1
|
Rall JA. The foundation of excitation-contraction coupling in skeletal muscle: communication between the transverse tubules and sarcoplasmic reticulum. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:759-769. [PMID: 39116389 DOI: 10.1152/advan.00086.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The expression excitation-contraction (EC) coupling in skeletal muscle was coined in 1952 (Sandow A. Yale J Biol Med 25: 176-201, 1952). The term evolved narrowly to include only the processes at the triad that intervene between depolarization of the transverse tubular (T-tubular) membrane and Ca2+ release from the sarcoplasmic reticulum (SR). From 1970 to 1988, the foundation of EC coupling was elucidated. The channel through which Ca2+ was released during activation was located in the SR by its specific binding to the plant insecticide ryanodine. This channel was called the ryanodine receptor (RyR). The RyR contained four subunits that together constituted the "SR foot" structure that traversed the gap between the SR and the T-tubular membrane. Ca2+ channels, also called dihydropyridine receptors (DHPRs), were located in the T-tubular membrane at the triadic junction and shown to be essential for EC coupling. There was a precise relationship between the two channels. Four DHPRs, organized as tetrads, were superimposed on alternate RyRs. This structure was consistent with the proposal that EC coupling was mediated via a movement of intramembrane charge in the T-tubular system. The speculation was that the DHPR acted as a voltage sensor transferring information to the RyRs of the SR by protein-protein interaction causing the release of Ca2+ from the SR. A great deal of progress was made by 1988 toward understanding EC coupling. However, the ultimate question of how voltage sensing is coupled to the opening of the SR Ca2+ release channel remains unresolved.NEW & NOTEWORTHY The least understood part of the series of events in excitation-contraction coupling in skeletal muscle was how information was transmitted from the transverse tubules to the sarcoplasmic (SR) and how Ca2+ was released from the SR. Through an explosion of technical approaches including physiological, biochemical, structural, pharmacological, and molecular genetics, much was discovered between 1970 and 1988. By the end of 1988, the foundation of EC coupling in skeletal muscle was established.
Collapse
Affiliation(s)
- Jack A Rall
- Department of Physiology and Cell Biology, College of MedicineOhio State University, Columbus, Ohio, United States
| |
Collapse
|
2
|
Joseph TT, Bu W, Haji-Ghassemi O, Chen YS, Woll K, Allen PD, Brannigan G, van Petegem F, Eckenhoff RG. Propofol binds and inhibits skeletal muscle ryanodine receptor 1. Br J Anaesth 2024; 133:1093-1100. [PMID: 39304470 PMCID: PMC11488158 DOI: 10.1016/j.bja.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND As the primary Ca2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, triggering agents including halogenated volatile anaesthetics bias RyR1 to an open state resulting in uncontrolled Ca2+ release, increased sarcomere tension, and heat production. Propofol does not trigger MH and is commonly used for patients at risk of MH. The atomic-level interactions of any anaesthetic with RyR1 are unknown. METHODS RyR1 opening was measured by [3H]ryanodine binding in heavy SR vesicles (wild type) and single-channel recordings of MH mutant R615C RyR1 in planar lipid bilayers, each exposed to propofol or the photoaffinity ligand analogue m-azipropofol (AziPm). Activator-mediated wild-type RyR1 opening as a function of propofol concentration was measured by Fura-2 Ca2+ imaging of human skeletal myotubes. AziPm binding sites, reflecting propofol binding, were identified on RyR1 using photoaffinity labelling. Propofol binding affinity to a photoadducted site was predicted using molecular dynamics (MD) simulation. RESULTS Both propofol and AziPm decreased RyR1 opening in planar lipid bilayers (P<0.01) and heavy SR vesicles, and inhibited activator-induced Ca2+ release from human skeletal myotube SR. Several putative propofol binding sites on RyR1 were photoadducted by AziPm. MD simulation predicted propofol KD values of 55.8 μM and 1.4 μM in the V4828 pocket in open and closed RyR1, respectively. CONCLUSIONS Propofol demonstrated direct binding and inhibition of RyR1 at clinically plausible concentrations, consistent with the hypothesis that propofol partially mitigates malignant hyperthermia by inhibition of induced Ca2+ flux through RyR1.
Collapse
Affiliation(s)
- Thomas T Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omid Haji-Ghassemi
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Yu S Chen
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Kellie Woll
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Paul D Allen
- Department of Anesthesiology, University of Tennessee, Knoxville, TN, USA
| | - Grace Brannigan
- Department of Physics and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Filip van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Pelizzari S, Heiss MC, Fernández-Quintero ML, El Ghaleb Y, Liedl KR, Tuluc P, Campiglio M, Flucher BE. Ca V1.1 voltage-sensing domain III exclusively controls skeletal muscle excitation-contraction coupling. Nat Commun 2024; 15:7440. [PMID: 39198449 PMCID: PMC11358481 DOI: 10.1038/s41467-024-51809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Skeletal muscle contractions are initiated by action potentials, which are sensed by the voltage-gated calcium channel (CaV1.1) and are conformationally coupled to calcium release from intracellular stores. Notably, CaV1.1 contains four separate voltage-sensing domains (VSDs), which activate channel gating and excitation-contraction (EC-) coupling at different voltages and with distinct kinetics. Here we show that a single VSD of CaV1.1 controls skeletal muscle EC-coupling. Whereas mutations in VSDs I, II and IV affect the current properties but not EC-coupling, only mutations in VSD III alter the voltage-dependence of depolarization-induced calcium release. Molecular dynamics simulations reveal comprehensive, non-canonical state transitions of VSD III in response to membrane depolarization. Identifying the voltage sensor that activates EC-coupling and detecting its unique conformational changes opens the door to unraveling the downstream events linking VSD III motion to the opening of the calcium release channel, and thus resolving the signal transduction mechanism of skeletal muscle EC-coupling.
Collapse
Affiliation(s)
- Simone Pelizzari
- Institute of Physiology, Department of Physiology and Medical Biophysics, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Martin C Heiss
- Institute of Physiology, Department of Physiology and Medical Biophysics, Medical University Innsbruck, 6020, Innsbruck, Austria
| | | | - Yousra El Ghaleb
- Institute of Physiology, Department of Physiology and Medical Biophysics, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Marta Campiglio
- Institute of Physiology, Department of Physiology and Medical Biophysics, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Department of Physiology and Medical Biophysics, Medical University Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Gao L, Ardiel E, Nurrish S, Kaplan JM. Voltage-induced calcium release in Caenorhabditis elegans body muscles. Proc Natl Acad Sci U S A 2024; 121:e2317753121. [PMID: 38687794 PMCID: PMC11087772 DOI: 10.1073/pnas.2317753121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Type 1 voltage-activated calcium channels (CaV1) in the plasma membrane trigger calcium release from the sarcoplasmic reticulum (SR) by two mechanisms. In voltage-induced calcium release (VICR), CaV1 voltage sensing domains are directly coupled to ryanodine receptors (RYRs), an SR calcium channel. In calcium-induced calcium release (CICR), calcium ions flowing through activated CaV1 channels bind and activate RYR channels. VICR is thought to occur exclusively in vertebrate skeletal muscle while CICR occurs in all other muscles (including all invertebrate muscles). Here, we use calcium-activated SLO-2 potassium channels to analyze CaV1-SR coupling in Caenorhabditis elegans body muscles. SLO-2 channels were activated by both VICR and external calcium. VICR-mediated SLO-2 activation requires two SR calcium channels (RYRs and IP3 Receptors), JPH-1/Junctophilin, a PDZ (PSD95, Dlg1, ZO-1 domain) binding domain (PBD) at EGL-19/CaV1's carboxy-terminus, and SHN-1/Shank (a scaffolding protein that binds EGL-19's PBD). Thus, VICR occurs in invertebrate muscles.
Collapse
Affiliation(s)
- Luna Gao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Evan Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Xu J, Liao C, Yin CC, Li G, Zhu Y, Sun F. In situ structural insights into the excitation-contraction coupling mechanism of skeletal muscle. SCIENCE ADVANCES 2024; 10:eadl1126. [PMID: 38507485 PMCID: PMC10954225 DOI: 10.1126/sciadv.adl1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.
Collapse
Affiliation(s)
- Jiashu Xu
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chang-Cheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
- Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China
- Center for Protein Science, Peking University, Beijing 100871, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Zhu
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Sun
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, China
| |
Collapse
|
6
|
Franzini-Armstrong C. An updated view of the structural basis for dihydropyridine receptors-ryanodine receptors direct molecular interaction in skeletal muscle. Eur J Transl Myol 2024; 34:12476. [PMID: 38516838 PMCID: PMC11017163 DOI: 10.4081/ejtm.2024.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
This presentation reviews images of electron micrographs from various skeletal muscles identifying a consistent association of diydropyridine receptors (DHPR) tetrads with alternate ryanodine receptors. Imaging of the junctional gap in triads from various sources provide direct evidence for the association of four diydropyridine receptors (DHPRs), clustered into tetrads, with alternate ryanodine receptors (RyRs). It is not clear whether firing of all four components of a tetrad is necessary to fully activate the opening of the RyR channel.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA.
| |
Collapse
|
7
|
Serrano-Novillo C, Estadella I, Navarro-Pérez M, Oliveras A, de Benito-Bueno A, Socuéllamos PG, Bosch M, Coronado MJ, Sastre D, Valenzuela C, Soeller C, Felipe A. Routing of Kv7.1 to endoplasmic reticulum plasma membrane junctions. Acta Physiol (Oxf) 2024; 240:e14106. [PMID: 38282556 DOI: 10.1111/apha.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024]
Abstract
AIM The voltage-gated Kv7.1 channel, in association with the regulatory subunit KCNE1, contributes to the IKs current in the heart. However, both proteins travel to the plasma membrane using different routes. While KCNE1 follows a classical Golgi-mediated anterograde pathway, Kv7.1 is located in endoplasmic reticulum-plasma membrane junctions (ER-PMjs), where it associates with KCNE1 before being delivered to the plasma membrane. METHODS To characterize the channel routing to these spots we used a wide repertoire of methodologies, such as protein expression analysis (i.e. protein association and biotin labeling), confocal (i.e. immunocytochemistry, FRET, and FRAP), and dSTORM microscopy, transmission electron microscopy, proteomics, and electrophysiology. RESULTS We demonstrated that Kv7.1 targeted ER-PMjs regardless of the origin or architecture of these structures. Kv2.1, a neuronal channel that also contributes to a cardiac action potential, and JPHs, involved in cardiac dyads, increased the number of ER-PMjs in nonexcitable cells, driving and increasing the level of Kv7.1 at the cell surface. Both ER-PMj inducers influenced channel function and dynamics, suggesting that different protein structures are formed. Although exhibiting no physical interaction, Kv7.1 resided in more condensed clusters (ring-shaped) with Kv2.1 than with JPH4. Moreover, we found that VAMPs and AMIGO, which are Kv2.1 ancillary proteins also associated with Kv7.1. Specially, VAP B, showed higher interaction with the channel when ER-PMjs were stimulated by Kv2.1. CONCLUSION Our results indicated that Kv7.1 may bind to different structures of ER-PMjs that are induced by different mechanisms. This variable architecture can differentially affect the fate of cardiac Kv7.1 channels.
Collapse
Affiliation(s)
- Clara Serrano-Novillo
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Anna Oliveras
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manel Bosch
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Scientific and Technological Centers (CCiTUB), Universitat de Barcelona, Barcelona, Spain
| | - María José Coronado
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | | | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Hall DD, Takeshima H, Song LS. Structure, Function, and Regulation of the Junctophilin Family. Annu Rev Physiol 2024; 86:123-147. [PMID: 37931168 PMCID: PMC10922073 DOI: 10.1146/annurev-physiol-042022-014926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.
Collapse
Affiliation(s)
- Duane D Hall
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Long-Sheng Song
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Joseph TT, Bu W, Haji-Ghassemi O, Chen YS, Woll K, Allen PD, Brannigan G, van Petegem F, Eckenhoff RG. Propofol directly binds and inhibits skeletal muscle ryanodine receptor 1 (RyR1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575040. [PMID: 38260485 PMCID: PMC10802444 DOI: 10.1101/2024.01.10.575040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As the primary Ca 2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in the type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, exposure to triggering drugs such as the halogenated volatile anesthetics biases RyR1 to an open state, resulting in uncontrolled Ca 2+ release, sarcomere tension and heat production. Restoration of Ca 2+ into the SR also consumes ATP, generating a further untenable metabolic load. When anesthetizing patients with known MH mutations, the non-triggering intravenous general anesthetic propofol is commonly substituted for triggering anesthetics. Evidence of direct binding of anesthetic agents to RyR1 or its binding partners is scant, and the atomic-level interactions of propofol with RyR1 are entirely unknown. Here, we show that propofol decreases RyR1 opening in heavy SR vesicles and planar lipid bilayers, and that it inhibits activator-induced Ca 2+ release from SR in human skeletal muscle. In addition to confirming direct binding, photoaffinity labeling using m- azipropofol (AziP m ) revealed several putative propofol binding sites on RyR1. Prediction of binding affinity by molecular dynamics simulation suggests that propofol binds at least one of these sites at clinical concentrations. These findings invite the hypothesis that in addition to propofol not triggering MH, it may also be protective against MH by inhibiting induced Ca 2+ flux through RyR1.
Collapse
|
10
|
Dulhunty AF. Biophysical reviews top five: voltage-dependent charge movement in nerve and muscle. Biophys Rev 2023; 15:1903-1907. [PMID: 38192339 PMCID: PMC10771356 DOI: 10.1007/s12551-023-01165-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
The discovery of gating currents and asymmetric charge movement in the early 1970s represented a remarkable leap forward in our understanding of the biophysical basis of voltage-dependent events that underlie electrical signalling that is vital for nerve and muscle function. Gating currents and charge movement reflect a fundamental process in which charged amino acid residues in an ion channel protein move in response to a change in the membrane electrical field and therefore activate the specific voltage-dependent response of that protein. The detection of gating currents and asymmetric charge movement over the past 50 years has been pivotal in unraveling the multiple molecular and intra-molecular processes which lead to action potentials in excitable tissues and excitation-contraction (EC) coupling in skeletal muscle. The recording of gating currents and asymmetric charge movement remains an essential component of investigations into the basic molecular mechanisms of neuronal conduction and muscle contraction.
Collapse
Affiliation(s)
- Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, ACT, Canberra, 2601 Australia
| |
Collapse
|
11
|
Tokuda N, Watanabe D, Naito A, Yamauchi N, Ashida Y, Cheng AJ, Yamada T. Intrinsic contractile dysfunction due to impaired sarcoplasmic reticulum Ca 2+ release in compensatory hypertrophied muscle fibers following synergist ablation. Am J Physiol Cell Physiol 2023; 325:C599-C612. [PMID: 37486068 DOI: 10.1152/ajpcell.00127.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Synergist ablation (SA) is an experimental procedure for the induction of hypertrophy. However, SA causes a decrease in specific force (i.e., force per cross-sectional area), likely due to excessive muscle use. Here, we investigated the mechanisms behind the SA-induced intrinsic contractile dysfunction, especially focusing on the excitation-contraction (EC) coupling. Male Wistar rats had unilateral surgical ablation of gastrocnemius and soleus muscles to induce compensatory hypertrophy in the plantaris muscles. Two weeks after SA, plantaris muscle was dissected from each animal and used for later analyses. SA significantly increased the mean fiber cross-sectional area (+18%). On the other hand, the ratio of depolarization-induced force to the maximum Ca2+-activated specific force, an indicator of sarcoplasmic reticulum (SR) Ca2+ release, was markedly reduced in mechanically skinned fibers from the SA group (-51%). These functional defects were accompanied by an extensive fragmentation of the SR Ca2+ release channel, the ryanodine receptor 1 (RyR1), and a decrease in the amount of other triad proteins (i.e., DHPR, STAC3, and junctophilin1). SA treatment also caused activation of calpain-1 and increased the amount of NADPH oxidase 2, endoplasmic reticulum (ER) stress proteins (i.e., Grp78, Grp94, PDI, and Ero1), and lipid peroxidation [i.e., 4-hydroxynonenal (4-HNE)] in SA-treated muscles. Our findings show that SA causes skeletal muscle weakness due to impaired EC coupling. This is likely to be induced by Ca2+-dependent degradation of triad proteins, which may result from Ca2+ leak from fragmented RyR1 triggered by increased oxidative stress.NEW & NOTEWORTHY Synergist ablation (SA) has widely been used to understand the mechanisms behind skeletal muscle hypertrophy. However, compensatory hypertrophied muscles display intrinsic contractile dysfunction, i.e., a hallmark of overuse. Here, we demonstrate that SA-induced compensatory hypertrophy is accompanied by muscle weakness due to impaired sarcoplasmic reticulum Ca2+ release. This dysfunction may be caused by the degradation of triad proteins due to the reciprocal amplification of reactive oxygen species and Ca2+ signaling at the junctional space microdomain.
Collapse
Affiliation(s)
- Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Arthur J Cheng
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
12
|
Feng W, Lopez JR, Antrobus S, Zheng J, Uryash A, Dong Y, Beqollari D, Bannister RA, Hopkins PM, Beam KG, Allen PD, Pessah IN. Putative malignant hyperthermia mutation Ca V1.1-R174W is insufficient to trigger a fulminant response to halothane or confer heat stress intolerance. J Biol Chem 2023; 299:104992. [PMID: 37392848 PMCID: PMC10413282 DOI: 10.1016/j.jbc.2023.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.
Collapse
Affiliation(s)
- Wei Feng
- Department of Molecular Biosciences, University of California Davis, Davis, California, USA
| | - Jose R Lopez
- Department of Molecular Biosciences, University of California Davis, Davis, California, USA; Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, USA
| | - Shane Antrobus
- Department of Molecular Biosciences, University of California Davis, Davis, California, USA
| | - Jing Zheng
- Department of Molecular Biosciences, University of California Davis, Davis, California, USA
| | - Arkady Uryash
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, USA
| | - Yao Dong
- Department of Molecular Biosciences, University of California Davis, Davis, California, USA
| | - Donald Beqollari
- Department of Medicine-Cardiology Division, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philip M Hopkins
- Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Kurt G Beam
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul D Allen
- Department of Molecular Biosciences, University of California Davis, Davis, California, USA; Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Isaac N Pessah
- Department of Molecular Biosciences, University of California Davis, Davis, California, USA.
| |
Collapse
|
13
|
Murayama T, Kurebayashi N, Ishida R, Kagechika H. Drug development for the treatment of RyR1-related skeletal muscle diseases. Curr Opin Pharmacol 2023; 69:102356. [PMID: 36842386 DOI: 10.1016/j.coph.2023.102356] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 02/27/2023]
Abstract
Type 1 ryanodine receptor (RyR1) is an intracellular Ca2+ release channel on the sarcoplasmic reticulum of skeletal muscle, and it plays a central role in excitation-contraction (E-C) coupling. Mutations in RyR1 are implicated in various muscle diseases including malignant hyperthermia, central core disease, and myopathies. Currently, no specific treatment exists for most of these diseases. Recently, high-throughput screening (HTS) assays have been developed for identifying potential candidates for treating RyR-related muscle diseases. Currently, two different methods, namely a FRET-based assay and an endoplasmic reticulum Ca2+-based assay, are available. These assays identified several compounds as novel RyR1 inhibitors. In addition, the development of a reconstituted platform permitted HTS assays for E-C coupling modulators. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Dixon RE, Trimmer JS. Endoplasmic Reticulum-Plasma Membrane Junctions as Sites of Depolarization-Induced Ca 2+ Signaling in Excitable Cells. Annu Rev Physiol 2023; 85:217-243. [PMID: 36202100 PMCID: PMC9918718 DOI: 10.1146/annurev-physiol-032122-104610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane contact sites between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are found in all eukaryotic cells. In excitable cells they play unique roles in organizing diverse forms of Ca2+ signaling as triggered by membrane depolarization. ER-PM junctions underlie crucial physiological processes such as excitation-contraction coupling, smooth muscle contraction and relaxation, and various forms of activity-dependent signaling and plasticity in neurons. In many cases the structure and molecular composition of ER-PM junctions in excitable cells comprise important regulatory feedback loops linking depolarization-induced Ca2+ signaling at these sites to the regulation of membrane potential. Here, we describe recent findings on physiological roles and molecular composition of native ER-PM junctions in excitable cells. We focus on recent studies that provide new insights into canonical forms of depolarization-induced Ca2+ signaling occurring at junctional triads and dyads of striated muscle, as well as the diversity of ER-PM junctions in these cells and in smooth muscle and neurons.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
15
|
Tammineni ER, Figueroa L, Manno C, Varma D, Kraeva N, Ibarra CA, Klip A, Riazi S, Rios E. Muscle calcium stress cleaves junctophilin1, unleashing a gene regulatory program predicted to correct glucose dysregulation. eLife 2023; 12:e78874. [PMID: 36724092 PMCID: PMC9891728 DOI: 10.7554/elife.78874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Calcium ion movements between cellular stores and the cytosol govern muscle contraction, the most energy-consuming function in mammals, which confers skeletal myofibers a pivotal role in glycemia regulation. Chronic myoplasmic calcium elevation ("calcium stress"), found in malignant hyperthermia-susceptible (MHS) patients and multiple myopathies, has been suggested to underlie the progression from hyperglycemia to insulin resistance. What drives such progression remains elusive. We find that muscle cells derived from MHS patients have increased content of an activated fragment of GSK3β - a specialized kinase that inhibits glycogen synthase, impairing glucose utilization and delineating a path to hyperglycemia. We also find decreased content of junctophilin1, an essential structural protein that colocalizes in the couplon with the voltage-sensing CaV1.1, the calcium channel RyR1 and calpain1, accompanied by an increase in a 44 kDa junctophilin1 fragment (JPh44) that moves into nuclei. We trace these changes to activated proteolysis by calpain1, secondary to increased myoplasmic calcium. We demonstrate that a JPh44-like construct induces transcriptional changes predictive of increased glucose utilization in myoblasts, including less transcription and translation of GSK3β and decreased transcription of proteins that reduce utilization of glucose. These effects reveal a stress-adaptive response, mediated by the novel regulator of transcription JPh44.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| | - Disha Varma
- Department of Internal Medicine, Division of Nephrology, Rush UniversityChicagoUnited States
| | - Natalia Kraeva
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Carlos A Ibarra
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sheila Riazi
- Department of Anesthesia & Pain Management, University of TorontoTorontoCanada
| | - Eduardo Rios
- Department of Physiology and Biophysics, Rush UniversityChicagoUnited States
| |
Collapse
|
16
|
Iyer KA, Barnakov V, Samsó M. Three-dimensional perspective on ryanodine receptor mutations causing skeletal and cardiac muscle-related diseases. Curr Opin Pharmacol 2023; 68:102327. [PMID: 36516687 PMCID: PMC9908851 DOI: 10.1016/j.coph.2022.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Mutations in RyR alter the cell's Ca2+ homeostasis and can cause serious health problems for which few effective therapies are available. Until recently, there was little structural context for the hundreds of mutations linked to muscular disorders reported for this large channel. Growing knowledge of the three-dimensional structure of RyR starts to illustrate the fine control of Ca2+ release. Current efforts directed towards understanding how disease mutations impinge in such processes will be crucial for future design of novel therapies. In this review article we discuss the up-to-date information about mutations according to their role in the 3D structure, and classified them to provide context from a structural perspective.
Collapse
Affiliation(s)
- Kavita A Iyer
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Vadim Barnakov
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Del Rivero Morfin PJ, Marx SO, Ben-Johny M. Sympathetic Nervous System Regulation of Cardiac Calcium Channels. Handb Exp Pharmacol 2023. [PMID: 36592229 DOI: 10.1007/164_2022_632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcium influx through voltage-gated calcium channels, Cav1.2, in cardiomyocytes initiates excitation-contraction coupling in the heart. The force and rate of cardiac contraction are modulated by the sympathetic nervous system, mediated substantially by changes in intracellular calcium. Norepinephrine released from sympathetic neurons innervating the heart and epinephrine secreted by the adrenal chromaffin cells bind to β-adrenergic receptors on the sarcolemma of cardiomyocytes initiating a signaling cascade that generates cAMP and activates protein kinase A, the targets of which control calcium influx. For decades, the mechanisms by which PKA regulated calcium channels in the heart were not known. Recently, these mechanisms have been elucidated. In this chapter, we will review the history of the field and the studies that led to the identification of the evolutionarily conserved process.
Collapse
Affiliation(s)
- Pedro J Del Rivero Morfin
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA. .,Department of Pharmacology and Molecular Signaling, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
18
|
Campiglio M, Dyrda A, Tuinte WE, Török E. Ca V1.1 Calcium Channel Signaling Complexes in Excitation-Contraction Coupling: Insights from Channelopathies. Handb Exp Pharmacol 2023; 279:3-39. [PMID: 36592225 DOI: 10.1007/164_2022_627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVβ1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.
Collapse
Affiliation(s)
- Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| | - Agnieszka Dyrda
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Wietske E Tuinte
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Enikő Török
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Murayama T, Kurebayashi N, Numaga-Tomita T, Kobayashi T, Okazaki S, Yamashiro K, Nakada T, Mori S, Ishida R, Kagechika H, Yamada M, Sakurai T. A reconstituted depolarization-induced Ca2+ release platform for validation of skeletal muscle disease mutations and drug discovery. J Gen Physiol 2022; 154:213630. [PMID: 36318155 PMCID: PMC9629852 DOI: 10.1085/jgp.202213230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle excitation-contraction (E-C) coupling, depolarization of the plasma membrane triggers Ca2+ release from the sarcoplasmic reticulum (SR), referred to as depolarization-induced Ca2+ release (DICR). DICR occurs through the type 1 ryanodine receptor (RyR1), which physically interacts with the dihydropyridine receptor Cav1.1 subunit in specific machinery formed with additional essential components including β1a, Stac3 adaptor protein, and junctophilins. Exome sequencing has accelerated the discovery of many novel mutations in genes encoding DICR machinery in various skeletal muscle diseases. However, functional validation is time-consuming because it must be performed in a skeletal muscle environment. In this study, we established a platform of the reconstituted DICR in HEK293 cells. The essential components were effectively transduced into HEK293 cells expressing RyR1 using baculovirus vectors, and Ca2+ release was quantitatively measured with R-CEPIA1er, a fluorescent ER Ca2+ indicator, without contaminant of extracellular Ca2+ influx. In these cells, [K+]-dependent Ca2+ release was triggered by chemical depolarization with the aid of inward rectifying potassium channel, indicating a successful reconstitution of DICR. Using the platform, we evaluated several Cav1.1 mutations that are implicated in malignant hyperthermia and myopathy. We also tested several RyR1 inhibitors; whereas dantrolene and Cpd1 inhibited DICR, procaine had no effect. Furthermore, twitch potentiators such as perchlorate and thiocyanate shifted the voltage dependence of DICR to more negative potentials without affecting Ca2+-induced Ca2+ release. These results well reproduced the findings with the muscle fibers and the cultured myotubes. Since the procedure is simple and reproducible, the reconstituted DICR platform will be highly useful for the validation of mutations and drug discovery for skeletal muscle diseases.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takuya Kobayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoru Okazaki
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kyosuke Yamashiro
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tsutomu Nakada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Short B. Reconstituting depolarization-induced calcium release. J Gen Physiol 2022; 154:e202213287. [PMID: 36331358 PMCID: PMC9641645 DOI: 10.1085/jgp.202213287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Researchers develop experimental platform that could be used to evaluate mutations and screen drugs for skeletal muscle diseases.
Collapse
|
21
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
22
|
Perni S, Beam K. Junctophilins 1, 2, and 3 all support voltage-induced Ca2+ release despite considerable divergence. J Gen Physiol 2022; 154:212989. [PMID: 35089322 PMCID: PMC9488633 DOI: 10.1085/jgp.202113024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
In skeletal muscle, depolarization of the plasma membrane (PM) causes conformational changes of the calcium channel CaV1.1 that then activate RYR1 to release calcium from the SR. Being independent of extracellular calcium entry, this process is termed voltage-induced calcium release. In skeletal muscle, junctophilins (JPHs) 1 and 2 form the SR–PM junctions at which voltage-induced calcium release occurs. Previous work demonstrated that JPH2 is able to recapitulate voltage-induced calcium release when expressed in HEK293 cells together with CaV1.1, β1a, Stac3, and RYR1. However, it is unknown whether JPH1 and the more distantly related neuronal JPH3 and JPH4 might also function in this manner, a question of interest because different JPH isoforms diverge in their interactions with RYR1. Here, we show that, like JPH2, JPH1 and JPH3, coexpressed with CaV1.1, β1a, Stac3, and RYR1 in HEK293 cells, cause colocalization of CaV1.1 and RYR1 at ER–PM junctions. Furthermore, potassium depolarization elicited cytoplasmic calcium transients in cells in which WT CaV1.1 was replaced with the calcium impermeant mutant CaV1.1(N617D), indicating that JPH1, JPH2, and JPH3 can all support voltage-induced calcium release, despite sequence divergence and differences in interaction with RYR1. Conversely, JPH4-induced ER–PM junctions contain CaV1.1 but not RYR1, and cells expressing JPH4 are unable to produce depolarization-induced calcium transients. Thus, JPHs seem to act primarily to form ER–PM junctions and to recruit the necessary signaling proteins to these junctions but appear not to be directly involved in the functional interactions between these proteins.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Kurt Beam
- Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
23
|
Ashida Y, Himori K, Tokuda N, Naito A, Yamauchi N, Takenaka-Ninagawa N, Aoki Y, Sakurai H, Yamada T. Dissociation of SH3 and cysteine rich domain 3 and junctophilin 1 from dihydropyridine receptor in dystrophin-deficient muscles. Am J Physiol Cell Physiol 2022; 323:C885-C895. [PMID: 35912995 DOI: 10.1152/ajpcell.00163.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The disruption of excitation-contraction (EC) coupling and subsequent reduction in Ca2+ release from the sarcoplasmic reticulum (SR) have been shown to account for muscle weakness seen in patients with Duchenne muscular dystrophy (DMD). Here, we examined the mechanisms underlying EC uncoupling in skeletal muscles from mdx52 and DMD-null/NSG mice, animal models for DMD, focusing on the SH3 and cysteine rich domain 3 (STAC3) and junctophilin 1 (JP1), which link the dihydropyridine receptor (DHPR) in the transverse tubule and the ryanodine receptor 1 in the SR. The isometric plantarflexion torque normalized to muscle weight of whole plantar flexor muscles was depressed in mdx52 and DMD-null/NSG mice compared to their control mice. This was accompanied by increased autolysis of calpain-1, decreased levels of STAC3 and JP1 content, and dissociation of STAC3 and JP1 from DHPR-α1s in gastrocnemius muscles. Moreover, in vitro mechanistic experiments demonstrated that STAC3 and JP1 underwent Ca2+-dependent proteolysis which was less pronounced in dystrophin-deficient muscles where calpastatin, the endogenous calpain inhibitor, was upregulated. Eccentric contractions further enhanced autolysis of calpain-1 and proteolysis of STAC3 and JP1 that were associated with severe torque depression in gastrocnemius muscles from DMD-null/NSG mice. These data suggest that Ca2+-dependent proteolysis of STAC3 and JP1 may be an essential factor causing muscle weakness due to EC coupling failure in dystrophin-deficient muscles.
Collapse
Affiliation(s)
- Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
24
|
Melzer W. From α1s splicing to γ1 function: A new twist in subunit modulation of the skeletal muscle L-type Ca2+ channel. J Gen Physiol 2022; 154:213270. [PMID: 35674662 PMCID: PMC9184848 DOI: 10.1085/jgp.202213182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melzer discusses a recent JGP study showing that alternative splicing of the skeletal muscle L-type calcium channel impacts on a modulatory effect of its γ subunit.
Collapse
Affiliation(s)
- Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
25
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
26
|
The distal C terminus of the dihydropyridine receptor β 1a subunit is essential for tetrad formation in skeletal muscle. Proc Natl Acad Sci U S A 2022; 119:e2201136119. [PMID: 35507876 PMCID: PMC9171810 DOI: 10.1073/pnas.2201136119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceVertebrate skeletal muscle excitation-contraction coupling (ECC) is based on Ca2+-influx-independent interchannel cross-talk between DHPR and RyR1. The skeletal muscle DHPR complex consists of the main, voltage-sensing, and pore-forming α1S subunit, the auxiliary β1a, α2δ-1, γ1 subunits, and Stac3. The DHPRβ1a subunit plays an essential role in full triad targeting of DHPRα1S, voltage sensing, and tetrad formation (grouping of four DHPRs)-the three prerequisites for skeletal muscle ECC. Hence, a lack of DHPRβ1a results in a lethal phenotype in both β1-null mice and zebrafish. Here, we identified the nonconserved, distal C terminus of DHPRβ1a as playing a pivotal role in the formation of DHPR tetrads, and thus allosteric DHPR-RyR1 coupling, essential for proper skeletal muscle ECC.
Collapse
|
27
|
Wu X, Ma F, Pan B, Zhang Y, Zhu L, Deng F, Xu L, Zhao Y, Yin X, Niu H, Su X, Shi L. Tailoring a Nanochaperone to Regulate α‐Synuclein Assembly. Angew Chem Int Ed Engl 2022; 61:e202200192. [DOI: 10.1002/anie.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Bin‐Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Lin Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Linlin Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xu Yin
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Haihong Niu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
28
|
A bridge from the endoplasmic reticulum to the plasma membrane comes into view. Proc Natl Acad Sci U S A 2022; 119:e2202254119. [PMID: 35353604 PMCID: PMC9169776 DOI: 10.1073/pnas.2202254119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
30
|
Wu X, Ma F, Pan B, Zhang Y, Zhu L, Deng F, Xu L, Zhao Y, Yin X, Niu H, Su X, Shi L. Tailoring a Nanochaperone to Regulate α‐Synuclein Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Bin‐Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Lin Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Linlin Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xu Yin
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Haihong Niu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
31
|
Yang ZF, Panwar P, McFarlane CR, Tuinte WE, Campiglio M, Van Petegem F. Structures of the junctophilin/voltage-gated calcium channel interface reveal hot spot for cardiomyopathy mutations. Proc Natl Acad Sci U S A 2022; 119:e2120416119. [PMID: 35238659 PMCID: PMC8916002 DOI: 10.1073/pnas.2120416119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
SignificanceIon channels have evolved the ability to communicate with one another, either through protein-protein interactions, or indirectly via intermediate diffusible messenger molecules. In special cases, the channels are part of different membranes. In muscle tissue, the T-tubule membrane is in proximity to the sarcoplasmic reticulum, allowing communication between L-type calcium channels and ryanodine receptors. This process is critical for excitation-contraction coupling and requires auxiliary proteins like junctophilin (JPH). JPHs are targets for disease-associated mutations, most notably hypertrophic cardiomyopathy mutations in the JPH2 isoform. Here we provide high-resolution snapshots of JPH, both alone and in complex with a calcium channel peptide, and show how this interaction is targeted by cardiomyopathy mutations.
Collapse
Affiliation(s)
- Zheng Fang Yang
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pankaj Panwar
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ciaran R. McFarlane
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wietske E. Tuinte
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
32
|
Quantification of the calcium signaling deficit in muscles devoid of triadin. PLoS One 2022; 17:e0264146. [PMID: 35213584 PMCID: PMC8880904 DOI: 10.1371/journal.pone.0264146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Triadin, a protein of the sarcoplasmic reticulum (SR) of striated muscles, anchors the calcium-storing protein calsequestrin to calcium release RyR channels at the junction with t-tubules, and modulates these channels by conformational effects. Triadin ablation induces structural SR changes and alters the expression of other proteins. Here we quantify alterations of calcium signaling in single skeletal myofibers of constitutive triadin-null mice. We find higher resting cytosolic and lower SR-luminal [Ca2+], 40% lower calsequestrin expression, and more CaV1.1, RyR1 and SERCA1. Despite the increased CaV1.1, the mobile intramembrane charge was reduced by ~20% in Triadin-null fibers. The initial peak of calcium release flux by pulse depolarization was minimally altered in the null fibers (revealing an increase in peak calcium permeability). The “hump” phase that followed, attributable to calcium detaching from calsequestrin, was 25% lower, a smaller change than expected from the reduced calsequestrin content and calcium saturation. The exponential decay rate of calcium transients was 25% higher, consistent with the higher SERCA1 content. Recovery of calcium flux after a depleting depolarization was faster in triadin-null myofibers, consistent with the increased uptake rate and lower SR calsequestrin content. In sum, the triadin knockout determines an increased RyR1 channel openness, which depletes the SR, a substantial loss of calsequestrin and gains in other couplon proteins. Powerful functional compensations ensue: activation of SOCE that increases [Ca2+]cyto; increased SERCA1 activity, which limits the decrease in [Ca2+]SR and a restoration of SR calcium storage of unknown substrate. Together, they effectively limit the functional loss in skeletal muscles.
Collapse
|
33
|
Perni S. The Builders of the Junction: Roles of Junctophilin1 and Junctophilin2 in the Assembly of the Sarcoplasmic Reticulum–Plasma Membrane Junctions in Striated Muscle. Biomolecules 2022; 12:biom12010109. [PMID: 35053257 PMCID: PMC8774113 DOI: 10.3390/biom12010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Contraction of striated muscle is triggered by a massive release of calcium from the sarcoplasmic reticulum (SR) into the cytoplasm. This intracellular calcium release is initiated by membrane depolarization, which is sensed by voltage-gated calcium channels CaV1.1 (in skeletal muscle) and CaV1.2 (in cardiac muscle) in the plasma membrane (PM), which in turn activate the calcium-releasing channel ryanodine receptor (RyR) embedded in the SR membrane. This cross-communication between channels in the PM and in the SR happens at specialized regions, the SR-PM junctions, where these two compartments come in close proximity. Junctophilin1 and Junctophilin2 are responsible for the formation and stabilization of SR-PM junctions in striated muscle and actively participate in the recruitment of the two essential players in intracellular calcium release, CaV and RyR. This short review focuses on the roles of junctophilins1 and 2 in the formation and organization of SR-PM junctions in skeletal and cardiac muscle and on the functional consequences of the absence or malfunction of these proteins in striated muscle in light of recently published data and recent advancements in protein structure prediction.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
35
|
Jaque-Fernández F, Jorquera G, Troc-Gajardo J, Pietri-Rouxel F, Gentil C, Buvinic S, Allard B, Jaimovich E, Jacquemond V, Casas M. Pannexin-1 and CaV1.1 show reciprocal interaction during excitation-contraction and excitation-transcription coupling in skeletal muscle. J Gen Physiol 2021; 153:212695. [PMID: 34636893 PMCID: PMC8515650 DOI: 10.1085/jgp.202012635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/24/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
One of the most important functions of skeletal muscle is to respond to nerve stimuli by contracting. This function ensures body movement but also participates in other important physiological roles, like regulation of glucose homeostasis. Muscle activity is closely regulated to adapt to different demands and shows a plasticity that relies on both transcriptional activity and nerve stimuli. These two processes, both dependent on depolarization of the plasma membrane, have so far been regarded as separated and independent processes due to a lack of evidence of common protein partners or molecular mechanisms. In this study, we reveal intimate functional interactions between the process of excitation-induced contraction and the process of excitation-induced transcriptional activity in skeletal muscle. We show that the plasma membrane voltage-sensing protein CaV1.1 and the ATP-releasing channel Pannexin-1 (Panx1) regulate each other in a reciprocal manner, playing roles in both processes. Specifically, knockdown of CaV1.1 produces chronically elevated extracellular ATP concentrations at rest, consistent with disruption of the normal control of Panx1 activity. Conversely, knockdown of Panx1 affects not only activation of transcription but also CaV1.1 function on the control of muscle fiber contraction. Altogether, our results establish the presence of bidirectional functional regulations between the molecular machineries involved in the control of contraction and transcription induced by membrane depolarization of adult muscle fibers. Our results are important for an integrative understanding of skeletal muscle function and may impact our understanding of several neuromuscular diseases.
Collapse
Affiliation(s)
- Francisco Jaque-Fernández
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Gonzalo Jorquera
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jennifer Troc-Gajardo
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - France Pietri-Rouxel
- Université Pierre et Marie Curie, Université Paris 06, Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique/Institut de Myologie/Centre de Recherche en Myologie, Groupement hospitalier universitaire Pitié Salpêtrière, Paris, France
| | - Christel Gentil
- Université Pierre et Marie Curie, Université Paris 06, Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique/Institut de Myologie/Centre de Recherche en Myologie, Groupement hospitalier universitaire Pitié Salpêtrière, Paris, France
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Bruno Allard
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Enrique Jaimovich
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Mariana Casas
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Cullinan MM, Klipp RC, Bankston JR. Regulation of acid-sensing ion channels by protein binding partners. Channels (Austin) 2021; 15:635-647. [PMID: 34704535 PMCID: PMC8555555 DOI: 10.1080/19336950.2021.1976946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels that contribute to a diverse array of functions including pain sensation, cell death during ischemia, and more broadly to neurotransmission in the central nervous system. There is an increasing interest in understanding the physiological regulatory mechanisms of this family of channels. ASICs have relatively short N- and C-termini, yet a number of proteins have been shown to interact with these domains both in vitro and in vivo. These proteins can impact ASIC gating, localization, cell-surface expression, and regulation. Like all ion channels, it is important to understand the cellular context under which ASICs function in neurons and other cells. Here we will review what is known about a number of these potentially important regulatory molecules.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
37
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Rufenach B, Van Petegem F. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. J Biol Chem 2021; 297:100874. [PMID: 34129875 PMCID: PMC8258685 DOI: 10.1016/j.jbc.2021.100874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, an intriguing mechanical coupling exists between two ion channels from different membranes: the L-type voltage-gated calcium channel (CaV1.1), located in the plasma membrane, and ryanodine receptor 1 (RyR1) located in the sarcoplasmic reticulum membrane. Excitable cells rely on Cavs to initiate Ca2+ entry in response to action potentials. RyRs can amplify this signal by releasing Ca2+ from internal stores. Although this process can be mediated through Ca2+ as a messenger, an overwhelming amount of evidence suggests that RyR1 has recruited CaV1.1 directly as its voltage sensor. The exact mechanisms that underlie this coupling have been enigmatic, but a recent wave of reports have illuminated the coupling protein STAC3 as a critical player. Without STAC3, the mechanical coupling between Cav1.1 and RyR1 is lost, and muscles fail to contract. Various sequence variants of this protein have been linked to congenital myopathy. Other STAC isoforms are expressed in the brain and may serve as regulators of L-type CaVs. Despite the short length of STACs, several points of contacts have been proposed between them and CaVs. However, it is currently unclear whether STAC3 also forms direct interactions with RyR1, and whether this modulates RyR1 function. In this review, we discuss the 3D architecture of STAC proteins, the biochemical evidence for their interactions, the relevance of these connections for functional modulation, and their involvement in myopathy.
Collapse
Affiliation(s)
- Britany Rufenach
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
39
|
Perni S, Beam K. Neuronal junctophilins recruit specific Ca V and RyR isoforms to ER-PM junctions and functionally alter Ca V2.1 and Ca V2.2. eLife 2021; 10:64249. [PMID: 33769283 PMCID: PMC8046434 DOI: 10.7554/elife.64249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Junctions between the endoplasmic reticulum and plasma membrane that are induced by the neuronal junctophilins are of demonstrated importance, but their molecular architecture is still poorly understood and challenging to address in neurons. This is due to the small size of the junctions and the multiple isoforms of candidate junctional proteins in different brain areas. Using colocalization of tagged proteins expressed in tsA201 cells, and electrophysiology, we compared the interactions of JPH3 and JPH4 with different calcium channels. We found that JPH3 and JPH4 caused junctional accumulation of all the tested high-voltage-activated CaV isoforms, but not a low-voltage-activated CaV. Also, JPH3 and JPH4 noticeably modify CaV2.1 and CaV2.2 inactivation rate. RyR3 moderately colocalized at junctions with JPH4, whereas RyR1 and RyR2 did not. By contrast, RyR1 and RyR3 strongly colocalized with JPH3, and RyR2 moderately. Likely contributing to this difference, JPH3 binds to cytoplasmic domain constructs of RyR1 and RyR3, but not of RyR2.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| | - Kurt Beam
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| |
Collapse
|
40
|
Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM, Chiti F, Cremades N, Cecchi C. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun 2021; 12:1814. [PMID: 33753734 PMCID: PMC7985515 DOI: 10.1038/s41467-021-21937-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson's disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-β structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Serene W Chen
- Department of Life Science, Imperial College London, London, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - José D Camino
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry "Rocasolano" (CSIC), University of Zaragoza, Zaragoza, Spain.
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| |
Collapse
|
41
|
Gong D, Yan N, Ledford HA. Structural Basis for the Modulation of Ryanodine Receptors. Trends Biochem Sci 2020; 46:489-501. [PMID: 33353849 DOI: 10.1016/j.tibs.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Historically, ryanodine receptors (RyRs) have presented unique challenges for high-resolution structural determination despite long-standing interest in their role in excitation-contraction coupling. Owing to their large size (nearly 2.2 MDa), high-resolution structures remained elusive until the advent of cryogenic electron microscopy (cryo-EM) techniques. In recent years, structures for both RyR1 and RyR2 have been solved at near-atomic resolution. Furthermore, recent reports have delved into their more complex structural associations with key modulators - proteins such as the dihydropyridine receptor (DHPR), FKBP12/12.6, and calmodulin (CaM), as well as ions and small molecules including Ca2+, ATP, caffeine, and PCB95. This review addresses the modulation of RyR1 and RyR2, in addition to the impact of such discoveries on intracellular Ca2+ dynamics and biophysical properties.
Collapse
Affiliation(s)
- Deshun Gong
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province/Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Hannah A Ledford
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
42
|
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K. Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 2020; 15:e0242677. [PMID: 33296386 PMCID: PMC7725318 DOI: 10.1371/journal.pone.0242677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/08/2020] [Indexed: 11/19/2022] Open
Abstract
MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.
Collapse
Affiliation(s)
- Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Kim Setiawan
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Linda Trübestein
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Korbinian Niedermüller
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Gehin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Institute of Bioengineering, Laboratory of Lipid Cell Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Martin Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Department for Cell Physiology and Metabolism, University of Geneva, Centre Medical Universitaire, Geneva, Switzerland
| | - Thomas A. Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Terry K. Smith
- School of Biology, BSRC, University of St. Andrews, St. Andrews, United Kingdom
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
43
|
Rufenach B, Christy D, Flucher BE, Bui JM, Gsponer J, Campiglio M, Van Petegem F. Multiple Sequence Variants in STAC3 Affect Interactions with CaV1.1 and Excitation-Contraction Coupling. Structure 2020; 28:922-932.e5. [DOI: 10.1016/j.str.2020.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
44
|
Isoform-specific regulation of HCN4 channels by a family of endoplasmic reticulum proteins. Proc Natl Acad Sci U S A 2020; 117:18079-18090. [PMID: 32647060 DOI: 10.1073/pnas.2006238117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.
Collapse
|
45
|
Flucher BE. Skeletal muscle Ca V1.1 channelopathies. Pflugers Arch 2020; 472:739-754. [PMID: 32222817 PMCID: PMC7351834 DOI: 10.1007/s00424-020-02368-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
CaV1.1 is specifically expressed in skeletal muscle where it functions as voltage sensor of skeletal muscle excitation-contraction (EC) coupling independently of its functions as L-type calcium channel. Consequently, all known CaV1.1-related diseases are muscle diseases and the molecular and cellular disease mechanisms relate to the dual functions of CaV1.1 in this tissue. To date, four types of muscle diseases are known that can be linked to mutations in the CACNA1S gene or to splicing defects. These are hypo- and normokalemic periodic paralysis, malignant hyperthermia susceptibility, CaV1.1-related myopathies, and myotonic dystrophy type 1. In addition, the CaV1.1 function in EC coupling is perturbed in Native American myopathy, arising from mutations in the CaV1.1-associated protein STAC3. Here, we first address general considerations concerning the possible roles of CaV1.1 in disease and then discuss the state of the art regarding the pathophysiology of the CaV1.1-related skeletal muscle diseases with an emphasis on molecular disease mechanisms.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Biophysics, Medical University Innsbruck, Schöpfstraße 41, A6020, Innsbruck, Austria.
| |
Collapse
|
46
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
Affiliation(s)
- Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
47
|
Shishmarev D. Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Biophys Rev 2020; 12:143-153. [PMID: 31950344 DOI: 10.1007/s12551-020-00610-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Excitation-contraction coupling (ECC) is a physiological process that links excitation of muscles by the nervous system to their mechanical contraction. In skeletal muscle, ECC is initiated with an action potential, generated by the somatic nervous system, which causes a depolarisation of the muscle fibre membrane (sarcolemma). This leads to a rapid change in the transmembrane potential, which is detected by the voltage-gated Ca2+ channel dihydropyridine receptor (DHPR) embedded in the sarcolemma. DHPR transmits the contractile signal to another Ca2+ channel, ryanodine receptor (RyR1), embedded in the membrane of the sarcoplasmic reticulum (SR), which releases a large amount of Ca2+ ions from the SR that initiate muscle contraction. Despite the fundamental role of ECC in skeletal muscle function of all vertebrate species, the molecular mechanism underpinning the communication between the two key proteins involved in the process (DHPR and RyR1) is still largely unknown. The goal of this work is to review the recent progress in our understanding of ECC in skeletal muscle from the point of view of the structure and interactions of proteins involved in the process, and to highlight the unanswered questions in the field.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
48
|
Mackrill JJ, Shiels HA. Evolution of Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:281-320. [DOI: 10.1007/978-3-030-12457-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Ca 2+ Channels Mediate Bidirectional Signaling between Sarcolemma and Sarcoplasmic Reticulum in Muscle Cells. Cells 2019; 9:cells9010055. [PMID: 31878335 PMCID: PMC7016941 DOI: 10.3390/cells9010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle and myocardial cells present highly specialized structures; for example, the close interaction between the sarcoplasmic reticulum (SR) and mitochondria—responsible for excitation-metabolism coupling—and the junction that connects the SR with T-tubules, critical for excitation-contraction (EC) coupling. The mechanisms that underlie EC coupling in these two cell types, however, are fundamentally distinct. They involve the differential expression of Ca2+ channel subtypes: CaV1.1 and RyR1 (skeletal), vs. CaV1.2 and RyR2 (cardiac). The CaV channels transform action potentials into elevations of cytosolic Ca2+, by activating RyRs and thus promoting SR Ca2+ release. The high levels of Ca2+, in turn, stimulate not only the contractile machinery but also the generation of mitochondrial reactive oxygen species (ROS). This forward signaling is reciprocally regulated by the following feedback mechanisms: Ca2+-dependent inactivation (of Ca2+ channels), the recruitment of Na+/Ca2+ exchanger activity, and oxidative changes in ion channels and transporters. Here, we summarize both well-established concepts and recent advances that have contributed to a better understanding of the molecular mechanisms involved in this bidirectional signaling.
Collapse
|
50
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|