1
|
Polychronopoulos PA, Bedoya-Reina OC, Johnsen JI. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers (Basel) 2024; 16:1863. [PMID: 38791942 PMCID: PMC11119056 DOI: 10.3390/cancers16101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroblastoma is a peripheral nervous system tumor that almost exclusively occurs in young children. Although intensified treatment modalities have led to increased patient survival, the prognosis for patients with high-risk disease is still around 50%, signifying neuroblastoma as a leading cause of cancer-related deaths in children. Neuroblastoma is an embryonal tumor and is shaped by its origin from cells within the neural crest. Hence, neuroblastoma usually presents with a low mutational burden and is, in the majority of cases, driven by epigenetically deregulated transcription networks. The recent development of Omic techniques has given us detailed knowledge of neuroblastoma evolution, heterogeneity, and plasticity, as well as intra- and intercellular molecular communication networks within the neuroblastoma microenvironment. Here, we discuss the potential of these recent discoveries with emphasis on new treatment modalities, including immunotherapies which hold promise for better future treatment regimens.
Collapse
Affiliation(s)
- Panagiotis Alkinoos Polychronopoulos
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| | - Oscar C. Bedoya-Reina
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| |
Collapse
|
2
|
Saldana-Guerrero IM, Montano-Gutierrez LF, Boswell K, Hafemeister C, Poon E, Shaw LE, Stavish D, Lea RA, Wernig-Zorc S, Bozsaky E, Fetahu IS, Zoescher P, Pötschger U, Bernkopf M, Wenninger-Weinzierl A, Sturtzel C, Souilhol C, Tarelli S, Shoeb MR, Bozatzi P, Rados M, Guarini M, Buri MC, Weninger W, Putz EM, Huang M, Ladenstein R, Andrews PW, Barbaric I, Cresswell GD, Bryant HE, Distel M, Chesler L, Taschner-Mandl S, Farlik M, Tsakiridis A, Halbritter F. A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations. Nat Commun 2024; 15:3745. [PMID: 38702304 PMCID: PMC11068915 DOI: 10.1038/s41467-024-47945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.
Collapse
Affiliation(s)
- Ingrid M Saldana-Guerrero
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | | | - Katy Boswell
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Rebecca A Lea
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Sara Wernig-Zorc
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Irfete S Fetahu
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Medical University of Vienna, Department of Neurology, Division of Neuropathology and Neurochemistry, Vienna, Austria
| | - Peter Zoescher
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ulrike Pötschger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik GmbH, Vienna, Austria
| | | | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Celine Souilhol
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Sophia Tarelli
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Mohamed R Shoeb
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Polyxeni Bozatzi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Maria Guarini
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michelle C Buri
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Miller Huang
- Children's Hospital Los Angeles, Cancer and Blood Disease Institutes, and The Saban Research Institute, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth Ladenstein
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter W Andrews
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Helen E Bryant
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | | | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK.
- Neuroscience Institute, The University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
3
|
Banerjee D, Bagchi S, Liu Z, Chou HC, Xu M, Sun M, Aloisi S, Vaksman Z, Diskin SJ, Zimmerman M, Khan J, Gryder B, Thiele CJ. Lineage specific transcription factor waves reprogram neuroblastoma from self-renewal to differentiation. Nat Commun 2024; 15:3432. [PMID: 38653778 DOI: 10.1038/s41467-024-47166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.
Collapse
Affiliation(s)
- Deblina Banerjee
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Sukriti Bagchi
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhihui Liu
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hsien-Chao Chou
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Man Xu
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ming Sun
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sara Aloisi
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | | | - Sharon J Diskin
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Carol J Thiele
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Epp S, Chuah SM, Halasz M. Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma. Int J Mol Sci 2023; 24:17085. [PMID: 38069407 PMCID: PMC10707345 DOI: 10.3390/ijms242317085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.
Collapse
Affiliation(s)
- Soraya Epp
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Shin Mei Chuah
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Melinda Halasz
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
5
|
Tanjore Ramanathan J, Zárybnický T, Filppu P, Monzo HJ, Monni O, Tervonen TA, Klefström J, Kerosuo L, Kuure S, Laakkonen P. Immunoglobulin superfamily member 3 is required for the vagal neural crest cell migration and enteric neuronal network organization. Sci Rep 2023; 13:17162. [PMID: 37821496 PMCID: PMC10567708 DOI: 10.1038/s41598-023-44093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The immunoglobulin (Ig) superfamily members are involved in cell adhesion and migration, complex multistep processes that play critical roles in embryogenesis, wound healing, tissue formation, and many other processes, but their specific functions during embryonic development remain unclear. Here, we have studied the function of the immunoglobulin superfamily member 3 (IGSF3) by generating an Igsf3 knockout (KO) mouse model with CRISPR/Cas9-mediated genome engineering. By combining RNA and protein detection methodology, we show that during development, IGSF3 localizes to the neural crest and a subset of its derivatives, suggesting a role in normal embryonic and early postnatal development. Indeed, inactivation of Igsf3 impairs the ability of the vagal neural crest cells to migrate and normally innervate the intestine. The small intestine of Igsf3 KO mice shows reduced thickness of the muscularis externa and diminished number of enteric neurons. Also, misalignment of neurons and smooth muscle cells in the developing intestinal villi is detected. Taken together, our results suggest that IGSF3 functions contribute to the formation of the enteric nervous system. Given the essential role of the enteric nervous system in maintaining normal gastrointestinal function, our study adds to the pool of information required for further understanding the mechanisms of gut innervation and etiology behind bowel motility disorders.
Collapse
Affiliation(s)
| | - Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hector J Monzo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Topi A Tervonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish genome editing center (FinGEEC), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- GM-unit, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Flagship Program, University of Helsinki, Helsinki, Finland.
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Asmar AJ, Abrams SR, Hsin J, Collins JC, Yazejian RM, Wu Y, Cho J, Doyle AD, Cinthala S, Simon M, van Jaarsveld RH, Beck DB, Kerosuo L, Werner A. A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development. Nat Commun 2023; 14:4499. [PMID: 37495603 PMCID: PMC10371987 DOI: 10.1038/s41467-023-40223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42. This regulation relies on the CDC42-activating complex GIT1-βPIX, which CRL3-KLHL4 exploits as a substrate-specific co-adaptor to recognize and monoubiquitylate PAK1. Surprisingly, we find that ubiquitylation converts the canonical CDC42 effector PAK1 into a CDC42 inhibitor. Loss of CRL3-KLHL4 or a disease-associated KLHL4 variant reduce PAK1 ubiquitylation causing overactivation of CDC42 signaling and defective ectodermal patterning and neurulation. Thus, tissue-specific restriction of CDC42 signaling by a ubiquitin-based effector-to-inhibitor is essential for early face, brain, and skin formation, revealing how cell-fate and morphometric changes are coordinated to ensure faithful organ development.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaun R Abrams
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jenny Hsin
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason C Collins
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rita M Yazejian
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Youmei Wu
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jean Cho
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew D Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samhitha Cinthala
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - David B Beck
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura Kerosuo
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Bechmann N, Westermann F, Eisenhofer G. HIF and MYC signaling in adrenal neoplasms of the neural crest: implications for pediatrics. Front Endocrinol (Lausanne) 2023; 14:1022192. [PMID: 37361539 PMCID: PMC10286580 DOI: 10.3389/fendo.2023.1022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Pediatric neural crest-derived adrenal neoplasms include neuroblastoma and pheochromocytoma. Both entities are associated with a high degree of clinical heterogeneity, varying from spontaneous regression to malignant disease with poor outcome. Increased expression and stabilization of HIF2α appears to contribute to a more aggressive and undifferentiated phenotype in both adrenal neoplasms, whereas MYCN amplification is a valuable prognostic marker in neuroblastoma. The present review focuses on HIF- and MYC signaling in both neoplasms and discusses the interaction of associated pathways during neural crest and adrenal development as well as potential consequences on tumorigenesis. Emerging single-cell methods together with epigenetic and transcriptomic analyses provide further insights into the importance of a tight regulation of HIF and MYC signaling pathways during adrenal development and tumorigenesis. In this context, increased attention to HIF-MYC/MAX interactions may also provide new therapeutic options for these pediatric adrenal neoplasms.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Westermann
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Li YF, Cheng T, Zhang YJ, Fu XX, Mo J, Zhao GQ, Xue MG, Zhuo DH, Xing YY, Huang Y, Sun XZ, Wang D, Liu X, Dong Y, Zhu XS, He F, Ma J, Chen D, Jin X, Xu PF. Mycn regulates intestinal development through ribosomal biogenesis in a zebrafish model of Feingold syndrome 1. PLoS Biol 2022; 20:e3001856. [PMID: 36318514 PMCID: PMC9624419 DOI: 10.1371/journal.pbio.3001856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.
Collapse
Affiliation(s)
- Yun-Fei Li
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Jie Zhang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xin Fu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Mo
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Guo-Qin Zhao
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Mao-Guang Xue
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ding-Hao Zhuo
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yi Xing
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Huang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Zhi Sun
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Liu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Dong
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Sheng Zhu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng He
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ma
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (XJ); (P-FX)
| | - Peng-Fei Xu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (XJ); (P-FX)
| |
Collapse
|
9
|
Marchant CL, Malmi-Kakkada AN, Espina JA, Barriga EH. Cell clusters softening triggers collective cell migration in vivo. NATURE MATERIALS 2022; 21:1314-1323. [PMID: 35970965 PMCID: PMC9622418 DOI: 10.1038/s41563-022-01323-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/28/2022] [Indexed: 05/02/2023]
Abstract
Embryogenesis, tissue repair and cancer metastasis rely on collective cell migration. In vitro studies propose that cells are stiffer while migrating in stiff substrates, but softer when plated in compliant surfaces which are typically considered as non-permissive for migration. Here we show that cells within clusters from embryonic tissue dynamically decrease their stiffness in response to the temporal stiffening of their native substrate to initiate collective cell migration. Molecular and mechanical perturbations of embryonic tissues reveal that this unexpected mechanical response involves a mechanosensitive pathway relying on Piezo1-mediated microtubule deacetylation. We further show that decreasing microtubule acetylation and consequently cluster stiffness is sufficient to trigger collective cell migration in soft non-permissive substrates. This suggests that reaching an optimal cluster-to-substrate stiffness ratio is essential to trigger the onset of this collective process. Overall, these in vivo findings challenge the current understanding of collective cell migration and its physiological and pathological roles.
Collapse
Affiliation(s)
- Cristian L Marchant
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Abdul N Malmi-Kakkada
- Computational Biological Physics Laboratory, Department of Chemistry and Physics, Augusta University, Augusta, GA, USA
| | - Jaime A Espina
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
| |
Collapse
|
10
|
Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development 2022; 149:276149. [DOI: 10.1242/dev.200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.
Collapse
Affiliation(s)
- Sandra Guadalupe Gonzalez Malagon
- Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus 1 , 45115 Ioannina , Greece
- School of Health Sciences and Institute of Biosciences, University Research Centre, University of Ioannina 2 Department of Biological Applications and Technology , , 45110 Ioannina , Greece
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London 3 , London SE1 9RT , UK
| |
Collapse
|
11
|
Bownes LV, Marayati R, Quinn CH, Beierle AM, Hutchins SC, Julson JR, Erwin MH, Stewart JE, Mroczek-Musulman E, Ohlmeyer M, Aye JM, Yoon KJ, Beierle EA. Pre-Clinical Study Evaluating Novel Protein Phosphatase 2A Activators as Therapeutics for Neuroblastoma. Cancers (Basel) 2022; 14:1952. [PMID: 35454859 PMCID: PMC9026148 DOI: 10.3390/cancers14081952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) functions as an inhibitor of cancer cell proliferation, and its tumor suppressor function is attenuated in many cancers. Previous studies utilized FTY720, an immunomodulating compound known to activate PP2A, and demonstrated a decrease in the malignant phenotype in neuroblastoma. We wished to investigate the effects of two novel PP2A activators, ATUX-792 (792) and DBK-1154 (1154). METHODS Long-term passage neuroblastoma cell lines and human neuroblastoma patient-derived xenograft (PDX) cells were used. Cells were treated with 792 or 1154, and viability, proliferation, and motility were examined. The effect on tumor growth was investigated using a murine flank tumor model. RESULTS Treatment with 792 or 1154 resulted in PP2A activation, decreased cell survival, proliferation, and motility in neuroblastoma cells. Immunoblotting revealed a decrease in MYCN protein expression with increasing concentrations of 792 and 1154. Treatment with 792 led to tumor necrosis and decreased tumor growth in vivo. CONCLUSIONS PP2A activation with 792 or 1154 decreased survival, proliferation, and motility of neuroblastoma in vitro and tumor growth in vivo. Both compounds resulted in decreased expression of the oncogenic protein MYCN. These findings indicate a potential therapeutic role for these novel PP2A activators in neuroblastoma.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Andee M. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Sara C. Hutchins
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.)
| | - Janet R. Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Michael H. Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | | | | | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| |
Collapse
|
12
|
Ponzoni M, Bachetti T, Corrias MV, Brignole C, Pastorino F, Calarco E, Bensa V, Giusto E, Ceccherini I, Perri P. Recent advances in the developmental origin of neuroblastoma: an overview. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:92. [PMID: 35277192 PMCID: PMC8915499 DOI: 10.1186/s13046-022-02281-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/06/2022] [Indexed: 02/04/2023]
Abstract
Neuroblastoma (NB) is a pediatric tumor that originates from neural crest-derived cells undergoing a defective differentiation due to genomic and epigenetic impairments. Therefore, NB may arise at any final site reached by migrating neural crest cells (NCCs) and their progeny, preferentially in the adrenal medulla or in the para-spinal ganglia. NB shows a remarkable genetic heterogeneity including several chromosome/gene alterations and deregulated expression of key oncogenes that drive tumor initiation and promote disease progression. NB substantially contributes to childhood cancer mortality, with a survival rate of only 40% for high-risk patients suffering chemo-resistant relapse. Hence, NB remains a challenge in pediatric oncology and the need of designing new therapies targeted to specific genetic/epigenetic alterations become imperative to improve the outcome of high-risk NB patients with refractory disease or chemo-resistant relapse. In this review, we give a broad overview of the latest advances that have unraveled the developmental origin of NB and its complex epigenetic landscape. Single-cell RNA sequencing with spatial transcriptomics and lineage tracing have identified the NCC progeny involved in normal development and in NB oncogenesis, revealing that adrenal NB cells transcriptionally resemble immature neuroblasts or their closest progenitors. The comparison of adrenal NB cells from patients classified into risk subgroups with normal sympatho-adrenal cells has highlighted that tumor phenotype severity correlates with neuroblast differentiation grade. Transcriptional profiling of NB tumors has identified two cell identities that represent divergent differentiation states, i.e. undifferentiated mesenchymal (MES) and committed adrenergic (ADRN), able to interconvert by epigenetic reprogramming and to confer intra-tumoral heterogeneity and high plasticity to NB. Chromatin immunoprecipitation sequencing has disclosed the existence of two super-enhancers and their associated transcription factor networks underlying MES and ADRN identities and controlling NB gene expression programs. The discovery of NB-specific regulatory circuitries driving oncogenic transformation and maintaining the malignant state opens new perspectives on the design of innovative therapies targeted to the genetic and epigenetic determinants of NB. Remodeling the disrupted regulatory networks from a dysregulated expression, which blocks differentiation and enhances proliferation, toward a controlled expression that prompts the most differentiated state may represent a promising therapeutic strategy for NB.
Collapse
Affiliation(s)
- Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Tiziana Bachetti
- U.O. Proteomica e Spettrometria di Massa, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| |
Collapse
|
13
|
Xia Z, Bi X, Yang S, Yang X, Song Z, Wei J, Xu P, Rink L, Min J, Wang F. Metal transporter Slc30a1 controls pharyngeal neural crest differentiation via the zinc-Snai2-Jag1 cascade. MedComm (Beijing) 2021; 2:778-797. [PMID: 34977877 PMCID: PMC8706747 DOI: 10.1002/mco2.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The pharyngeal arch (PA) is a neural crest (NC)-derived organ that is transiently developed during embryogenesis and is required for the subsequent development of various tissues. However, the role of zinc during PA differentiation from NC progenitor cells is unknown. Here, we found that the metal transporters Slc30a1a and Slc30a1b mediate zinc homeostasis during PA differentiation. Slc30a1-deficient zebrafish develop zinc accumulation in NC cells, with increased expression of stemness markers and PA dorsal genes, and SMART-seq analyses revealed that the genes snai2 and jag1b may serve as downstream targets. Furthermore, functional studies showed that knocking down either snai2 or jag1b rescues PA development in Slc30a1-deficient zebrafish. Notably, we identified the double zinc-finger domain in the transcription factor Snai2 as a zinc-responsive element that regulates jag1b expression. Our findings indicate that the Slc30a1/zinc-snai2-jag1b axis is an essential regulatory network controlling PA differentiation, shedding new light on the function of zinc homeostasis in maintaining NC cell stemness and multipotency in vertebrates.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xinying Bi
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Sisi Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xiu Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Zijun Song
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Jiayu Wei
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Pengfei Xu
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Lothar Rink
- Faculty of MedicineInstitute of ImmunologyRWTH Aachen UniversityAachenGermany
| | - Junxia Min
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Fudi Wang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
14
|
Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci 2021; 22:ijms222111718. [PMID: 34769149 PMCID: PMC8584162 DOI: 10.3390/ijms222111718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.
Collapse
|
15
|
Analysis of Asymmetric Cell Division Using Human Neuroblastoma Cell Lines as a Model System. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma is one of the most common childhood solid tumors and develops from neural stem cells that normally comprise the embryonic structure termed the neural crest. Human neuroblastoma cell lines have special properties as they exhibit cell growth and are induced to become mature neurons by drugs such as retinoid. Therefore, we examined asymmetric cell division (ACD) using human neuroblastoma cells as an ACD model, and confirmed that ACD in human cancer cells is evolutionally conserved. Furthermore, we demonstrated that MYCN is involved in cell division fate. We introduce the brief history of ACD study using neuroblastoma cell lines and discuss why human neuroblastoma cells are an ideal model system for clarifying the mechanism of ACD.
Collapse
|
16
|
Tao L, Moreno‐Smith M, Ibarra‐García‐Padilla R, Milazzo G, Drolet NA, Hernandez BE, Oh YS, Patel I, Kim JJ, Zorman B, Patel T, Kamal AHM, Zhao Y, Hicks J, Vasudevan SA, Putluri N, Coarfa C, Sumazin P, Perini G, Parchem RJ, Uribe RA, Barbieri E. CHAF1A Blocks Neuronal Differentiation and Promotes Neuroblastoma Oncogenesis via Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005047. [PMID: 34365742 PMCID: PMC8498874 DOI: 10.1002/advs.202005047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.
Collapse
|
17
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
18
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
19
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
20
|
Otte J, Dyberg C, Pepich A, Johnsen JI. MYCN Function in Neuroblastoma Development. Front Oncol 2021; 10:624079. [PMID: 33585251 PMCID: PMC7873735 DOI: 10.3389/fonc.2020.624079] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dysregulated expression of the transcription factor MYCN is frequently detected in nervous system tumors such as childhood neuroblastoma. Here, gene amplification of MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-derived cells. This abnormal MYCN expression is one of the strongest predictors of poor prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is an early event in these cancers leading to a peculiar dysregulation of cells that results in embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic resistance, and metabolic flexibility.
Collapse
Affiliation(s)
- Jörg Otte
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Adena Pepich
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Kastriti ME, Kameneva P, Adameyko I. Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol Cell Endocrinol 2020; 518:110998. [PMID: 32818585 DOI: 10.1016/j.mce.2020.110998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The mammalian adrenal gland is composed of two main components; the catecholaminergic neural crest-derived medulla, found in the center of the gland, and the mesoderm-derived cortex producing steroidogenic hormones. The medulla is composed of neuroendocrine chromaffin cells with oxygen-sensing properties and is dependent on tissue interactions with the overlying cortex, both during development and in adulthood. Other relevant organs include the Zuckerkandl organ containing extra-adrenal chromaffin cells, and carotid oxygen-sensing bodies containing glomus cells. Chromaffin and glomus cells reveal a number of important similarities and are derived from the multipotent nerve-associated descendants of the neural crest, or Schwann cell precursors. Abnormalities in complex developmental processes during differentiation of nerve-associated and other progenitors into chromaffin and oxygen-sensing populations may result in different subtypes of paraganglioma, neuroblastoma and pheochromocytoma. Here, we summarize recent findings explaining the development of chromaffin and oxygen-sensing cells, as well as the potential mechanisms driving neuroendocrine tumor initiation.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Dong R, Yang R, Zhan Y, Lai HD, Ye CJ, Yao XY, Luo WQ, Cheng XM, Miao JJ, Wang JF, Liu BH, Liu XQ, Xie LL, Li Y, Zhang M, Chen L, Song WC, Qian W, Gao WQ, Tang YH, Shen CY, Jiang W, Chen G, Yao W, Dong KR, Xiao XM, Zheng S, Li K, Wang J. Single-Cell Characterization of Malignant Phenotypes and Developmental Trajectories of Adrenal Neuroblastoma. Cancer Cell 2020; 38:716-733.e6. [PMID: 32946775 DOI: 10.1016/j.ccell.2020.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Neuroblastoma (NB), which is a subtype of neural-crest-derived malignancy, is the most common extracranial solid tumor occurring in childhood. Despite extensive research, the underlying developmental origin of NB remains unclear. Using single-cell RNA sequencing, we generate transcriptomes of adrenal NB from 160,910 cells of 16 patients and transcriptomes of putative developmental cells of origin of NB from 12,103 cells of early human embryos and fetal adrenal glands at relatively late development stages. We find that most adrenal NB tumor cells transcriptionally mirror noradrenergic chromaffin cells. Malignant states also recapitulate the proliferation/differentiation status of chromaffin cells in the process of normal development. Our findings provide insight into developmental trajectories and cellular states underlying human initiation and progression of NB.
Collapse
Affiliation(s)
- Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China.
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Hua-Dong Lai
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xiao-Ying Yao
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Wen-Qin Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Mu Cheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ju-Ju Miao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Feng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Bai-Hui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xiang-Qi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Lu-Lu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Man Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wei-Chen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wei Qian
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-Qiang Gao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun-Hui Tang
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chun-Yan Shen
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Wei Jiang
- Genergy Bio-technology (Shanghai) Co., Ltd, Shanghai 200235, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xian-Min Xiao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China.
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
23
|
Perera SN, Kerosuo L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. STEM CELLS (DAYTON, OHIO) 2020; 39:7-25. [PMID: 33017496 PMCID: PMC7821161 DOI: 10.1002/stem.3283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Unique to vertebrates, the neural crest (NC) is an embryonic stem cell population that contributes to a greatly expanding list of derivatives ranging from neurons and glia of the peripheral nervous system, facial cartilage and bone, pigment cells of the skin to secretory cells of the endocrine system. Here, we focus on what is specifically known about establishment and maintenance of NC stemness and ultimate fate commitment mechanisms, which could help explain its exceptionally high stem cell potential that exceeds the "rules set during gastrulation." In fact, recent discoveries have shed light on the existence of NC cells that coexpress commonly accepted pluripotency factors like Nanog, Oct4/PouV, and Klf4. The coexpression of pluripotency factors together with the exceptional array of diverse NC derivatives encouraged us to propose a new term "pleistopotent" (Greek for abundant, a substantial amount) to be used to reflect the uniqueness of the NC as compared to other post-gastrulation stem cell populations in the vertebrate body, and to differentiate them from multipotent lineage restricted stem cells. We also discuss studies related to the maintenance of NC stemness within the challenging context of being a transient and thus a constantly changing population of stem cells without a permanent niche. The discovery of the stem cell potential of Schwann cell precursors as well as multiple adult NC-derived stem cell reservoirs during the past decade has greatly increased our understanding of how NC cells contribute to tissues formed after its initial migration stage in young embryos.
Collapse
Affiliation(s)
- Surangi N Perera
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Izumi H, Kaneko Y, Nakagawara A. The Role of MYCN in Symmetric vs. Asymmetric Cell Division of Human Neuroblastoma Cells. Front Oncol 2020; 10:570815. [PMID: 33194665 PMCID: PMC7609879 DOI: 10.3389/fonc.2020.570815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Asymmetric cell division (ACD) is an important physiological event in the development of various organisms and maintenance of tissue homeostasis. ACD produces two different cells in a single cell division: a stem/progenitor cell and differentiated cell. Although the balance between self-renewal and differentiation is precisely controlled, disruptions to ACD and/or enhancements in the self-renewal division (symmetric cell division: SCD) of stem cells resulted in the formation of tumors in Drosophila neuroblasts. ACD is now regarded as one of the characteristics of human cancer stem cells, and is a driving force for cancer cell heterogeneity. We recently reported that MYCN controls the balance between SCD and ACD in human neuroblastoma cells. In this mini-review, we discuss the mechanisms underlying MYCN-mediated cell division fate.
Collapse
Affiliation(s)
- Hideki Izumi
- Laboratory of Molecular Medicine, Life Sciences Institute, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | | |
Collapse
|
25
|
MYC in Brain Development and Cancer. Int J Mol Sci 2020; 21:ijms21207742. [PMID: 33092025 PMCID: PMC7588885 DOI: 10.3390/ijms21207742] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
The MYC family of transcriptional regulators play significant roles in animal development, including the renewal and maintenance of stem cells. Not surprisingly, given MYC's capacity to promote programs of proliferative cell growth, MYC is frequently upregulated in cancer. Although members of the MYC family are upregulated in nervous system tumours, the mechanisms of how elevated MYC promotes stem cell-driven brain cancers is unknown. If we are to determine how increased MYC might contribute to brain cancer progression, we will require a more complete understanding of MYC's roles during normal brain development. Here, we evaluate evidence for MYC family functions in neural stem cell fate and brain development, with a view to better understand mechanisms of MYC-driven neural malignancies.
Collapse
|
26
|
Li J, Jiang X, Li Z, Huang L, Ji D, Yu L, Zhou Y, Cui Y. SP1-induced HOXD-AS1 promotes malignant progression of cholangiocarcinoma by regulating miR-520c-3p/MYCN. Aging (Albany NY) 2020; 12:16304-16325. [PMID: 32857725 PMCID: PMC7485728 DOI: 10.18632/aging.103660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this article is to explore the function and mechanism of HOXD-AS1 in cholangiocarcinoma. TCGA, StarBase and JASPAR were applied to predict the differential expression and molecular mechanism. The qRT-PCR was conducted to detect molecular expression. The effect of HOXD-AS1 on tumor proliferation, metastasis and stemness was measured through corresponding experiments. ChIP, luciferase reporter and RIP assays were implemented to explore the regulatory mechanism of HOXD-AS1 in CCA. In this study, HOXD-AS1 expression was significantly upregulated in CCA tissues and cells compared with control groups, respectively. Increased HOXD-AS1 was markedly correlated with lymph node invasion, advanced TNM stage and poor survival of CCA patients. Moreover, HOXD-AS1 was confirmed to be an unfavorable independent prognostic factor for CCA patients. Functionally, gain- and loss-of-function experiments demonstrated that HOXD-AS1 facilitated tumor proliferation, migration, invasion, EMT, stemness and drug resistance in vitro and in vivo. For the mechanism, transcription factor SP1-induced HOXD-AS1 upregulated oncogene MYCN through competitively binding to miR-520c-3p. Furthermore, HOXD-AS1-induced malignant phenotypes were rescued by interfering miR-520c-3p and MYCN, respectively. SP1/HOXD-AS1/miR-520c-3p/MYCN plays a vital role in initiation and progression of CCA, and HOXD-AS1 is expected to be an efficient biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhenglong Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Lining Huang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Daolin Ji
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Liang Yu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yongxu Zhou
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
27
|
Yang CL, Serra-Roma A, Gualandi M, Bodmer N, Niggli F, Schulte JH, Bode PK, Shakhova O. Lineage-restricted sympathoadrenal progenitors confer neuroblastoma origin and its tumorigenicity. Oncotarget 2020; 11:2357-2371. [PMID: 32595833 PMCID: PMC7299536 DOI: 10.18632/oncotarget.27636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Neuroblastoma (NB) is the most common cancer in infants and it accounts for six percent of all pediatric malignancies. There are several hypotheses proposed on the origins of NB. While there is little genetic evidence to support this, the prevailing model is that NB originates from neural crest stem cells (NCSCs). Utilizing in vivo mouse models, we demonstrate that targeting MYCN oncogene to NCSCs causes perinatal lethality. During sympathoadrenal (SA) lineage development, SOX transcriptional factors drive the transition from NCSCs to lineage-specific progenitors, characterized by the sequential activation of Sox9/Sox10/Sox4/Sox11 genes. We find the NCSCs factor SOX10 is not expressed in neuroblasts, but rather restricted to the Schwannian stroma and is associated with a good prognosis. On the other hand, SOX9 expression in NB cells was associated with several key biological processes including migration, invasion and differentiation. Moreover, manipulating SOX9 gene predominantly affects lineage-restricted SA progenitors. Our findings highlight a unique molecular SOX signature associated with NB that is highly reminiscent of SA progenitor transcriptional program during embryonic development, providing novel insights into NB pathobiology. In summary, we provide multiple lines of evidence suggesting that multipotent NCSCs do not contribute to NB initiation and maintenance.
Collapse
Affiliation(s)
- Chia-Lung Yang
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - André Serra-Roma
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Marco Gualandi
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Nicole Bodmer
- Department of Oncology, Children Hospital of Zürich, Zürich, Switzerland
| | - Felix Niggli
- Department of Oncology, Children Hospital of Zürich, Zürich, Switzerland
| | | | - Peter Karl Bode
- Department of Surgical Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Olga Shakhova
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Ding Y, Yang J, Ma Y, Yao T, Chen X, Ge S, Wang L, Fan X. MYCN and PRC1 cooperatively repress docosahexaenoic acid synthesis in neuroblastoma via ELOVL2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:498. [PMID: 31856871 PMCID: PMC6923955 DOI: 10.1186/s13046-019-1492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Background The MYCN amplification is a defining hallmark of high-risk neuroblastoma. Due to irregular oncogenes orchestration, tumor cells exhibit distinct fatty acid metabolic features from non-tumor cells. However, the function of MYCN in neuroblastoma fatty acid metabolism reprogramming remains unknown. Methods Gas Chromatography-Mass Spectrometer (GC-MS) was used to find the potential target fatty acid metabolites of MYCN. Real-time PCR (RT-PCR) and clinical bioinformatics analysis was used to find the related target genes. The function of the identified target gene ELOVL2 on cell growth was detected through CCK-8 assay, Soft agar colony formation assay, flow Cytometry assay and mouse xenograft. Chromatin immunoprecipitation (ChIP) and Immunoprecipitation-Mass Spectrometer (IP-MS) further identified the target gene and the co-repressor of MYCN. Results The fatty acid profile of MYCN-depleted neuroblastoma cells identified docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with anti-tumor activity, significantly increased after MYCN depletion. Compared with MYCN single-copy neuroblastoma cells, DHA level was significantly lower in MYCN-amplified neuroblastoma cells. RT-PCR and clinical bioinformatics analysis discovered that MYCN interfered DHA accumulation via ELOVL fatty acid elongase 2 (ELOVL2) which is a rate-limiting enzyme of cellular DHA synthesis. Enforced ELOVL2 expression in MYCN-amplified neuroblastoma cells led to decreased cell growth and counteracted the growth-promoting effect of MYCN overexpression both in vitro and vivo. ELOVL2 Knockdown showed the opposite effect in MYCN single-copy neuroblastoma cells. In primary neuroblastoma, high ELOVL2 transcription correlated with favorable clinical tumor biology and patient survival. The mechanism of MYCN-mediated ELOVL2 inhibition contributed to epigenetic regulation. MYCN recruited PRC1 (Polycomb repressive complex 1), catalysed H2AK119ub (histone 2A lysine 119 monoubiquitination) and inhibited subsequent ELOVL2 transcription. Conclusions The tumor suppressive properties of DHA and ELOVL2 are repressed by the MYCN and PRC1 jointly, which suggests a new epigenetic mechanism of MYCN-mediated fatty acid regulation and indicates PRC1 inhibition as a potential novel strategy to activate ELOVL2 suppressive functions.
Collapse
Affiliation(s)
- Yi Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
29
|
Huang X, Zhao J, Zhu J, Chen S, Fu W, Tian X, Lou S, Ruan J, He J, Zhou H. MYCN gene polymorphisms and Wilms tumor susceptibility in Chinese children. J Clin Lab Anal 2019; 33:e22988. [PMID: 31343784 PMCID: PMC7938399 DOI: 10.1002/jcla.22988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor, derived from embryonic cells, accounts for a large proportion of pediatric renal tumors. MYCN encoded by MYCN proto-oncogene, a member of the MYC family, is a BHLH transcription factor. It plays a critical role in tumorigenesis and predicts poor clinical outcomes in various types of cancer. However, the role of MYCN remained unclarified in Wilms tumor. In this study, we investigated the association between MYCN gene polymorphisms and Wilms tumor susceptibility. METHODS Four MYCN gene polymorphisms (rs57961569 G > A, rs9653226 T > C, rs13034994 A > G, and rs60226897 G > A) were genotyped in 183 cases and 603 controls. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were calculated to evaluate the association between MYCN gene polymorphisms and Wilms tumor susceptibility. RESULTS Overall, no significant association was found for any of the four MYCN gene polymorphisms. Interestingly, in the stratification analysis, the rs57961569 was found to be associated with decreased Wilms tumor susceptibility in the children older than 18 months (AOR = 0.65, 95% CI = 0.42-1.00, P = .050). Moreover, older children carrying 2-4 risk genotypes were at increased risk of Wilms tumor (OR = 1.55, 95% CI = 1.001-2.40, P = .0497). Haplotype GCAA was shown to significantly increased Wilms tumor risk (AOR = 2.40, 95% CI = 1.12-5.14, P = .024). CONCLUSION Our study demonstrated that these MYCN gene polymorphisms might be low penetrant variants in Wilms tumor.
Collapse
Affiliation(s)
- Xiaokai Huang
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jie Zhao
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jinhong Zhu
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Shanshan Chen
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoqian Tian
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Susu Lou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jichen Ruan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing He
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
30
|
Abstract
Neuroblastoma (NB) is a common and deadly malignancy mostly observed in children. Evolution of therapeutic options for NB led to the addition of immunotherapeutic modalities to the previously recruited chemotherapeutic options. Molecular studies of the NB cells resulted in the discovery of many tumor-associated genes and antigens such as MYCN gene and GD2. MYCN gene and GD2 surface antigen are two of the most practical discoveries regarding immunotherapy of neuroblastoma. The GD2 antigen has been targeted in many animal and human studies including Phase III clinical trials. Even though these antigens have changed the face of pediatric neuroblastoma, they do not take as much credit in immunotherapy of adult-onset neuroblastoma. Monoclonal antibodies have been designed to detect this antigen on the surface of NB tumor cells. Despite bettering the outcomes for NB patients, current therapies still fail in many cases. Studies are underway to discover more specific tumor-associated antigens and more effective treatment options. In the current narrative, immunotherapy of NB - from emerging of this therapeutic backbone in NB to the latest discoveries regarding this malignancy - has been reviewed.
Collapse
Affiliation(s)
- Parnian Jabbari
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Sara Hanaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
31
|
Szemes M, Greenhough A, Malik K. Wnt Signaling Is a Major Determinant of Neuroblastoma Cell Lineages. Front Mol Neurosci 2019; 12:90. [PMID: 31040767 PMCID: PMC6476918 DOI: 10.3389/fnmol.2019.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/09/2023] Open
Abstract
The neural crest (NC), which has been referred to as the fourth germ layer, comprises a multipotent cell population which will specify diverse cells and tissues, including craniofacial cartilage and bones, melanocytes, the adrenal medulla and the peripheral nervous system. These cell fates are known to be determined by gene regulatory networks (GRNs) acting at various stages of NC development, such as induction, specification, and migration. Although transcription factor hierarchies and some of their interplay with morphogenetic signaling pathways have been characterized, the full complexity of activities required for regulated development remains uncharted. Deregulation of these pathways may contribute to tumorigenesis, as in the case of neuroblastoma, a frequently lethal embryonic cancer thought to arise from the sympathoadrenal lineage of the NC. In this “Hypothesis and Theory” article, we utilize the next generation sequencing data from neuroblastoma cells and tumors to evaluate the possible influences of Wnt signaling on NC GRNs and on neuroblastoma cell lineages. We propose that Wnt signaling is a major determinant of regulatory networks that underlie mesenchymal/neural crest cell (NCC)-like cell identities through PRRX1 and YAP/TAZ transcription factors. Furthermore, Wnt may also co-operate with Hedgehog signaling in driving proneural differentiation programmes along the adrenergic (ADRN) lineage. Elucidation of Signaling Regulatory Networks can augment and complement GRNs in characterizing cell identities, which may in turn contribute to the design of improved therapeutics tailored to primary and relapsing neuroblastoma.
Collapse
Affiliation(s)
- Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Alexander Greenhough
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
32
|
Mohlin S, Kunttas E, Persson CU, Abdel-Haq R, Castillo A, Murko C, Bronner ME, Kerosuo L. Maintaining multipotent trunk neural crest stem cells as self-renewing crestospheres. Dev Biol 2019; 447:137-146. [PMID: 30664880 DOI: 10.1016/j.ydbio.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023]
Abstract
Neural crest cells have broad migratory and differentiative ability that differs according to their axial level of origin. However, their transient nature has limited understanding of their stem cell and self-renewal properties. While an in vitro culture method has made it possible to maintain cranial neural crest cells as self-renewing multipotent crestospheres (Kerosuo et al., 2015), these same conditions failed to preserve trunk neural crest in a stem-like state. Here we optimize culture conditions for maintenance of avian trunk crestospheres, comprised of both neural crest stem and progenitor cells. Our trunk-derived crestospheres are multipotent and display self-renewal capacity over several weeks. Trunk crestospheres display elevated expression of neural crest cell markers as compared to those characteristic of ventrolateral neural tube or mesodermal fates. Moreover, trunk crestospheres express increased levels of trunk neural crest-enriched markers as compared to cranial crestospheres. Finally, we use lentiviral transduction as a tool to manipulate gene expression in trunk crestospheres. Taken together, this method enables long-term in vitro maintenance and manipulation of multipotent trunk neural crest cells in a premigratory stem or early progenitor state. Trunk crestospheres are a valuable resource for probing mechanisms underlying neural crest stemness and lineage decisions as well as accompanying diseases.
Collapse
Affiliation(s)
- Sofie Mohlin
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden.
| | - Ezgi Kunttas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Camilla U Persson
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Reem Abdel-Haq
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Aldo Castillo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina Murko
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA; Department of Biochemistry and Developmental Biology, Medicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|