1
|
Zhou J, Diao M. Lymphangioleiomyomatosis and pregnancy: a mini-review. Arch Gynecol Obstet 2024; 309:2339-2346. [PMID: 38594407 PMCID: PMC11147845 DOI: 10.1007/s00404-024-07478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Lymphangioleiomyomatosis(LAM) is a slow progressive, rare cystic lung disease in women of reproductive age, associated with infiltration of the lung by atypical smooth muscle like cells, leading to the cystic destruction of the lung parenchyma. As LAM exclusively affects women of childbearing age, it can arise or exacerbate during pregnancy. Many patients with LAM are discouraged from pregnancy, although there is not much objective evidence effect on fertility. Patients diagnosed with LAM during pregnancy experience worse outcomes, so the safety of pregnancy is a vexing problem. What was worse, treatment strategies are limited on the effects of LAM on pregnancy outcomes. Pregnancy could be considered in LAM patients. Successful delivery in women with LAM depends on the condition of the LAM, which is in turn dependent on obstetricians and respiratory physicians. In this review, we describe the epidemiology, pathogenesis, diagnosis, clinical features and the treatment strategies of LAM during pregnancy.
Collapse
Affiliation(s)
- Jieshu Zhou
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Min Diao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Johnson SR, Shaw DE, Avoseh M, Soomro I, Pointon KS, Kokosi M, Nicholson AG, Desai SR, George PM. Diagnosis of cystic lung diseases: a position statement from the UK Cystic Lung Disease Rare Disease Collaborative Network. Thorax 2024; 79:366-377. [PMID: 38182428 DOI: 10.1136/thorax-2022-219738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Rare cystic lung diseases are increasingly recognised due the wider application of CT scanning making cystic lung disease management a growing part of respiratory care. Cystic lung diseases tend to have extrapulmonary features that can both be diagnostic but also require surveillance and treatment in their own right. As some of these diseases now have specific treatments, making a precise diagnosis is crucial. While Langerhans cell histiocytosis, Birt-Hogg-Dubé syndrome, lymphoid interstitial pneumonia and lymphangioleiomyomatosis are becoming relatively well-known diseases to respiratory physicians, a targeted and thorough workup improves diagnostic accuracy and may suggest other ultrarare diseases such as light chain deposition disease, cystic pulmonary amyloidosis, low-grade metastatic neoplasms or infections. In many cases, diagnostic information is overlooked leaving uncertainty over the disease course and treatments. AIMS This position statement from the Rare Disease Collaborative Network for cystic lung diseases will review how clinical, radiological and physiological features can be used to differentiate between these diseases. NARRATIVE We highlight that in many cases a multidisciplinary diagnosis can be made without the need for lung biopsy and discuss where tissue sampling is necessary when non-invasive methods leave diagnostic doubt. We suggest an initial workup focusing on points in the history which identify key disease features, underlying systemic and familial diseases and a clinical examination to search for connective tissue disease and features of genetic causes of lung cysts. All patients should have a CT of the thorax and abdomen to characterise the pattern and burden of lung cysts and extrapulmonary features and also spirometry, gas transfer and a 6 min walk test. Discussion with a rare cystic lung disease centre is suggested before a surgical biopsy is undertaken. CONCLUSIONS We suggest that this focused workup should be performed in all people with multiple lung cysts and would streamline referral pathways, help guide early treatment, management decisions, improve patient experience and reduce overall care costs. It could also potentially catalyse a national research database to describe these less well-understood and unidentified diseases, categorise disease phenotypes and outcomes, potentially leading to better prognostic data and generating a stronger platform to understand specific disease biology.
Collapse
Affiliation(s)
- Simon R Johnson
- Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Dominick E Shaw
- Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Michael Avoseh
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Irshad Soomro
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Kate S Pointon
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Sujal R Desai
- Radiology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Johnson J, Stewart I, Johnson SR. Disease monitoring using lung function trajectory in lymphangioleiomyomatosis: assessment in two national cohorts. Thorax 2023; 78:61-68. [PMID: 35710743 DOI: 10.1136/thoraxjnl-2021-217809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
STUDY QUESTION In lymphangioleiomyomatosis, airflow obstruction and impairment of gas transfer progress at variable rates and serial lung function is recommended for disease monitoring. As these measurements are variable, recognising subjects needing treatment can be difficult. We used two prospective national cohorts to study change over time and variation in FEV1 to inform clinical decision making. PATIENTS AND METHODS Clinical and lung function data for 141 UK and 148 American subjects were studied. Multilevel mixed effects modelling, route mean square analysis of errors and Bland-Altman analysis were used to analyse variability in lung function over time. RESULTS At baseline assessment, DLCO was reduced to a greater degree than FEV1. In untreated patients, FEV1 and DLCO declined at proportionately similar rates independent of initial lung function. In mechanistic target of rapamycin (mTOR) inhibitor treated patients, FEV1 stabilised but DLCO continued to decline. FEV1/DLCO per cent predicted ratio was 1.37 (0.43) at baseline and increased to 1.41 (0.50) after 42 (24) months (p=0.0002). At least five measurements were required before >70% of individuals had estimates of rate of FEV1 loss within 50 mL/year and DLCO loss within 0.1 mmol/min/kPa/year of the final values. CONCLUSIONS While FEV1 and DLCO fall proportionately in most, in early disease and during mTOR inhibitor treatment, DLCO should also be monitored as it may fall independent of FEV1. Since at least five observations over many months are required to make confident estimates of FEV1 and DLCO trajectories, new strategies are needed to measure disease activity and target early treatment appropriately.
Collapse
Affiliation(s)
- Jan Johnson
- Centre for Respiratory Research, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Iain Stewart
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Simon R Johnson
- NIHR BRC and Biodiscovery Institute, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| |
Collapse
|
4
|
Melick CH, Lama-Sherpa TD, Curukovic A, Jewell JL. G-Protein Coupled Receptor Signaling and Mammalian Target of Rapamycin Complex 1 Regulation. Mol Pharmacol 2022; 101:181-190. [PMID: 34965982 PMCID: PMC9092479 DOI: 10.1124/molpharm.121.000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tshering D Lama-Sherpa
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adna Curukovic
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenna L Jewell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
5
|
Thomas A, Sumughan S, Dellacecca ER, Shivde RS, Lancki N, Mukhatayev Z, Vaca CC, Han F, Barse L, Henning SW, Zamora-Pineda J, Akhtar S, Gupta N, Zahid JO, Zack SR, Ramesh P, Jaishankar D, Lo AS, Moss J, Picken MM, Darling TN, Scholtens DM, Dilling DF, Junghans RP, Le Poole IC. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021; 6:152014. [PMID: 34806651 PMCID: PMC8663788 DOI: 10.1172/jci.insight.152014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/– mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2–/– tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/– heterozygous (>60 weeks) mice that carry spontaneous Tsc2–/– tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.
Collapse
Affiliation(s)
- Ancy Thomas
- Department of Dermatology, Feinberg School of Medicine.,Robert H. Lurie Comprehensive Cancer Center
| | | | | | | | - Nicola Lancki
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
| | | | | | - Fei Han
- Department of Dermatology, Feinberg School of Medicine.,Robert H. Lurie Comprehensive Cancer Center
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jesus Zamora-Pineda
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Suhail Akhtar
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Nikhilesh Gupta
- Robert H. Lurie Comprehensive Cancer Center.,Illinois Mathematics and Science Academy, Aurora, Illinois, USA
| | - Jasmine O Zahid
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Stephanie R Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | | | | | - Agnes Sy Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Maria M Picken
- Department of Pathology, Loyola University, Maywood, Illinois, USA
| | - Thomas N Darling
- Department of Dermatology, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Denise M Scholtens
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and.,Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel F Dilling
- Department of Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Richard P Junghans
- Department of Hematology/Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine.,Robert H. Lurie Comprehensive Cancer Center.,Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Goldklang M. Raising the Flag for Mast Cells as a Novel Target in Lymphangioleiomyomatosis. Am J Respir Crit Care Med 2021; 204:387-389. [PMID: 33951405 PMCID: PMC8480237 DOI: 10.1164/rccm.202104-0872ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Chernbumroong S, Johnson J, Gupta N, Miller S, McCormack FX, Garibaldi JM, Johnson SR. Machine learning can predict disease manifestations and outcomes in lymphangioleiomyomatosis. Eur Respir J 2021; 57:13993003.03036-2020. [PMID: 33303533 DOI: 10.1183/13993003.03036-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/17/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with variable clinical manifestations and differing rates of progression that make management decisions and giving prognostic advice difficult. We used machine learning to identify clusters of associated features which could be used to stratify patients and predict outcomes in individuals. PATIENTS AND METHODS Using unsupervised machine learning we generated patient clusters using data from 173 women with LAM from the UK and 186 replication subjects from the US National Heart, Lung, and Blood Institute (NHLBI) LAM registry. Prospective outcomes were associated with cluster results. RESULTS Two- and three-cluster models were developed. A three-cluster model separated a large group of subjects presenting with dyspnoea or pneumothorax from a second cluster with a high prevalence of angiomyolipoma symptoms (p=0.0001) and tuberous sclerosis complex (TSC) (p=0.041). Patients in the third cluster were older, never presented with dyspnoea or pneumothorax (p=0.0001) and had better lung function. Similar clusters were reproduced in the NHLBI cohort. Assigning patients to clusters predicted prospective outcomes: in a two-cluster model the future risk of pneumothorax was 3.3 (95% CI 1.7-5.6)-fold greater in cluster 1 than cluster 2 (p=0.0002). Using the three-cluster model, the need for intervention for angiomyolipoma was lower in clusters 2 and 3 than cluster 1 (p<0.00001). In the NHLBI cohort, the incidence of death or lung transplant was much lower in clusters 2 and 3 (p=0.0045). CONCLUSIONS Machine learning has identified clinically relevant clusters associated with complications and outcome. Assigning individuals to clusters could improve decision making and prognostic information for patients.
Collapse
Affiliation(s)
- Saisakul Chernbumroong
- Nottingham Molecular Pathology Node, Nottingham, UK.,Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | - Janice Johnson
- Respiratory Medicine and NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Suzanne Miller
- Respiratory Medicine and NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan M Garibaldi
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK.,School of Computer Science, University of Nottingham, Nottingham, UK
| | - Simon R Johnson
- Nottingham Molecular Pathology Node, Nottingham, UK .,Respiratory Medicine and NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK.,National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
8
|
O'Mahony AM, Lynn E, Murphy DJ, Fabre A, McCarthy C. Lymphangioleiomyomatosis: a clinical review. Breathe (Sheff) 2020; 16:200007. [PMID: 33304400 PMCID: PMC7714539 DOI: 10.1183/20734735.0007-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a diffuse cystic lung disease. There are two main types of LAM: sporadic, and LAM associated with the tuberous sclerosis complex (TSC), which is caused by mutations in the TSC1 and TSC2 genes. LAM is characterised by cystic lung disease resulting in progressive dyspnoea, renal angiomyolipomas and lymphatic complications. Pneumothorax occurs frequently (70%) and definitive management with pleurodesis is recommended as the risk of recurrence is high. Characteristic thin-walled cysts are seen on computed tomography and the presence of elevated serum levels of a vascular endothelial growth factor-D has good diagnostic specificity. Currently, no single clinical or serological factor has been shown to predict prognosis. However, over the past decade, significant advances in our understanding of the pathophysiology of LAM has led to improved recognition of this rare disease and identification of treatment options. Mechanistic target of rapamycin inhibitors slow the rate of lung function decline and can resolve chylous effusion and regress angiomyolipomas. Life expectancy in patients with LAM is favourable, with a mean transplant-free survival >20 years from the time of diagnosis. Continued advances in understanding the molecular basis of LAM will lead to improved therapeutic targets and the development of more robust prognostic indicators. Educational aims To illustrate the clinical features, common presentations and radiological features of LAMTo outline the diagnostic approach to LAM, including the role of VEGF-DTo review the current prognostic indicators in LAM, and outline the impact of lung function, hormonal status, VEGF-D and clinical presentation on outcomeTo inform clinicians on the management options for LAM both pharmacological and nonpharmacological.
Collapse
Affiliation(s)
- Anne M O'Mahony
- Dept of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland.,These authors contributed equally
| | - Evelyn Lynn
- Dept of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland.,These authors contributed equally
| | - David J Murphy
- Dept of Radiology, St Vincent's University Hospital, Dublin, Ireland
| | - Aurelie Fabre
- Dept of Histopathology, St Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac McCarthy
- Dept of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
da Silva AL, de Oliveira GP, Kim N, Cruz FF, Kitoko JZ, Blanco NG, Martini SV, Hanes J, Rocco PRM, Suk JS, Morales MM. Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. SCIENCE ADVANCES 2020; 6:eaay7973. [PMID: 32577505 PMCID: PMC7286682 DOI: 10.1126/sciadv.aay7973] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Despite long-standing efforts to enhance care for chronic asthma, symptomatic treatments remain the only option to manage this highly prevalent and debilitating disease. We demonstrate that key pathology of allergic asthma can be almost completely resolved in a therapeutic manner by inhaled gene therapy. After the disease was fully and stably established, we treated mice intratracheally with a single dose of thymulin-expressing plasmids delivered via nanoparticles engineered to have a unique ability to penetrate the airway mucus barrier. Twenty days after the treatment, we found that all key pathologic features found in the asthmatic lung, including chronic inflammation, pulmonary fibrosis, and mechanical dysregulation, were normalized. We conducted tissue- and cell-based analyses to confirm that the therapeutic intervention was mediated comprehensively by anti-inflammatory and antifibrotic effects of the therapy. We believe that our findings open a new avenue for clinical development of therapeutically effective gene therapy for chronic asthma.
Collapse
Affiliation(s)
- Adriana L. da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gisele P. de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Namho Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fernanda F. Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jamil Z. Kitoko
- Laboratory of Inflammation and Immunity, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia G. Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sabrina V. Martini
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. (J.S.S.); (M.M.M.)
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Corresponding author. (J.S.S.); (M.M.M.)
| |
Collapse
|
10
|
Johnson J, Johnson SR. Cross-sectional study of reversible airway obstruction in LAM: better evidence is needed for bronchodilator and inhaled steroid use. Thorax 2019; 74:999-1002. [DOI: 10.1136/thoraxjnl-2019-213338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 11/04/2022]
Abstract
Lymphangioleiomyomatosis can be associated with reversible airflow obstruction and although no guidelines around reversibility testing or inhaled therapy exist, many patients receive bronchodilators and inhaled corticosteroids. To better identify those who may benefit, we examined bronchodilator reversibility and inhaled therapy in a national cohort of 213 subjects. 20% of those tested had airway reversibility by standard criteria. 55% of patients used 13 different combinations of bronchodilators and inhaled corticosteroids. Increasing inhaler classes were associated with reversibility and more rapid FEV1 decline. Reversibility testing should be performed in all patients and inhaled therapy should be formally studied.
Collapse
|
11
|
Welkenhuysen N, Schnitzer B, Österberg L, Cvijovic M. Robustness of Nutrient Signaling Is Maintained by Interconnectivity Between Signal Transduction Pathways. Front Physiol 2019; 9:1964. [PMID: 30719010 PMCID: PMC6348271 DOI: 10.3389/fphys.2018.01964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
Systems biology approaches provide means to study the interplay between biological processes leading to the mechanistic understanding of the properties of complex biological systems. Here, we developed a vector format rule-based Boolean logic model of the yeast S. cerevisiae cAMP-PKA, Snf1, and the Snf3-Rgt2 pathway to better understand the role of crosstalk on network robustness and function. We identified that phosphatases are the common unknown components of the network and that crosstalk from the cAMP-PKA pathway to other pathways plays a critical role in nutrient sensing events. The model was simulated with known crosstalk combinations and subsequent analysis led to the identification of characteristics and impact of pathway interconnections. Our results revealed that the interconnections between the Snf1 and Snf3-Rgt2 pathway led to increased robustness in these signaling pathways. Overall, our approach contributes to the understanding of the function and importance of crosstalk in nutrient signaling.
Collapse
Affiliation(s)
- Niek Welkenhuysen
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Barbara Schnitzer
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Faverio P, De Giacomi F, Bonaiti G, Stainer A, Sardella L, Pellegrino G, Sferrazza Papa GF, Bini F, Bodini BD, Carone M, Annoni S, Messinesi G, Pesci A. Management of Chronic Respiratory Failure in Interstitial Lung Diseases: Overview and Clinical Insights. Int J Med Sci 2019; 16:967-980. [PMID: 31341410 PMCID: PMC6643124 DOI: 10.7150/ijms.32752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/05/2019] [Indexed: 01/11/2023] Open
Abstract
Interstitial lung diseases (ILDs) may be complicated by chronic respiratory failure (CRF), especially in the advanced stages. Aim of this narrative review is to evaluate the current evidence in management of CRF in ILDs. Many physiological mechanisms underlie CRF in ILDs, including lung restriction, ventilation/perfusion mismatch, impaired diffusion capacity and pulmonary vascular damage. Intermittent exertional hypoxemia is often the initial sign of CRF, evolving, as ILD progresses, into continuous hypoxemia. In the majority of the cases, the development of CRF is secondary to the worsening of the underlying disease; however, associated comorbidities may also play a role. When managing CRF in ILDs, the need for pulmonary rehabilitation, the referral to lung transplant centers and palliative care should be assessed and, if necessary, promptly offered. Long-term oxygen therapy is commonly prescribed in case of resting or exertional hypoxemia with the purpose to decrease dyspnea and improve exercise tolerance. High-Flow Nasal Cannula oxygen therapy may be used as an alternative to conventional oxygen therapy for ILD patients with severe hypoxemia requiring both high flows and high oxygen concentrations. Non-Invasive Ventilation may be used in the chronic setting for palliation of end-stage ILD patients, although the evidence to support this application is very limited.
Collapse
Affiliation(s)
- Paola Faverio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Federica De Giacomi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Giulia Bonaiti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Anna Stainer
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Luca Sardella
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Giulia Pellegrino
- Casa di Cura del Policlinico, Dipartimento di Scienze Neuroriabilitative, Milan, Italy
| | | | - Francesco Bini
- UOC Pulmonology, Department of Internal Medicine, Ospedale ASST-Rhodense, Garbagnate Milanese, Italy
| | - Bruno Dino Bodini
- Pulmonology Unit, Ospedale Maggiore della Carità, University of Piemonte Orientale, Novara, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Cassano Murge (BA), Italy
| | - Sara Annoni
- Physical therapy and Rehabilitation Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Grazia Messinesi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| | - Alberto Pesci
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Respiratory Unit, San Gerardo Hospital, ASST di Monza, Monza, Italy
| |
Collapse
|
13
|
Liu CH, Chao WT, Lin SC, Lau HY, Wu HH, Wang PH. Malignant perivascular epithelioid cell tumor in the female genital tract: Preferred reporting items for systematic reviews and meta-analyses. Medicine (Baltimore) 2019; 98:e14072. [PMID: 30633211 PMCID: PMC6336598 DOI: 10.1097/md.0000000000014072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor, located at various anatomic sites, including the female genital tract. This study aimed to evaluate the clinicopathological characteristics of patients with PEComa arising from the female genital tract. METHODS A retrospective study was conducted in Taipei Veterans General Hospital (Taipei VGH) between 2008 and 2018. All published English cases based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement were also included in the current review. RESULTS A total of 114 women from PRISMA and 3 women from Taipei VGH were identified. The uterus was the most commonly involved site (82/114, 71.9%), followed by the cervix (12/114, 10.5%). Immunohistochemical staining showed that nearly all gynecological PEComas were positive for human melanoma black 45 (113/114, 99.1%). More than half of the gynecological PEComas were immunoreactive for desmin (50/85, 58.8%). Multi-modality treatment, including surgery and mammalian target of rapamycin (mTOR) inhibitors as targeted therapy, provided long-term disease-free survival (cure rate ranging from 50% to 100%, based on the different anatomic sites of the female genital tract). CONCLUSION Multi-modality treatment, including cytoreductive surgery and mTOR inhibitors with/without chemotherapy and/or radiation, should be considered for the management of women with PEComas in the genital tract.
Collapse
Affiliation(s)
- Chia-Hao Liu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang-Ming University
- Department of Obstetrics and Gynecology, National Yang-Ming University
| | - Wei-Ting Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital
- Department of Obstetrics and Gynecology, National Yang-Ming University
- School of Medicine, Fu-Jen Catholic University, New Taipei City
| | - Shih-Chieh Lin
- Institute of Clinical Medicine, National Yang-Ming University
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei
- School of Medicine, National Defense Medical Center, Taipei
| | - Hei-Yu Lau
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital
- Department of Obstetrics and Gynecology, National Yang-Ming University
- School of Medicine, China Medical University, Taichung
| | - Hua-Hsi Wu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital
- Department of Obstetrics and Gynecology, National Yang-Ming University
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang-Ming University
- Department of Obstetrics and Gynecology, National Yang-Ming University
- Department of Medical Research, China Medical University Hospital, Taichung
| |
Collapse
|