Indexed: 02/05/2023]
|
16
|
Zoller H, Vogel W. Nanomedicines in the treatment of patients with hepatitis C co-infected with HIV--focus on pegylated interferon-alpha. Int J Nanomedicine 2007; 1:399-409. [PMID: 17722274 PMCID: PMC2676642 DOI: 10.2147/nano.2006.1.4.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In immuno-competent individuals, the natural course of chronic hepatitis C virus (HCV) infection is highly variable and 5%–30% of patients develop cirrhosis over 20 years. Co-infection with HCV and human immunodeficiency virus (HIV) is an important prognostic factor and associated with more frequent and accelerated progression to cirrhosis. Until recently HIV/AIDS-related complications were life limiting in patients co-infected with HCV; the introduction of highly active antiretroviral treatment (HAART) and the better prognosis of HIV infection has made HCV-related complications an emerging health problem in HCV/HIV co-infected individuals. Treatment of chronic HCV infection has also evolved since the introduction of interferon-alpha. Recently, introduction of pegylated interferon-alpha (peginterferon-alpha) has resulted in an increase in sustained virus clearance rates of up to 80% in selected genotypes and patient populations. The safety and efficacy of modern anti HCV treatment regimens – based on peginterferon-alpha in combination with ribavirin – was evaluated in 4 controlled trials. Sustained clearance of hepatitis C virus can be achieved in up to 35% of patients with HIV/HCV co-infection, and novel HCV treatment regimens based on peginterferon-alpha have no negative effect on the control of HIV disease. In conclusion, if HIV infection is well controlled and CD4+ cell counts >100/mm3, treatment of chronic hepatitis C with peginterferon in combination with ribavirin is safe and should be given for 48 weeks regardless of the HCV genotype. Introduction of peginterferon-alpha has significantly improved adherence to treatment and treatment efficacy; in particular sustained virologic response in patients with HCV genotype 1 or 4 infection improved, but sustained viral clearance in only 7%–38% of patients infected with genotype 1 and 4 cannot be the final step in development of effective treatments in patients with HCV/HIV co-infection.
Collapse
Affiliation(s)
- Heinz Zoller
- Correspondence: Heinz Zoller, Innsbruck Medical University, University Hospital of Innsbruck, Department of Medicine, Clinical Division of Gastroenterology and Hepatology, Anichstrasse 35, Austria, Tel +43 512 504 23397, Fax +43 512 504 23309, Email
| | | |
Collapse
|
17
|
Tokumoto Y, Hiasa Y, Horiike N, Michitaka K, Matsuura B, Chung RT, Onji M. Hepatitis C virus expression and interferon antiviral action is dependent on PKR expression. J Med Virol 2007; 79:1120-7. [PMID: 17596833 DOI: 10.1002/jmv.20902] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferon (IFN)-inducible double-stranded RNA-activated protein kinase (PKR) is thought to play a key antiviral role against hepatitis C virus (HCV). However, demonstrating the importance of PKR expression on HCV protein synthesis in the presence or absence of IFN has proven difficult in vivo. In the present experiment, full-length HCV constructs were transiently transfected into two cell lines stably expressing T7 RNA polymerase. HCV expression was monitored under conditions of upregulated or downregulated PKR expression. In addition, IFN was monitored during downregulation of PKR. HCV expression effectively increased PKR expression, as well as that of its regulated proteins. PKR was obviously knocked down by PKR-specific siRNA, which resulted in significantly increased HCV core protein levels. Conversely, over-expression of PKR significantly suppressed HCV core levels in both cell lines. Furthermore, IFN induced high levels of PKR, whereas downregulation of PKR reversed IFN's antiviral effects and increased HCV core levels. Based on these results, it appears that HCV protein expression is directly dependent on PKR expression. PKR is antiviral toward HCV and responsible for IFN's effect against HCV.
Collapse
Affiliation(s)
- Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Ng TI, Mo H, Pilot-Matias T, He Y, Koev G, Krishnan P, Mondal R, Pithawalla R, He W, Dekhtyar T, Packer J, Schurdak M, Molla A. Identification of host genes involved in hepatitis C virus replication by small interfering RNA technology. Hepatology 2007; 45:1413-21. [PMID: 17518369 DOI: 10.1002/hep.21608] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) replication is highly dependent on host cell factors. Identification of these host factors not only facilitates understanding of the biology of HCV infection but also enables the discovery of novel targets for anti-HCV therapy. To identify host genes important for HCV RNA replication, we screened a library of small interfering RNA (siRNA) that targets approximately 4,000 human genes in Huh7-derived EN5-3 cells harboring an HCV subgenomic replicon with the nonstructural region NS3-NS5B from the 1b-N strain. Nine cellular genes that potentially regulate HCV replication were identified in this screen. Silencing of these genes resulted in inhibition of HCV replication by more than 60% and exhibited minimal toxicity. Knockdown of host gene expression by these siRNAs was confirmed at the RNA level and, in some instances, at the protein level. The level of siRNA silencing of these host genes correlated well with inhibition of HCV. These genes included those that encoded a G-protein coupled receptor (TBXA2R), a membrane protein (LTbeta), an adapter protein (TRAF2), 2 transcription factors (RelA and NFkappaB2), 2 protein kinases (MKK7 and SNARK), and 2 closely related transporter proteins (SLC12A4 and SLC12A5). Of interest, some of these genes are members of the tumor necrosis factor/lymphotoxin signaling pathway. CONCLUSION Findings of this study may provide important information for understanding HCV replication. In addition, these cellular genes may constitute a novel set of targets for HCV antiviral therapy.
Collapse
Affiliation(s)
- Teresa I Ng
- Global Pharmaceutical Research and Development, Antiviral Research, Abbott Laboratories, 200 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sallie R. Replicative homeostasis III: implications for antiviral therapy and mechanisms of response and non-response. Virol J 2007; 4:29. [PMID: 17355620 PMCID: PMC1847443 DOI: 10.1186/1743-422x-4-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 03/13/2007] [Indexed: 12/27/2022] Open
Abstract
While improved drug regimens have greatly enhanced outcomes for patients with chronic viral infection, antiviral therapy is still not ideal due to drug toxicities, treatment costs, primary drug failure and emergent resistance. New antiviral agents, alternative treatment strategies and a better understanding of viral pathobiology, host responses and drug action are desperately needed. Interferon (IFN) and ribavirin, are effective drugs used to treat hepatitis C (HCV), but the mechanism(s) of their action are uncertain. Error catastrophe (EC), or precipitous loss of replicative fitness caused by genomic mutation, is postulated to mediate ribavirin action, but is a deeply flawed hypothesis lacking empirical confirmation. Paradoxically ribavirin, a proven RNA mutagen, has no impact on HCV viraemia long term, suggesting real viruses, replicating in-vitro, as opposed to mathematical models, replicating in-silico, are likely to resist EC by highly selective replication of fit (~consensus sequence) genomes mediated, in part, by replicative homeostasis (RH), an epicyclic mechanism that dynamically links RNApol fidelity and processivity and other viral protein functions. Replicative homeostasis provides a rational explanation for the various responses seen during treatment of HCV, including genotype-specific and viral load-dependent differential response rates, as well as otherwise unexplained phenomena like the transient inhibition and rebound of HCV viraemia seen during ribavirin monotherapy. Replicative homeostasis also suggests a primarily non-immunological mechanism that mediates increased immune responsiveness during treatment with ribavirin (and other nucleos(t)ide analogues), explicating the enhanced second-phase clearance of HCV ribavirin promotes and, thus, the apparent immunomodulatory action of ribavirin. More importantly, RH suggests specific new antiviral therapeutic strategies.
Collapse
|
20
|
Sheehy P, Mullan B, Moreau I, Kenny-Walsh E, Shanahan F, Scallan M, Fanning LJ. In vitro replication models for the hepatitis C virus. J Viral Hepat 2007; 14:2-10. [PMID: 17212638 DOI: 10.1111/j.1365-2893.2006.00807.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of the hepatitis C virus (HCV), attention turned to the development of models whereby replication of the virus could be investigated. Among the HCV replication models developed, the HCV RNA replicon model and the newly discovered infectious cell culture systems have had an immediate impact on the study of HCV replication, and will continue to lead to important advances in our understanding of HCV replication. The aim of this study is to deal with developments in HCV replication models in a chronological order from the early 1990s to the recent infectious HCV cell culture systems.
Collapse
Affiliation(s)
- P Sheehy
- Department of Medicine, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lin W, Kim SS, Yeung E, Kamegaya Y, Blackard JT, Kim KA, Holtzman MJ, Chung RT. Hepatitis C virus core protein blocks interferon signaling by interaction with the STAT1 SH2 domain. J Virol 2006; 80:9226-35. [PMID: 16940534 PMCID: PMC1563912 DOI: 10.1128/jvi.00459-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging data have indicated that hepatitis C virus (HCV) subverts the host antiviral response to ensure its persistence. We previously demonstrated that HCV protein expression suppresses type I interferon (IFN) signaling by leading to the reduction of phosphorylated STAT1 (P-STAT1). We also demonstrated that HCV core protein directly bound to STAT1. However, the detailed mechanisms by which HCV core protein impacts IFN signaling components have not been fully clarified. In this report, we show that the STAT1 interaction domain resides in the N-terminal portion of HCV core (amino acids [aa] 1 to 23). This domain is also required to produce P-STAT1 reduction and inhibit IFN signaling transduction. Conversely, the C-terminal region of STAT1, specifically the SH2 domain (aa 577 to 684), is required for the interaction of HCV core with STAT1. The STAT1 SH2 domain is critical for STAT1 hetero- or homodimerization. We propose a model by which the binding of HCV core to STAT1 results in decreased P-STAT, blocked STAT1 heterodimerization to STAT2, and, therefore, reduced IFN-stimulated gene factor-3 binding to DNA and disrupted IFN-stimulated gene transcription.
Collapse
Affiliation(s)
- Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Blackard JT, Kemmer N, Sherman KE. Extrahepatic replication of HCV: insights into clinical manifestations and biological consequences. Hepatology 2006; 44:15-22. [PMID: 16799966 DOI: 10.1002/hep.21283] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An estimated 170 million persons are infected with the hepatitis C virus (HCV) worldwide. While hepatocytes are the major site of infection, a broad clinical spectrum of extrahepatic complications and diseases are associated with chronic HCV infection, highlighting the involvement of HCV in a variety of non-hepatic pathogenic processes. There is a growing body of evidence to suggest that HCV can replicate efficiently in extrahepatic tissues and cell types, including peripheral blood mononuclear cells. Nonetheless, laboratory confirmation of HCV replication in extrahepatic sites is fraught with technical challenges, and in vitro systems to investigate extrahepatic replication of HCV are severely limited. Thus, future studies of extrahepatic replication should combine innovative in vitro assays with a prospective cohort design to maximize our understanding of this important phenomenon to the pathogenesis and treatment response rates of HCV.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | |
Collapse
|
23
|
Abstract
The kinetics of hepatitis C virus (HCV) RNA during the first weeks of interferon-based antiviral therapy can be analysed by specific mathematical models. Those models have been inspired by previous work on the kinetics of human immune deficiency virus (HIV) and hepatitis B virus (HBV) during antiviral therapy and are able to summarize important features of early response to antiviral therapy in patients chronically infected with HCV. Kinetic parameters of the underlying biological processes as viral clearance and infected cell loss as well as an efficiency factor of therapy on viral production can be obtained when fitting frequent quantifications of HCV RNA with such models. The main aims of analysing hepatitis C viral kinetics include the efficient comparison of different treatment regimens, prediction of virological response, and conclusions on antiviral mechanisms of therapy.
Collapse
Affiliation(s)
- Eva Herrmann
- Saarland University, Faculty of Medicine, Internal Medicine II, Homburg/Saar, Germany.
| | | |
Collapse
|
24
|
Dash S, Haque S, Joshi V, Prabhu R, Hazari S, Fermin C, Garry R. HCV-hepatocellular carcinoma: new findings and hope for effective treatment. Microsc Res Tech 2006; 68:130-48. [PMID: 16276514 DOI: 10.1002/jemt.20227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present here a comprehensive review of the current literature plus our own findings about in vivo and in vitro analysis of hepatitis C virus (HCV) infection, viral pathogenesis, mechanisms of interferon action, interferon resistance, and development of new therapeutics. Chronic HCV infection is a major risk factor for the development of human hepatocellular carcinoma. Standard therapy for chronic HCV infection is the combination of interferon alpha and ribavirin. A significant number of chronic HCV patients who cannot get rid of the virus infection by interferon therapy experience long-term inflammation of the liver and scarring of liver tissue. Patients who develop cirrhosis usually have increased risk of developing liver cancer. The molecular details of why some patients do not respond to standard interferon therapy are not known. Availability of HCV cell culture model has increased our understanding on the antiviral action of interferon alpha and mechanisms of interferon resistance. Interferons alpha, beta, and gamma each inhibit replication of HCV, and the antiviral action of interferon is targeted to the highly conserved 5'UTR used by the virus to translate protein by internal ribosome entry site mechanism. Studies from different laboratories including ours suggest that HCV replication in selected clones of cells can escape interferon action. Both viral and host factors appear to be involved in the mechanisms of interferon resistance against HCV. Since interferon therapy is not effective in all chronic hepatitis C patients, alternative therapeutic strategies are needed to treat chronic hepatitis C patients not responding to interferon therapy. We also reviewed the recent development of new alternative therapeutic strategies for chronic hepatitis C, which may be available in clinical use within the next decade. There is hope that these new agents along with interferon will prevent the occurrence of hepatocellular carcinoma due to chronic persistent hepatitis C virus infection. This review is not inclusive of all important scientific publications due to space limitation.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hiasa Y, Blackard JT, Lin W, Kamegaya Y, Horiike N, Onji M, Schmidt EV, Chung RT. Cell-based models of sustained, interferon-sensitive hepatitis C virus genotype 1 replication. J Virol Methods 2005; 132:195-203. [PMID: 16313977 PMCID: PMC2865175 DOI: 10.1016/j.jviromet.2005.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/18/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
We have previously reported hepatitis C virus (HCV) replication using a novel binary expression system in which mammalian cells were transfected with a T7 polymerase-driven full-length genotype 1a HCV cDNA plasmid (pT7-flHCV-Rz) and infected with vaccinia-T7 polymerase. We hypothesized that the use of replication-defective adenoviral vectors expressing T7 (Ad-T7pol) or cell lines stably transfected with T7 (Huh-T7) would alleviate cell toxicity and allow for more sustained HCV replication. CV-1, Huh7, and Huh-T7 cells were transfected with pT7-flHCV-Rz and treated with Ad-T7pol (CV-1 and Huh7 only). Protein and RNA were harvested from cells on days 1, 2, 3, 5, 7, and 9 post-infection. No cytotoxicity was observed at 9 days post-infection in any cell type. HCV positive- and negative-strand RNA expression were strongest during days 1-3 post-infection; however, HCV RNA remained detectable throughout the 9-day observation period. Furthermore, transfection with a replication-incompetent plasmid suggested that efficient HCV replication is dependent upon NS5B gene expression. Finally, after 1-2 days of IFN treatment, HCV positive-strand levels decreased significantly compared to HCV-infected but untreated samples (p<0.05). In conclusion, these refined binary systems offer more durable and authentic models for identification of host cellular processes critical to HCV replication and will permit longer-term analysis of virus-host interactions critical to HCV pathogenesis and the treatment of genotype 1 infections.
Collapse
Affiliation(s)
- Yoichi Hiasa
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, GRJ 816, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Third Department of Internal Medicine, Ehime University School of Medicine, Shitsukawa, Toon-shi, Ehime 791-0295, Japan
| | - Jason T. Blackard
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, GRJ 816, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wenyu Lin
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, GRJ 816, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoshitaka Kamegaya
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, GRJ 816, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Norio Horiike
- Third Department of Internal Medicine, Ehime University School of Medicine, Shitsukawa, Toon-shi, Ehime 791-0295, Japan
| | - Morikazu Onji
- Third Department of Internal Medicine, Ehime University School of Medicine, Shitsukawa, Toon-shi, Ehime 791-0295, Japan
| | - Emmett V. Schmidt
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Building149, 55 Fruit Street, Boston, MA 02114, USA
- Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Raymond T. Chung
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, GRJ 816, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Corresponding author. Tel.: +1 617 724 7562; fax: +1 617 726 5895
| |
Collapse
|
26
|
Abstract
Viral kinetic modeling has played an important role in the analysis of HCV RNA decay after the initiation of antiviral therapy. Models have provided a means of evaluating the antiviral effectiveness of therapy, of estimating parameters such as the rate of virion clearance and the rate of clearance of hepatitis C virus (HCV)-infected cells, and they have suggested mechanisms of action for both interferon and ribavirin. Nevertheless, the models that were originally formulated were unable to explain all of the observed HCV RNA profiles. We provide an update on the state of HCV kinetic modeling and discuss new models that have taken into consideration the different pharmacokinetics of standard and pegylated forms of interferon, allow for changes in drug effectiveness as drug concentrations fall between dosing intervals, and that have incorporated alanine aminotransferase kinetics and aspects of immune responses to provide a more comprehensive picture of the biology underlying changes in HCV RNA during therapy.
Collapse
Affiliation(s)
- Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87525, USA.
| | | | | | | |
Collapse
|
27
|
Gómez CE, Vandermeeren AM, García MA, Domingo-Gil E, Esteban M. Involvement of PKR and RNase L in translational control and induction of apoptosis after Hepatitis C polyprotein expression from a vaccinia virus recombinant. Virol J 2005; 2:81. [PMID: 16156900 PMCID: PMC1242258 DOI: 10.1186/1743-422x-2-81] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/12/2005] [Indexed: 12/17/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection is of growing concern in public health with around 350 million chronically infected individuals worldwide. Although the IFN-α/rivabirin is the only approved therapy with 10–30% clinical efficacy, the protective molecular mechanism involved during the treatment is still unknown. To analyze the effect of HCV polyprotein expression on the antiviral response of the host, we developed a novel vaccinia virus (VV)-based delivery system (VT7-HCV7.9) where structural and nonstructural (except part of NS5B) proteins of HCV ORF from genotype 1b are efficiently expressed and produced, and timely regulated in mammalian cell lines. Results Regulated transcript production and viral polypeptide processing was demonstrated in various cell lines infected with the recombinant VT7-HCV7.9, indicating that the cellular and viral proteolytic machineries are functional within these cells. The inducible expression of the HCV polyprotein by VV inhibits the synthesis of both host and viral proteins over the time and also induces apoptosis in HeLa and HepG2-infected cells. These effects occur accompanying with the phosphorylation of the translation initiation factor eIF-2α. In cells co-infected with VT7-HCV7.9 and a recombinant VV expressing the dominant negative eIF-2α-S51A mutant in the presence of the inductor isopropyl-thiogalactoside (IPTG), protein synthesis is rescued. The IFN-inducible protein kinase PKR is responsible for the translational block, as demonstrated with PKR-/- and PKR+/+ cell lines. However, apoptosis induced by VT7-HCV7.9 is mediated by the RNase L pathway, in a PKR-independent manner. Conclusion These findings demonstrate the antiviral relevance of the proteins induced by interferon, PKR and RNase L during expression from a VV recombinant of the HCV polyprotein in human cell lines. HCV polyprotein expression caused a severe cytopathological effect in human cells as a result of inhibition of protein synthesis and apoptosis induction, triggered by the activation of the IFN-induced enzymes PKR and RNase L systems. Thus, the virus-cell system described here highlights the relevance of the IFN system as a protective mechanism against HCV infection.
Collapse
Affiliation(s)
- Carmen E Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Andrée Marie Vandermeeren
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - María Angel García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Elena Domingo-Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
28
|
Lin W, Choe WH, Hiasa Y, Kamegaya Y, Blackard JT, Schmidt EV, Chung RT. Hepatitis C virus expression suppresses interferon signaling by degrading STAT1. Gastroenterology 2005; 128:1034-41. [PMID: 15825084 DOI: 10.1053/j.gastro.2005.02.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The molecular mechanisms by which hepatitis C virus (HCV) antagonizes the antiviral actions of interferon (IFN) have not been fully characterized. Specifically, how HCV proteins impact on IFN signaling components has yet to be elucidated. We used an HCV cell-based expression model to examine the interaction between HCV protein expression and host type I IFN signaling components in the Jak-STAT kinase pathway. METHODS Full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into Huh-T7 cells. HCV expression was monitored by an HCV core antigen enzyme-linked immunosorbent assay. STAT1, P-STAT1, and HCV protein expression was investigated with immunoprecipitation and Western blots. RESULTS Overexpression and small interfering RNA studies showed that STAT1 was indispensable for control of HCV expression. STAT1 and P-STAT1 expression were markedly reduced in HCV-transfected cells. Full-length HCV, HCV core/E1/E2, and NS3-4A were each associated with decreased STAT1 expression, which was attributable to proteasome-dependent degradation of STAT1. HCV core, but not HCV E1, E2, NS3, NS4, or NS5, bound to STAT1. STAT2 expression was not affected by HCV. CONCLUSIONS HCV expression selectively degrades STAT1 and reduces P-STAT1 accumulation in the nucleus in a proteasome-dependent manner. HCV core protein binds STAT1, suggesting that this viral protein is associated with STAT1 degradation. STAT1 plays an indispensable role in innate antiviral immunity against HCV expression. In turn, HCV subverts the Jak-STAT kinase by selectively inducing STAT1 degradation.
Collapse
Affiliation(s)
- Wenyu Lin
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sallie R. Replicative homeostasis: a fundamental mechanism mediating selective viral replication and escape mutation. Virol J 2005; 2:10. [PMID: 15707489 PMCID: PMC552327 DOI: 10.1186/1743-422x-2-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Accepted: 02/11/2005] [Indexed: 01/12/2023] Open
Abstract
Hepatitis C (HCV), hepatitis B (HBV), the human immunodeficiency viruses (HIV), and other viruses that replicate via RNA intermediaries, cause an enormous burden of disease and premature death worldwide. These viruses circulate within infected hosts as vast populations of closely related, but genetically diverse, molecules known as "quasispecies". The mechanism(s) by which this extreme genetic and antigenic diversity is stably maintained are unclear, but are fundamental to understanding viral persistence and pathobiology. The persistence of HCV, an RNA virus, is especially problematic and HCV stability, maintained despite rapid genomic mutation, is highly paradoxical. This paper presents the hypothesis, and evidence, that viruses capable of persistent infection autoregulate replication and the likely mechanism mediating autoregulation - Replicative Homeostasis - is described. Replicative homeostasis causes formation of stable, but highly reactive, equilibria that drive quasispecies expansion and generates escape mutation. Replicative homeostasis explains both viral kinetics and the enigma of RNA quasispecies stability and provides a rational, mechanistic basis for all observed viral behaviours and host responses. More importantly, this paradigm has specific therapeutic implication and defines, precisely, new approaches to antiviral therapy. Replicative homeostasis may also modulate cellular gene expression.
Collapse
|
30
|
Sallie R. Replicative homeostasis: a mechanism of viral persistence. Med Hypotheses 2005; 63:515-23. [PMID: 15288380 DOI: 10.1016/j.mehy.2004.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2004] [Accepted: 02/21/2004] [Indexed: 01/12/2023]
Abstract
Acute viral infection is characterised by high-level replication before prompt decline of viraemia and, commonly, viral clearance. This kinetic pattern is generally held to be due to immune control. However, infection with some viruses, notably hepatitis C (HCV), hepatitis B (HBV) and the human immunodeficiency virus (HIV), often results in chronic stable low-level spontaneously fluctuating viraemia, kinetics that are difficult to rationalize on this basis. The persistence of HCV, an RNA virus, is especially problematic and its stability, occurring despite rapid, genomic mutation is highly paradoxical. This paper outlines the hypothesis, and evidence, that viruses autoregulate replication and mutation and describes a mechanism--replicative homeostasis--explaining viral stability. Replicative homeostasis results in stable, but reactive, replicative equilibria that drive quasispecies expansion and immune escape and explain all observed viral behaviours and host responses. This paradigm implies new approaches to antiviral therapy and is broadly relevant to modulation of gene expression.
Collapse
Affiliation(s)
- Richard Sallie
- St John of God Hospital, Western Gastroenterology, Suite 35, 95 Monash Avenue, Nedlands, Perth, WA 6009, Australia.
| |
Collapse
|
31
|
Bartenschlager R, Frese M, Pietschmann T. Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 2005; 63:71-180. [PMID: 15530561 DOI: 10.1016/s0065-3527(04)63002-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) is a small enveloped RNA virus that belongs to the family Flaviviridae. A hallmark of HCV is its high propensity to establish a persistent infection that in many cases leads to chronic liver disease. Molecular studies of the virus became possible with the first successful cloning of its genome in 1989. Since then, the genomic organization has been delineated, and viral proteins have been studied in some detail. In 1999, an efficient cell culture system became available that recapitulates the intracellular part of the HCV life cycle, thereby allowing detailed molecular studies of various aspects of viral RNA replication and persistence. This chapter attempts to summarize the current state of knowledge in these most actively worked on fields of HCV research.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
32
|
Sun BS, Pan J, Clayton MM, Liu J, Yan X, Matskevich AA, Strayer DS, Gerber M, Feitelson MA. Hepatitis C virus replication in stably transfected HepG2 cells promotes hepatocellular growth and tumorigenesis. J Cell Physiol 2004; 201:447-58. [PMID: 15389552 DOI: 10.1002/jcp.20083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HepG2 cells stably transfected with a full-length, infectious hepatitis C virus (HCV) cDNA demonstrated consistent replication of HCV for more than 3 years. Intracellular minus strand HCV RNA was present. Minus strand synthesis was NS5B dependent, and was sensitive to interferon alpha (IFN alpha) treatment. NS5B and HCV core protein were detectable. HCV stimulated HepG2 cell growth and survival in culture, in soft agar, and accelerated tumor growth in SCID mice. These mice became HCV RNA positive in blood, where the virus was also sensitive to IFN alpha. The RNA banded at the density of HCV, and was resistant to RNase prior to extraction. Hence, HCV stably replicates in HepG2 cells, stimulates hepatocellular growth and tumorigenesis, and is susceptible to IFN alpha both in vitro and in vivo.
Collapse
Affiliation(s)
- Bill S Sun
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Leary J, Chung RT. New antiviral therapies for hepatitis C. Expert Rev Anti Infect Ther 2004; 2:235-43. [PMID: 15482189 DOI: 10.1586/14787210.2.2.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatitis C affects 170 million people worldwide and is the leading indication for liver transplantation. However, despite this high prevalence and burden of disease, current treatment regimens necessitate long durations of therapy, are often poorly tolerated and have suboptimal rates of sustained virologic response. Therefore, much attention has been directed at the development of new therapeutic agents against specific viral targets. This article reviews modifications of current therapies, outlines the viral life cycle and focuses on novel therapeutic agents currently being studied.
Collapse
|
34
|
Wu YS, Feng Y, Dong WQ, Zhang YM, Li M. A vaccinia replication system for producing recombinant hepatitis C virus. World J Gastroenterol 2004; 10:2670-4. [PMID: 15309717 PMCID: PMC4572191 DOI: 10.3748/wjg.v10.i18.2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To develop a cell culture system capable of producing high titer hepatitis C virus (HCV) stocks with recombinant vaccinia viruses as helpers.
METHODS: Two plasmids were used for the generation of recombinant HCV: one containing the full-length HCV cDNA cloned between T7 promoter and T7 terminator of pOCUS-T7 vector, and the other containing the HCV polyprotein open reading frame (ORF) directly linked to a vaccinia late promoter in PSC59. These two plasmids were co-transfected into BHK21 cells, which were then infected with vTF7-3 recombinant vaccinia helper viruses.
RESULTS: After 5 d of incubation, approximately 3.6 × 107 copies of HCV RNA were present per milliliter of cell culture supernatant, as detected by fluorescence quantitative RT-PCR (FQ-PCR). The yield of recombinant HCV using this cell system increased 100- to 1000-fold compared to in vitro-transcribed HCV genomic RNA or selective subgenomic HCV RNA molecule method.
CONCLUSION: This cell culture system is capable of producing high titer recombinant HCV.
Collapse
Affiliation(s)
- Ying-Song Wu
- Institute of Tropical Medicine, First Military Medical University, Guangzhou 510515, Guangdong Province, China
| | | | | | | | | |
Collapse
|
35
|
Cagnon L, Wagaman P, Bartenschlager R, Pietschmann T, Gao T, Kneteman NM, Tyrrell DLJ, Bahl C, Niven P, Lee S, Simmen KA. Application of the trak-C HCV core assay for monitoring antiviral activity in HCV replication systems. J Virol Methods 2004; 118:23-31. [PMID: 15158065 DOI: 10.1016/j.jviromet.2004.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 12/15/2003] [Accepted: 01/06/2004] [Indexed: 01/22/2023]
Abstract
The Ortho trak-C immunoassay has recently established detection of the HCV core antigen as a viable indirect marker of HCV replication in clinical samples. In this study, trak-C is used to monitor HCV replication in three pre-clinical models: the cellular HCV replicon system, transient transfection of HCV genomes, and the murine Alb-uPa/SCID HCV infection model. All of these systems utilize full-length HCV genomes that direct the expression of core, facilitating its detection with monoclonal antibodies. When performed with purified protein, the assay detects HCV core with a lower limit of detection at 1.5pg, and exhibits linear detection up to 100pg. When assaying extracts prepared from Huh-7 clone 21-5 cells harboring a full-length HCV replicon, core is detectable from as few as 63 cell equivalents. The assay was used to determine the sensitivity of Huh 21-5 cells to the antiviral effects of interferon (IFN). Inhibition by IFN-alpha using core detection was comparable to that observed using branched-DNA (bDNA 3.0) detection of HCV RNA. Replication of transfected full-length HCV 1a Con1 genomes in Huh-7 cells was also detectable using the trak-C assay. Finally, in the transgenic murine HCV infection model, the course of viral amplification was detected from serum using trak-C with kinetics similar to those observed with RNA detection. Given its ease of use and the lack of requirement for RNA purification, the trak-C assay has several advantages over RNA-based methods of viral monitoring.
Collapse
Affiliation(s)
- Laurence Cagnon
- Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Prabhu R, Joshi V, Garry RF, Bastian F, Haque S, Regenstein F, Thung S, Dash S. Interferon alpha-2b inhibits negative-strand RNA and protein expression from full-length HCV1a infectious clone. Exp Mol Pathol 2004; 76:242-52. [PMID: 15126107 DOI: 10.1016/j.yexmp.2004.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 11/23/2022]
Abstract
We have established a T7-based model system for hepatitis C virus (HCV) 1a strain, which involves the use of a replication-defective adenovirus that carries the gene for T7 RNA polymerase and a transcription plasmid containing full-length HCV cDNA clone. To facilitate high-level expression of HCV, sub-confluent Huh7 cells were first infected with adenovirus containing the gene for the T7 RNA polymerase and then transfected with the transcription plasmid. As a negative control, part of NS5B gene of this clone was deleted which abolishes the HCV RNA-dependent RNA polymerase and prevents replication of viral RNA. This model produces high levels of structural (core, E1, E2) and nonstructural proteins (NS5), which were detected by Western blot analysis and immunofluorescence assay. Negative-strand HCV RNA was detected only in the wild-type clone in the presence of actinomycin D, and no RNA was detected with the NS5B deleted mutant control. As a practical validation of this model, we showed that IFN alpha-2b selectively inhibits negative-strand RNA synthesis by blocking at the level of protein translation. The inhibitory effect of IFN alpha-2b is not due reduction of transcription by T7 polymerase or due to intracellular degradation of HCV RNA. This in vitro model provides an efficient and reliable means of assaying negative-strand RNA, protein processing, and testing the antiviral properties of interferon.
Collapse
Affiliation(s)
- Ramesh Prabhu
- Department of Pathology and Laboratory Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
McCormick CJ, Challinor L, Macdonald A, Rowlands DJ, Harris M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J Gen Virol 2004; 85:429-439. [PMID: 14769901 DOI: 10.1099/vir.0.19676-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a baculovirus delivery system that enables tetracycline-regulated expression of polII-derived hepatitis C virus (HCV) transcripts in hepatocyte-derived cell lines (McCormick et al., 2002). As part of a study to determine whether such transcripts are replication competent, the transcription start site of the tetracycline-regulable promoter was mapped and three baculovirus transfer vectors containing a neo(R)-expressing culture adapted replicon cDNA were generated. These vectors either had the first nucleotide of the 5'UTR positioned -2 (mkI) and +1 (mkII) with respect to the transcription start site, or included a hammerhead ribozyme at the 5' end of the transcript (5'HH) that cleaves between the ribozyme-5'UTR boundary. Transfection of all of the culture-adapted replicon constructs into Huh7 cells resulted in the formation of more neomycin-resistant colonies than seen with a polymerase knock-out replicon construct, although this was less pronounced in the mkI group. Furthermore, both the positive- and negative-strands of the replicon could be detected in all neomycin-resistant polyclonal cell lines except for those derived from transfection of the polymerase knock-out construct. Transduction of Huh7 cells with recombinant baculoviruses carrying the same expression cassettes improved replicon delivery, but the relative efficiency of the constructs remained the same. The baculovirus vectors were also used to introduce the replicon transcript into HepG2 cells. Expression of the culture-adapted but not the polymerase knock-out construct induced transcription of the beta-interferon gene, a response that may contribute to this cell line being unable to maintain the replicon over long-term culture.
Collapse
Affiliation(s)
- Christopher J McCormick
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lisa Challinor
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Macdonald
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Rowlands
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
38
|
Zhou S, Liu R, Baroudy BM, Malcolm BA, Reyes GR. The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology 2003; 310:333-42. [PMID: 12781720 DOI: 10.1016/s0042-6822(03)00152-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The recent development of in vitro hepatitis C virus (HCV) RNA replication systems has provided useful tools for studying the intracellular anti-HCV activity of ribavirin. Ribavirin has been shown to: (1) induce "error catastrophe" in poliovirus, Proc. Natl. Acad. Sci. USA 98, 6895-6900), (2) be a pseudo-substrate of the HCV RNA-dependent RNA polymerase (RdRp) in vitro, J. Biol. Chem. 276, 46094-46098), and (3) increase mutations in HCV RNA in the binary T7 polymerase/HCV cDNA replication system, J. Virol. 76, 8505-8517). These findings have led to the hypothesis that ribavirin may also induce error catastrophe in HCV. However, the functional relevance of ribavirin-induced HCV RNA mutagenesis is unclear. By use of a colony formation assay, in which RNA is isolated from the HCV subgenomic replicon system following treatment, the impact of ribavirin, inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors, and the combination was assessed. Ribavirin reduced HCV replicon colony-forming efficiency (CFE) in a dose-dependent fashion, suggesting that ribavirin may be misincorporated into replicon RNA and result in an anti-replicon effect analogous to error catastrophe. This effect was markedly suppressed by addition of exogenous guanosine. Combination treatment with ribavirin and mycophenolic acid (MPA) or VX-497, both potent, nonnucleoside IMPDH inhibitors, led to a greatly enhanced anti-replicon effect. This enhancement was reversed by inclusion of guanosine with the treatment. In contrast, MPA or VX-497 alone had only marginal effects on both the quantity and quality (CFE) of replicon RNA, suggesting that although IMPDH inhibition is an important contributing factor to the overall ribavirin anti-HCV replicon activity, IMPDH inhibition by itself is not sufficient to exert an anti-HCV effect. Sequencing data targeting the neo gene segment of the HCV replicon indicated that ribavirin together with MPA or VX-497 increased the replicon error rate by about two-fold. Taken together these results further suggest that lethal mutagenesis may be an effective anti-HCV strategy. The colony formation assay provides a useful tool for evaluating mutagenic nucleoside analogs for HCV therapy. Finally, the data from combination treatment indicate potential therapeutic value for an enhanced anti-HCV effect when using ribavirin in combination with IMPDH inhibition.
Collapse
Affiliation(s)
- Sifang Zhou
- Antiviral Therapy, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | |
Collapse
|
39
|
Herrmann E, Lee JH, Marinos G, Modi M, Zeuzem S. Effect of ribavirin on hepatitis C viral kinetics in patients treated with pegylated interferon. Hepatology 2003; 37:1351-8. [PMID: 12774014 DOI: 10.1053/jhep.2003.50218] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A dynamic equilibrium between viral production and clearance characterizes untreated chronic hepatitis C viral infection. After initiating antiviral treatment, a typical multiphasic decay of viremia can be observed and analyzed using mathematical models. To elucidate the antiviral mechanism of ribavirin when used in combination with (pegylated) interferon alfa, we investigated kinetic parameters in patients with chronic hepatitis C treated with either peginterferon alpha-2a with or without ribavirin and standard interferon alpha-2b plus ribavirin for 48 weeks. Serum HCV RNA was measured frequently before, during, and at the end-of-treatment and the follow-up period. By using an appropriate model for viral dynamics, kinetic parameters were derived from nonlinear, least square fitting of serum HCV RNA quantifications. The first phase of viral decay (day 1) and the second phase of viral decay (days 2 to 21) were similar for all treatment groups. After about 7 to 28 days, a third phase of viral decay was seen in several patients, and this phase of decay was significantly faster in patients treated with peginterferon alpha-2a plus ribavirin compared with those treated with peginterferon alpha-2a alone. The decay of this third phase was associated with the virologic end-of-treatment response and sustained virologic response. In conclusion, the third-phase decay of initial viral kinetics, which may represent a treatment-enhanced degradation of infected cells, was more pronounced in patients treated with peginterferon alpha-2a plus ribavirin. This finding suggests that combination treatment leads to a better restoration of the patient's immune response.
Collapse
Affiliation(s)
- Eva Herrmann
- Medizinische Klinik und Poliklinik, Innere Medizin II, Universitätskliniken des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
40
|
He Y, Yan W, Coito C, Li Y, Gale M, Katze MG. The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 2003; 84:535-543. [PMID: 12604803 DOI: 10.1099/vir.0.18658-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV), the global leading cause of chronic liver disease, has a positive-sense, ssRNA genome that encodes a large polyprotein. HCV polyprotein translation is initiated by an internal ribosome-entry site (IRES) located at the 5' end of the viral genome, in a cap-independent manner, but the regulatory mechanism of this process remains poorly understood. In this study, we characterized the effect of HCV nonstructural proteins on HCV IRES-directed translation in both HCV replicon cells and transiently transfected human liver cells expressing HCV nonstructural proteins. Using bicistronic reporter gene constructs carrying either HCV or other viral IRES sequences, we found that the HCV IRES-mediated translation was specifically upregulated in HCV replicon cells. This enhancement of HCV IRES-mediated translation by the replicon cells was inhibited by treatment with either type I interferon or ribavirin, drugs that perturb HCV genome replication, suggesting that the enhancement is probably due to HCV-encoded protein function(s). Reduced phosphorylation levels of both eIF2alpha and eIF4E were observed in the replicon cells, which is consistent with our previous findings and indicates that the NS5A nonstructural protein may be involved in the regulatory mechanism(s). Indeed, transient expression of NS5A or NS4B in human liver cells stimulated HCV IRES activity. Interestingly, mutation in the ISDR of NS5A perturbed this stimulation of HCV IRES activity. All these results suggest, for the first time, that HCV nonstructural proteins preferentially stimulate the viral cap-independent, IRES-mediated translation.
Collapse
Affiliation(s)
- Yupeng He
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Wei Yan
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Carlos Coito
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yu Li
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael G Katze
- Regional Primate Research Center, University of Washington, Seattle, WA, USA
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Ghosh AK, Majumder M, Steele R, Ray R, Ray RB. Modulation of interferon expression by hepatitis C virus NS5A protein and human homeodomain protein PTX1. Virology 2003; 306:51-9. [PMID: 12620797 DOI: 10.1016/s0042-6822(02)00029-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatitis C virus (HCV) NS5A protein transcriptionally modulates a number of cellular genes. Since there is no evidence of binding of NS5A protein to DNA, it is likely to exert its activity in concert with cellular factor(s). In this study, we have identified a specific interaction of HCV NS5A with homeodomain protein PTX1 of human origin by a yeast two-hybrid interacting cloning system. The authenticity of this interaction was verified by mammalian two-hybrid assay, in vivo co-immunoprecipitation analysis, and from a colocalization study. Recently, murine PTX1 (mPTX1) has been shown to repress virus-induced murine interferonA4 promoter activity. Interferon-à alone or together with ribavirin is the only available therapy for HCV-infected patients. Therefore, we examined whether coexpression of NS5A and human PTX1 (hPTX1) proteins modulate human IFN-à promoter activity. An in vitro reporter assay by transfection of HepG2 cells with NS5A suggested an activation of IFN-à promoter to approximately 20-fold upon Newcastle disease virus (NDV) infection. Under similar experimental conditions, hPTX1-activated IFN-à prompter to approximately sevenfold, unlike mPTX1. However, cotransfection of NS5A and hPTX1 displayed a lower interferon promoter activity, probably for physical association between these two proteins. Subsequent study demonstrated that activation of IFN promoter by NS5A is associated with an increased expression of IRF-3. Further analysis revealed that ectopic expression of NS5A in HepG2 cells enhances endogenous IFN-à secretion and MxA expression upon induction with NDV. However, exogenous expression of hPTX1 did not significantly alter NS5A-mediated function in the stable transfectants. Taken together, these results suggested that the level of endogenous hPTX1 is not sufficient to block the function of NS5A for augmentation of virus-mediated IFN activity in HepG2 cells.
Collapse
Affiliation(s)
- Asish K Ghosh
- Department of Pathology, Saint Louis Unoversity, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
In recent years, significant advances have been achieved both in the development of animal- and tissue-culture models for HCV. Among all the new systems, the small animal model based on transgenic mice with chimeric mouse-human livers and the replicon system will presumably have the most profound impact on future HCV research. Yet, in spite of this progress, much more work will be required to optimizse both systems. In case of the mouse model, breeding homozygous Alb-uPa animals is difficult because of the toxicity of the transgene, and the transplantation of primary human hepatocytes into mice a few days after birth is technically challenging. These are immunodeficient, and, therefore, it will be desirable to furnish them with components of the human immune system in order to expand the applicability of this in vivo model to questions related to pathogenesis. Advances in cryopreservation techniques are urgently needed, moreover, as this would improve the availability of primary hepatocytes and in turn also the accessibility of this small animal model. As regards the replicon system, a number of open questions remain that will hopefully be answered by future research. Why, for instance, has replication in cell culture so far been achieved only with genotype 1b isolates, whereas an isolate with proven infectivity derived from genotype 1a failed to replicate in Huh-7 cells? And why can replicons so far be propagated only in this particular cell line? Is this attributable to the lack of certain inhibitory factors, or the presence of specific activators? What are the mechanisms underlying cell-culture adaptation. and what determines whether a certain Huh-7 cell replicates HCV RNA more efficiently? Finally, the replicon system may also lead the way to the development of systems for efficient virus production in cell culture, and ultimately also a permissive cell line. These developments would at last allow us to model the complete viral life cycle, something researchers have been struggling with ever since the first identification of HCV.
Collapse
Affiliation(s)
- Thomas Pietschmann
- Department of Molecular Virology, University of Heidelberg, 350 Otto-Meyerhof-Zentrum Im Neuenheimer Feld, Heidelberg 69120, Germany
| | | |
Collapse
|
43
|
Locarnini SA. Mechanisms of drug resistance and novel approaches to therapy for chronic hepatitis C. J Gastroenterol Hepatol 2002; 17 Suppl 3:S351-9. [PMID: 12472963 DOI: 10.1046/j.1440-1746.17.s3.27.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is now the major cause of transfusion-associated and parenterally transmitted viral hepatitis and accounts for a significant proportion of hepatitis cases worldwide. The majority of infections become persistent and approximately 20% of chronically infected individuals develop cirrhosis, which is strongly associated with progression to hepatocellular carcinoma. Molecular biological investigations into the structure and function of HCV and its genes has led to the identification of a number of potential targets for selective antiviral intervention. The present review summarizes current research activity into these novel drug targets and addresses the basis for clinical non-response in the current interferon-alpha-based therapies. Future therapeutic strategies that utilize HCV-specific antiviral agents should prove effective in controlling active viral replication, but the risk of emergence of drug-resistance will need to be addressed due to the quasispecies feature of HCV replication.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
King RW, Zecher M, Jefferies MW. Inhibition of the replication of a hepatitis C virus-like RNA template by interferon and 3'-deoxycytidine. Antivir Chem Chemother 2002; 13:363-70. [PMID: 12718408 DOI: 10.1177/095632020201300604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of low molecular weight inhibitors of hepatitis C virus (HCV) replication has been hindered by the lack of a good cell-based system that models the entire HCV replication cycle. To date the only two therapies approved for the treatment of HCV infection are interferon (IFN)-alpha and the nucleoside analogue, ribavirin. We have created a cell-based system that allows for the accurate quantification of the replication of an HCV-like RNA template by proteins that are encoded for by the HCV genome. The system consists of a cell line that constitutively produces luciferase in response to the production of functional HCV replicative proteins. The 293B4alpha cell line has been formatted into a semi-high throughput, cell-based screen for inhibitors of HCV replication. When these cells were treated with either IFN-alpha or -beta, luciferase production decreased in a dose-responsive manner. Counterscreening these molecules in another cell line, 293SVLuc, in which luciferase production in not dependent the presence of functional HCV proteins, showed that the inhibition of luciferase in the 293B4alpha cell line was due to inhibition of the replication of the HCV-like RNA template and not anti-cellular or -luciferase activity. Moreover, when the 293B4alpha cell line was treated with the ribonucleoside analogue, 3'-deoxycytidine, luciferase decreased in a dose-responsive manner. 3'-deoxyguanosine and 3'-deoxyuridine did not inhibit luciferase production and 3'-deoxyadenosine was too cytotoxic to determine if it had any anti-HCV activity.
Collapse
Affiliation(s)
- Robert W King
- The Experimental Station, Bristol-Myers Squibb, Wilmington, Del., USA.
| | | | | |
Collapse
|
45
|
Rivas-Estilla AM, Svitkin Y, Lopez Lastra M, Hatzoglou M, Sherker A, Koromilas AE. PKR-dependent mechanisms of gene expression from a subgenomic hepatitis C virus clone. J Virol 2002; 76:10637-53. [PMID: 12368306 PMCID: PMC136610 DOI: 10.1128/jvi.76.21.10637-10653.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.
Collapse
Affiliation(s)
- Ana Maria Rivas-Estilla
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
46
|
He Y, Katze MG. To interfere and to anti-interfere: the interplay between hepatitis C virus and interferon. Viral Immunol 2002; 15:95-119. [PMID: 11952150 DOI: 10.1089/088282402317340260] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As popular strategies used by numerous viruses, interception of interferon (IFN) signaling and inhibition of IFN-induced antiviral functions allow viruses to evade the host immune response and set up successful infections. Hepatitis C virus (HCV), the leading cause of chronic liver disease worldwide and a major public health hazard, causes persistent infection in the majority of infected individuals. IFN-based therapies, currently the only ones available for HCV infection, have been unable to eliminate viral infection in the majority of patients, and many studies suggest that HCV possesses mechanisms to antagonize the IFN-induced antiviral response. Multiple viral, host, and IFN-associated factors have been implicated in the interplay between HCV and IFN. Two viral proteins, NS5A and E2, became the focus of much attention and extensive study because of their abilities to inhibit IFN-induced, double-stranded RNA-activated protein kinase (PKR), a major mediator of the IFN-induced biologic response, and to perturb the IFN signaling pathway. In this review, we discuss the significance of the interferon sensitivity determining region (ISDR) within NS5A, which has been the subject of intense debates. In addition, we discuss the potential mechanisms by which NS5A interferes with IFN signaling and the current working models. Further understanding of the molecular mechanisms underlying the interaction between HCV and IFN will likely facilitate improvement of current IFN-based therapies and development of novel treatments for the HCV pandemic. Future HCV research will benefit from both the development of efficient, convenient model systems for viral propagation, and the utilization of high throughput, genomic-scale approaches.
Collapse
Affiliation(s)
- Yupeng He
- Department of Microbiology, School of Medicine, University of Washington, 98195, USA
| | | |
Collapse
|
47
|
Contreras AM, Hiasa Y, He W, Terella A, Schmidt EV, Chung RT. Viral RNA mutations are region specific and increased by ribavirin in a full-length hepatitis C virus replication system. J Virol 2002; 76:8505-17. [PMID: 12163570 PMCID: PMC136407 DOI: 10.1128/jvi.76.17.8505-8517.2002] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High rates of genetic variation ensure the survival of RNA viruses. Although this variation is thought to result from error-prone replication, RNA viruses must also maintain highly conserved genomic segments. A balance between conserved and variable viral elements is especially important in order for viruses to avoid "error catastrophe." Ribavirin has been shown to induce error catastrophe in other RNA viruses. We therefore used a novel hepatitis C virus (HCV) replication system to determine relative mutation frequencies in variable and conserved regions of the HCV genome, and we further evaluated these frequencies in response to ribavirin. We sequenced the 5' untranslated region (5' UTR) and the core, E2 HVR-1, NS5A, and NS5B regions of replicating HCV RNA isolated from cells transfected with a T7 polymerase-driven full-length HCV cDNA plasmid containing a cis-acting hepatitis delta virus ribozyme to control 3' cleavage. We found quasispecies in the E2 HVR-1 and NS5B regions of untreated replicating viral RNAs but not in conserved 5' UTR, core, or NS5A regions, demonstrating that important cis elements regulate mutation rates within specific viral segments. Neither T7-driven replication nor sequencing artifacts produced these nucleotide substitutions in control experiments. Ribavirin broadly increased error generation, especially in otherwise invariant regions, indicating that it acts as an HCV RNA mutagen in vivo. Similar results were obtained in hepatocyte-derived cell lines. These results demonstrate the potential utility of our system for the study of intrinsic factors regulating genetic variation in HCV. Our results further suggest that ribavirin acts clinically by promoting nonviable HCV RNA mutation rates. Finally, the latter result suggests that our replication model may be useful for identifying agents capable of driving replicating virus into error catastrophe.
Collapse
Affiliation(s)
- Ana Maria Contreras
- Gastrointestinal Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
AIM: To investigate the dynamics of hepatitis C virus (HCV) variability through putative envelope genes during primary infection and the mechanism of viral genetic evolution in infected hosts.
METHODS: Serial serum samples prospectively collected for 12 to 34 mo from a cohort of acutely HCV-infected individuals were obtained, and a 1-kb fragment spanning E1 and the 5’ half of E2, including Thirty-three cloned cDNAs representing each specimen were assessed by a method that combined a single-stranded conformational polymorphism (SSCP) and heteroduplex analysis (HDA) method to determine the number of clonotypes hypervariable region, was amplified by reverse transcriptase PCR and cloned. Nonsynonymous mutations per nonsynonymous site (dn), synonymous mutations per synonymous site (ds), dn/ds ratio and genetic distances within each sample were evaluated for intrahost evolutionary analysis.
RESULTS: Quasispecies complexity and sequence diversity were lower in early samples and a further increase after seroconversion, although ds value in the envelope genes was higher than dn value during primary infection. The trend, pronounced in most of samples, toward lower ds values in the E1 than in the 5' portion of E2. Quasispecies complexity was higher and E2 dn/ds ratio was a trend toward higher value in later samples during persistent viremia. We also found individual features of HCV genetic evolution in different subjects who were infected with different HCV genotypes.
CONCLUSION: Mutations of actively replicating virus arise stochastically with certain functional constaints. A complexity quasispecies exerted by a combination of either neutral evolution or selective forces shows clear differences in individuals, and associated with HCV persistence.
Collapse
Affiliation(s)
- Song Chen
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University,30 Gaotanyan Zhengjie, Shapingba District,Chongqing 400038, China.
| | | |
Collapse
|
49
|
Castet V, Fournier C, Soulier A, Brillet R, Coste J, Larrey D, Dhumeaux D, Maurel P, Pawlotsky JM. Alpha interferon inhibits hepatitis C virus replication in primary human hepatocytes infected in vitro. J Virol 2002; 76:8189-99. [PMID: 12134024 PMCID: PMC155162 DOI: 10.1128/jvi.76.16.8189-8199.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chronic hepatitis C is a common cause of liver disease, the complications of which include cirrhosis and hepatocellular carcinoma. Treatment of chronic hepatitis C is based on the use of alpha interferon (IFN-alpha). Recently, indirect evidence based on mathematical modeling of hepatitis C virus (HCV) dynamics during human IFN-alpha therapy suggested that the major initial effect of IFN-alpha is to block HCV virion production or release. Here, we used primary cultures of healthy, uninfected human hepatocytes to show that: (i) healthy human hepatocytes can be infected in vitro and support HCV genome replication, (ii) hepatocyte treatment with IFN-alpha results in expression of IFN-alpha-induced genes, and (iii) IFN-alpha inhibits HCV replication in infected human hepatocytes. These results show that IFN-alpha acts primarily through its nonspecific antiviral effects and suggest that primary cultures of human hepatocytes may provide a good model to study intrinsic HCV resistance to IFN-alpha.
Collapse
|
50
|
Pietschmann T, Lohmann V, Kaul A, Krieger N, Rinck G, Rutter G, Strand D, Bartenschlager R. Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 2002; 76:4008-21. [PMID: 11907240 PMCID: PMC136109 DOI: 10.1128/jvi.76.8.4008-4021.2002] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recently developed subgenomic hepatitis C virus (HCV) replicons were limited by the fact that the sequence encoding the structural proteins was missing. Therefore, important information about a possible influence of these proteins on replication and pathogenesis and about the mechanism of virus formation could not be obtained. Taking advantage of three cell culture-adaptive mutations that enhance RNA replication synergistically, we generated selectable full-length HCV genomes that amplify to high levels in the human hepatoma cell line Huh-7 and can be stably propagated for more than 6 months. The structural proteins are efficiently expressed, with the viral glycoproteins E1 and E2 forming heterodimers which are stable under nondenaturing conditions. No disulfide-linked glycoprotein aggregates were observed, suggesting that the envelope proteins fold productively. Electron microscopy studies indicate that cell lines harboring these full-length HCV RNAs contain lipid droplets. The majority of the core protein was found on the surfaces of these structures, whereas the glycoproteins appear to localize to the endoplasmic reticulum and cis-Golgi compartments. In agreement with this distribution, no endoglycosidase H-resistant forms of these proteins were detectable. In a search for the production of viral particles, we noticed that these cells release substantial amounts of nuclease-resistant HCV RNA-containing structures with a buoyant density of 1.04 to 1.1 g/ml in iodixanol gradients. The same observation was made in transient-replication assays using an authentic highly adapted full-length HCV genome that lacks heterologous sequences. However, the fact that comparable amounts of such RNA-containing structures were found in the supernatant of cells carrying subgenomic replicons demonstrates a nonspecific release independent of the presence of the structural proteins. These results suggest that Huh-7 cells lack host cell factors that are important for virus particle assembly and/or release.
Collapse
Affiliation(s)
- Thomas Pietschmann
- Institute for Virology, Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|