1
|
Yang T, Nakanishi H, Itaka K. Development of a new caged intein for multi-input conditional translation of synthetic mRNA. Sci Rep 2024; 14:9988. [PMID: 38693346 PMCID: PMC11063168 DOI: 10.1038/s41598-024-60809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop "caged Rma DnaB intein" that enables conditional reconstitution of full-length translational regulator protein from split fragments. By combining the caged Rma DnaB intein, the split translational regulator protein, and target protein-binding domains, we succeeded in target protein-dependent translational repression of mRNA in human cells. In addition, the caged Rma intein showed orthogonality to the previously reported Nostoc punctiforme (Npu) DnaE-based caged intein. Finally, by combining these two orthogonal caged inteins, we developed an mRNA-based logic gate that regulates translation based on the expression of multiple intracellular proteins. This study provides important information to develop safer mRNA medicines.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Nava S, Palma W, Wan X, Oh JY, Gharib S, Wang H, Revanna JS, Tan M, Zhang M, Liu J, Chen CH, Lee JS, Perry B, Sternberg PW. A cGAL-UAS bipartite expression toolkit for Caenorhabditis elegans sensory neurons. Proc Natl Acad Sci U S A 2023; 120:e2221680120. [PMID: 38096407 PMCID: PMC10743456 DOI: 10.1073/pnas.2221680120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Animals integrate sensory information from the environment and display various behaviors in response to external stimuli. In Caenorhabditis elegans hermaphrodites, 33 types of sensory neurons are responsible for chemosensation, olfaction, and mechanosensation. However, the functional roles of all sensory neurons have not been systematically studied due to the lack of facile genetic accessibility. A bipartite cGAL-UAS system has been previously developed to study tissue- or cell-specific functions in C. elegans. Here, we report a toolkit of new cGAL drivers that can facilitate the analysis of a vast majority of the 60 sensory neurons in C. elegans hermaphrodites. We generated 37 sensory neuronal cGAL drivers that drive cGAL expression by cell-specific regulatory sequences or intersection of two distinct regulatory regions with overlapping expression (split cGAL). Most cGAL-drivers exhibit expression in single types of cells. We also constructed 28 UAS effectors that allow expression of proteins to perturb or interrogate sensory neurons of choice. This cGAL-UAS sensory neuron toolkit provides a genetic platform to systematically study the functions of C. elegans sensory neurons.
Collapse
Affiliation(s)
- Stephanie Nava
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wilber Palma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jun Young Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Shahla Gharib
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Han Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jasmin S. Revanna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Minyi Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Mark Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jonathan Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Chun-Hao Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - James S. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Barbara Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Kukhtar D, Fussenegger M. Synthetic biology in multicellular organisms: Opportunities in nematodes. Biotechnol Bioeng 2023. [PMID: 37448225 DOI: 10.1002/bit.28497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has mainly focused on introducing new or altered functionality in single cell systems: primarily bacteria, yeast, or mammalian cells. Here, we describe the extension of synthetic biology to nematodes, in particular the well-studied model organism Caenorhabditis elegans, as a convenient platform for developing applications in a multicellular setting. We review transgenesis techniques for nematodes, as well as the application of synthetic biology principles to construct nematode gene switches and genetic devices to control motility. Finally, we discuss potential applications of engineered nematodes.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Ewen-Campen B, Luan H, Xu J, Singh R, Joshi N, Thakkar T, Berger B, White BH, Perrimon N. split-intein Gal4 provides intersectional genetic labeling that is repressible by Gal80. Proc Natl Acad Sci U S A 2023; 120:e2304730120. [PMID: 37276389 PMCID: PMC10268248 DOI: 10.1073/pnas.2304730120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
The split-Gal4 system allows for intersectional genetic labeling of highly specific cell types and tissues in Drosophila. However, the existing split-Gal4 system, unlike the standard Gal4 system, cannot be repressed by Gal80, and therefore cannot be controlled temporally. This lack of temporal control precludes split-Gal4 experiments in which a genetic manipulation must be restricted to specific timepoints. Here, we describe a split-Gal4 system based on a self-excising split-intein, which drives transgene expression as strongly as the current split-Gal4 system and Gal4 reagents, yet which is repressible by Gal80. We demonstrate the potent inducibility of "split-intein Gal4" in vivo using both fluorescent reporters and via reversible tumor induction in the gut. Further, we show that our split-intein Gal4 can be extended to the drug-inducible GeneSwitch system, providing an independent method for intersectional labeling with inducible control. We also show that the split-intein Gal4 system can be used to generate highly cell type-specific genetic drivers based on in silico predictions generated by single-cell RNAseq (scRNAseq) datasets, and we describe an algorithm ("Two Against Background" or TAB) to predict cluster-specific gene pairs across multiple tissue-specific scRNA datasets. We provide a plasmid toolkit to efficiently create split-intein Gal4 drivers based on either CRISPR knock-ins to target genes or using enhancer fragments. Altogether, the split-intein Gal4 system allows for the creation of highly specific intersectional genetic drivers that are inducible/repressible.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Rohit Singh
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02143
| | - Benjamin H. White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Boston, MA02115
| |
Collapse
|
5
|
Ewen-Campen B, Luan H, Xu J, Singh R, Joshi N, Thakkar T, Berger B, White BH, Perrimon N. split-intein Gal4 provides intersectional genetic labeling that is fully repressible by Gal80. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534001. [PMID: 36993523 PMCID: PMC10055387 DOI: 10.1101/2023.03.24.534001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The split-Gal4 system allows for intersectional genetic labeling of highly specific cell-types and tissues in Drosophila . However, the existing split-Gal4 system, unlike the standard Gal4 system, cannot be repressed by Gal80, and therefore cannot be controlled temporally. This lack of temporal control precludes split-Gal4 experiments in which a genetic manipulation must be restricted to specific timepoints. Here, we describe a new split-Gal4 system based on a self-excising split-intein, which drives transgene expression as strongly as the current split-Gal4 system and Gal4 reagents, yet which is fully repressible by Gal80. We demonstrate the potent inducibility of "split-intein Gal4" in vivo using both fluorescent reporters and via reversible tumor induction in the gut. Further, we show that our split-intein Gal4 can be extended to the drug-inducible GeneSwitch system, providing an independent method for intersectional labeling with inducible control. We also show that the split-intein Gal4 system can be used to generate highly cell-type specific genetic drivers based on in silico predictions generated by single cell RNAseq (scRNAseq) datasets, and we describe a new algorithm ("Two Against Background" or TAB) to predict cluster-specific gene pairs across multiple tissue-specific scRNA datasets. We provide a plasmid toolkit to efficiently create split-intein Gal4 drivers based on either CRISPR knock-ins to target genes or using enhancer fragments. Altogether, the split-intein Gal4 system allows for the creation of highly specific intersectional genetic drivers that are inducible/repressible. Significance statement The split-Gal4 system allows Drosophila researchers to drive transgene expression with extraordinary cell type specificity. However, the existing split-Gal4 system cannot be controlled temporally, and therefore cannot be applied to many important areas of research. Here, we present a new split-Gal4 system based on a self-excising split-intein, which is fully controllable by Gal80, as well as a related drug-inducible split GeneSwitch system. This approach can both leverage and inform single-cell RNAseq datasets, and we introduce an algorithm to identify pairs of genes that precisely and narrowly mark a desired cell cluster. Our split-intein Gal4 system will be of value to the Drosophila research community, and allow for the creation of highly specific genetic drivers that are also inducible/repressible.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- These authors contributed equally
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Haojiang Luan
- These authors contributed equally
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Jun Xu
- These authors contributed equally
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, China
| | - Rohit Singh
- These authors contributed equally
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02143
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- HHMI, Boston, MA 02115, USA
| |
Collapse
|
6
|
Nandy S, Maranholkar VM, Crum M, Wasden K, Patil U, Goyal A, Vu B, Kourentzi K, Mo W, Henrickson A, Demeler B, Sen M, Willson RC. Expression and Characterization of Intein-Cyclized Trimer of Staphylococcus aureus Protein A Domain Z. Int J Mol Sci 2023; 24:1281. [PMID: 36674796 PMCID: PMC9865183 DOI: 10.3390/ijms24021281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). DSF showed a 5 ℃ increase in IgG1 melting temperature when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3 with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and cyclic Z3 with IgG1 of -33.0 kcal/mol and -32.7 kcal/mol, and -T∆S of association 21.2 kcal/mol and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of protein engineering for ligand and drug development.
Collapse
Affiliation(s)
- Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Vijay M. Maranholkar
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Mary Crum
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katherine Wasden
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ujwal Patil
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Atul Goyal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - William Mo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
7
|
El Mouridi S, Alkhaldi F, Frøkjær-Jensen C. Modular safe-harbor transgene insertion for targeted single-copy and extrachromosomal array integration in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac184. [PMID: 35900171 PMCID: PMC9434227 DOI: 10.1093/g3journal/jkac184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022]
Abstract
Efficient and reproducible transgenesis facilitates and accelerates research using genetic model organisms. Here, we describe a modular safe-harbor transgene insertion (MosTI) for use in Caenorhabditis elegans which improves targeted insertion of single-copy transgenes by homology directed repair and targeted integration of extrachromosomal arrays by nonhomologous end-joining. MosTI allows easy conversion between selection markers at insertion site and a collection of universal targeting vectors with commonly used promoters and fluorophores. Insertions are targeted at three permissive safe-harbor intergenic locations and transgenes are reproducibly expressed in somatic and germ cells. Chromosomal integration is mediated by CRISPR/Cas9, and positive selection is based on a set of split markers (unc-119, hygroR, and gfp) where only animals with chromosomal insertions are rescued, resistant to antibiotics, or fluorescent, respectively. Single-copy insertion is efficient using either constitutive or heat-shock inducible Cas9 expression (25-75%) and insertions can be generated from a multiplexed injection mix. Extrachromosomal array integration is also efficient (7-44%) at modular safe-harbor transgene insertion landing sites or at the endogenous unc-119 locus. We use short-read sequencing to estimate the plasmid copy numbers for 8 integrated arrays (6-37 copies) and long-read Nanopore sequencing to determine the structure and size (5.4 Mb) of 1 array. Using universal targeting vectors, standardized insertion strains, and optimized protocols, it is possible to construct complex transgenic strains which should facilitate the study of increasingly complex biological problems in C. elegans.
Collapse
Affiliation(s)
- Sonia El Mouridi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Faisal Alkhaldi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christian Frøkjær-Jensen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Mendez P, Walsh B, Hallem EA. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. Mol Biochem Parasitol 2022; 250:111491. [PMID: 35697205 PMCID: PMC9339661 DOI: 10.1016/j.molbiopara.2022.111491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.
Collapse
Affiliation(s)
- Patricia Mendez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA.
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Chen HS, Zhang XL, Yang RR, Wang GL, Zhu XY, Xu YF, Wang DY, Zhang N, Qiu S, Zhan LJ, Shen ZM, Xu XH, Long G, Xu C. An intein-split transactivator for intersectional neural imaging and optogenetic manipulation. Nat Commun 2022; 13:3605. [PMID: 35739125 PMCID: PMC9226064 DOI: 10.1038/s41467-022-31255-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-type-specific recording and manipulation is instrumental to disentangle causal neural mechanisms in physiology and behavior and increasingly requires intersectional control; however, current approaches are largely limited by the number of intersectional features, incompatibility of common effectors and insufficient gene expression. Here, we utilized the protein-splicing technique mediated by intervening sequences (intein) and devised an intein-based intersectional synthesis of transactivator (IBIST) to selectively control gene expression of common effectors in multiple-feature defined cell types in mice. We validated the specificity and sufficiency of IBIST to control fluorophores, optogenetic opsins and Ca2+ indicators in various intersectional conditions. The IBIST-based Ca2+ imaging showed that the IBIST can intersect five features and that hippocampal neurons tune differently to distinct emotional stimuli depending on the pattern of projection targets. Collectively, the IBIST multiplexes the capability to intersect cell-type features and controls common effectors to effectively regulate gene expression, monitor and manipulate neural activities.
Collapse
Affiliation(s)
- Hao-Shan Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Long Zhang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Rong-Rong Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guang-Ling Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin-Yue Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan-Fang Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan-Yang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Na Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jie Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Ming Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gang Long
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
10
|
Nonet M. Improved GAL4 and Tet OFF drivers for C. elegans bipartite expression. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000438. [PMID: 34549175 PMCID: PMC8449259 DOI: 10.17912/micropub.biology.000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 11/06/2022]
Abstract
The first generation of C. elegans GAL4 drivers for bipartite expression function less well than C. elegans tet ON/OFF, QF and LexA drivers. The main difference between the GAL4 drivers and the others is the absence of a flexible linker between the DNA binding and activation domain in the GAL4 construct. Addition of a linker to a GAL4-QF construct increased driver potency, while adding linkers to a GAL4-VP64 driver was much less effective. Extending the linker region of the tetR-L-QF driver also increased activity of that driver. The new GAL4 driver makes GAL4/UAS bipartite system activity comparable to the other worm bipartite expression systems.
Collapse
Affiliation(s)
- Michael Nonet
- Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
11
|
Rabinowitch I, Upadhyaya B, Pant A, Galski D, Kreines L, Bai J. Circumventing neural damage in a C. elegans chemosensory circuit using genetically engineered synapses. Cell Syst 2021; 12:263-271.e4. [PMID: 33472027 PMCID: PMC7979504 DOI: 10.1016/j.cels.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Neuronal loss can considerably diminish neural circuit function, impairing normal behavior by disrupting information flow in the circuit. Here, we use genetically engineered electrical synapses to reroute the flow of information in a C. elegans damaged chemosensory circuit in order to restore organism behavior. We impaired chemotaxis by removing one pair of interneurons from the circuit then artificially coupled two other adjacent neuron pairs by ectopically expressing the gap junction protein, connexin, in them. This restored chemotaxis in the animals. We expected to observe linear and direct information flow between the connexin-coupled neurons in the recovered circuit but also revealed the formation of new potent left-right lateral electrical connections within the connexin-expressing neuron pairs. Our analysis suggests that these additional electrical synapses help restore circuit function by amplifying weakened neuronal signals in the damaged circuit in addition to emulating the wild-type circuit. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, IMRIC - Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel.
| | - Bishal Upadhyaya
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aaradhya Pant
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dolev Galski
- Department of Medical Neurobiology, IMRIC - Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Lena Kreines
- Department of Medical Neurobiology, IMRIC - Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
13
|
Bhagawati M, Hoffmann S, Höffgen KS, Piehler J, Busch KB, Mootz HD. In Cellulo Protein Semi‐Synthesis from Endogenous and Exogenous Fragments Using the Ultra‐Fast Split Gp41‐1 Intein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maniraj Bhagawati
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Simon Hoffmann
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Katharina S. Höffgen
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics University of Osnabrück Barbarastrasse 11 49076 Osnabrück Germany
| | - Karin B. Busch
- Institute of Molecular Cell Biology University of Münster Schlossplatz 5 48149 Münster Germany
| | - Henning D. Mootz
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| |
Collapse
|
14
|
Bhagawati M, Hoffmann S, Höffgen KS, Piehler J, Busch KB, Mootz HD. In Cellulo Protein Semi-Synthesis from Endogenous and Exogenous Fragments Using the Ultra-Fast Split Gp41-1 Intein. Angew Chem Int Ed Engl 2020; 59:21007-21015. [PMID: 32777124 PMCID: PMC7693240 DOI: 10.1002/anie.202006822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Protein semi-synthesis inside live cells from exogenous and endogenous parts offers unique possibilities for studying proteins in their native context. Split-intein-mediated protein trans-splicing is predestined for such endeavors and has seen some successes, but a much larger variety of established split inteins and associated protocols is urgently needed. We characterized the association and splicing parameters of the Gp41-1 split intein, which favorably revealed a nanomolar affinity between the intein fragments combined with the exceptionally fast splicing rate. Following bead-loading of a chemically modified intein fragment precursor into live mammalian cells, we fluorescently labeled target proteins on their N- and C-termini with short peptide tags, thus ensuring minimal perturbation of their structure and function. In combination with a nuclear-entrapment strategy to minimize cytosolic fluorescence background, we applied our technique for super-resolution imaging and single-particle tracking of the outer mitochondrial protein Tom20 in HeLa cells.
Collapse
Affiliation(s)
- Maniraj Bhagawati
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Simon Hoffmann
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Katharina S. Höffgen
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Jacob Piehler
- Department of Biology and Center for Cellular NanoanalyticsUniversity of OsnabrückBarbarastrasse 1149076OsnabrückGermany
| | - Karin B. Busch
- Institute of Molecular Cell BiologyUniversity of MünsterSchlossplatz 548149MünsterGermany
| | - Henning D. Mootz
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
15
|
Kawase M, Fujioka M, Takahashi T. Activation of Protease and Luciferase Using Engineered Nostoc punctiforme PCC73102 DnaE Intein with Altered Split Position. Chembiochem 2020; 22:577-584. [PMID: 32969142 DOI: 10.1002/cbic.202000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Inteins, self-catalytic enzymes, have been widely used in the field of protein engineering and chemical biology. Here, Nostoc punctiforme PCC73102 (Npu) DnaE intein was engineered to have an altered split position. An 11-residue N-intein of DnaE in which Gly and Asp were substituted for Tyr4 and Glu5, respectively, was designed, and the active C-intein variants were acquired by a GFP fluorescence-based screening. The designed N-intein and the obtained active C-intein variants were used to construct a turn-on system for enzyme activities such as human immunodeficiency 1 protease and NanoLuc luciferase. Based on the NanoLuc-intein fusion, we developed two intein pairs, each of which is capable of reacting preferentially, by interchanging the charged amino acids on N- and C-inteins. The specific splicing reactions were easily monitored and discriminated by bioluminescence resonance energy transfer (BRET).
Collapse
Affiliation(s)
- Misaki Kawase
- Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Meiko Fujioka
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Tsuyoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
16
|
Ge MH, Wang W, Wu TH, Wen X, Al-Sheikh U, Chen LL, Yin SW, Wu JJ, Huang JH, He QQ, Liu H, Li R, Wang PZ, Wu ZX. Dual Recombining-out System for Spatiotemporal Gene Expression in C. elegans. iScience 2020; 23:101567. [PMID: 33083734 PMCID: PMC7549056 DOI: 10.1016/j.isci.2020.101567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023] Open
Abstract
Specific recording, labeling, and spatiotemporal manipulating neurons are essential for neuroscience research. In this study, we developed a tripartite spatiotemporal gene induction system in C. elegans, which is based on the knockout of two transcriptional terminators (stops in short) by two different recombinases FLP and CRE. The recombinase sites (loxP and FRT) flanked stops after a ubiquitous promoter terminate transcription of target genes. FLP and CRE, induced by two promoters of overlapping expression, remove the stops (subsequent FLP/CRE-out). The system provides an "AND" gate strategy for specific gene expression in single types of cell(s). Combined with an inducible promoter or element, the system can control the spatiotemporal expression of genes in defined cell types, especially in cells or tissues lacking a specific promoter. This tripartite FLP/CRE-out gene expression system is a simple, labor- and cost-saving toolbox for cell type-specific and inducible gene expression in C. elegans.
Collapse
Affiliation(s)
- Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Umar Al-Sheikh
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Li Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Wu Yin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hao Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qing-Qin He
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Khodarovich YM, Rakhmaninova DD, Barishnikova AM, Deyev SM. Doxycycline Sensitive Two-Promoter Integrator Based on the TET-ON 3G Transactivator. Mol Biol 2020. [DOI: 10.1134/s0026893320020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Luan H, Kuzin A, Odenwald WF, White BH. Cre-assisted fine-mapping of neural circuits using orthogonal split inteins. eLife 2020; 9:e53041. [PMID: 32286225 PMCID: PMC7217698 DOI: 10.7554/elife.53041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/11/2020] [Indexed: 01/18/2023] Open
Abstract
Existing genetic methods of neuronal targeting do not routinely achieve the resolution required for mapping brain circuits. New approaches are thus necessary. Here, we introduce a method for refined neuronal targeting that can be applied iteratively. Restriction achieved at the first step can be further refined in a second step, if necessary. The method relies on first isolating neurons within a targeted group (i.e. Gal4 pattern) according to their developmental lineages, and then intersectionally limiting the number of lineages by selecting only those in which two distinct neuroblast enhancers are active. The neuroblast enhancers drive expression of split Cre recombinase fragments. These are fused to non-interacting pairs of split inteins, which ensure reconstitution of active Cre when all fragments are expressed in the same neuroblast. Active Cre renders all neuroblast-derived cells in a lineage permissive for Gal4 activity. We demonstrate how this system can facilitate neural circuit-mapping in Drosophila.
Collapse
Affiliation(s)
- Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| |
Collapse
|
19
|
Pinto F, Thornton EL, Wang B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat Commun 2020; 11:1529. [PMID: 32251274 PMCID: PMC7090010 DOI: 10.1038/s41467-020-15272-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
Inteins are protein segments capable of joining adjacent residues via a peptide bond. In this process known as protein splicing, the intein itself is not present in the final sequence, thus achieving scarless peptide ligation. Here, we assess the splicing activity of 34 inteins (both uncharacterized and known) using a rapid split fluorescent reporter characterization platform, and establish a library of 15 mutually orthogonal split inteins for in vivo applications, 10 of which can be simultaneously used in vitro. We show that orthogonal split inteins can be coupled to multiple split transcription factors to implement complex logic circuits in living organisms, and that they can also be used for the in vitro seamless assembly of large repetitive proteins with biotechnological relevance. Our work demonstrates the versatility and vast potential of an expanded library of orthogonal split inteins for their use in the fields of synthetic biology and protein engineering.
Collapse
Affiliation(s)
- Filipe Pinto
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Ella Lucille Thornton
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
20
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
Gene expression engineering in fungi. Curr Opin Biotechnol 2019; 59:141-149. [PMID: 31154079 DOI: 10.1016/j.copbio.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023]
Abstract
Fungi are a highly diverse group of microbial species that possess a plethora of biotechnologically useful metabolic and physiological properties. Important enablers for fungal biology studies and their biotechnological use are well-performing gene expression tools. Different types of gene expression tools exist; however, typically they are at best only functional in one or a few closely related species. This has hampered research and development of industrially relevant production systems. Here, we review operational principles and concepts of fungal gene expression tools. We present an overview on tools that utilize endogenous fungal promoters and modified hybrid expression systems composed of engineered promoters and transcription factors. Finally, we review synthetic expression tools that are functional across a broad range of fungal species.
Collapse
|
23
|
Ayuso C, Askjaer P. Spatiotemporal control of genome recombination through combined FLP-Frt and GAL4-UAS technologies. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000089. [PMID: 32550473 PMCID: PMC7255769 DOI: 10.17912/micropub.biology.000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain,
Correspondence to: Peter Askjaer ()
| |
Collapse
|
24
|
Mao S, Qi Y, Zhu H, Huang X, Zou Y, Chi T. A Tet/Q Hybrid System for Robust and Versatile Control of Transgene Expression in C. elegans. iScience 2018; 11:224-237. [PMID: 30634168 PMCID: PMC6327101 DOI: 10.1016/j.isci.2018.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 11/04/2022] Open
Abstract
Binary gene regulatory tools such as the Tetracycline (Tet)-controlled transcription system have revolutionized genetic research in multiple organisms, but their applications to the worm remain very limited. Here we report that the canonical Tet system is largely inactive in the worm but can be adapted for the worm by introducing multiple modifications, a crucial one being the use of the transcription activation domain from the fungal Q binary system. The resultant Tet/Q hybrid system proves more robust and flexible than either of its precursors, enabling elaborate modes of transgene manipulation previously hard to achieve in the worm, including inducible intersectional regulation and, in combination with the Q system, independent control of distinct transgenes within the same cells. Furthermore, we demonstrated, as an example of its applications, that the hybrid system can tightly and efficiently control Cre expression. This study establishes Tet/Q as a premier binary system for worm genetic research. The popular Tet-controlled gene regulatory system proves inapplicable to the worm The fungal Q binary gene regulatory system is moderately active in the worm A hybrid Tet/Q system is capable of robust, rapid and tunable transgene induction Further modifications enable sophisticated regulation previously hard to achieve
Collapse
Affiliation(s)
- Shaoshuai Mao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingchuan Qi
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Huanhu Zhu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Xinxin Huang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zou
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Chi
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China; Department Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|