1
|
Rajan SS, Chandran R, Abrahamse H. Advancing Photodynamic Therapy with Nano-Conjugated Hypocrellin: Mechanisms and Clinical Applications. Int J Nanomedicine 2024; 19:11023-11038. [PMID: 39502636 PMCID: PMC11537162 DOI: 10.2147/ijn.s486014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Hypocrellin-based photodynamic therapy (PDT) is developing as a viable cancer therapeutic option, especially when enhanced by nanoconjugation. This review investigates the methods by which nano-conjugated hypocrellin enhances therapeutic efficacy and precision when targeting cancer cells. These nanoconjugates encapsulate or covalently bind hypocrellin photosensitizers (PSs), allowing them to accumulate preferentially in malignancies. When activated by light, the nanoconjugates produce singlet oxygen and other reactive oxygen species (ROS), resulting in oxidative stress that selectively destroys cancer cells while protecting healthy tissues. We look at how they can be used to treat a variety of cancers. Clinical and preclinical studies show that they have advantages such as increased water solubility, improved tumor penetration, longer circulation times, and tailored delivery, all of which contribute to fewer off-target effects and overall toxicity. Ongoing research focuses on improving these nanoconjugates for better tumor targeting, drug release kinetics, and overcoming biological obstacles. Furthermore, the incorporation of developing technologies such as stimuli-responsive nanocarriers and combination therapies opens exciting opportunities for enhancing hypocrellin-based PDT. In conclusion, the combination of hypocrellin and nanotechnology constitutes a significant approach to cancer treatment, increasing the efficacy and safety of PDT. Future research will seek to create conjugates including hypocrellin, herceptin, and gold nanoparticles to induce apoptosis in human breast cancer cells in vitro, opening possibilities for therapeutic applications.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
3
|
Wang H, Li D, Wang H, Ren Q, Pan Y, Dao A, Wang D, Wang Z, Zhang P, Huang H. Enhanced Sonodynamic Therapy for Deep Tumors Using a Self-Assembled Organoplatinum(II) Sonosensitizer. J Med Chem 2024; 67:18356-18367. [PMID: 39360515 DOI: 10.1021/acs.jmedchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Despite the promising advances in photodynamic therapy (PDT), it remains challenging to target and treat deep-seated solid tumors effectively. Herein, we developed an organoplatinum(II) complex (Pt-TPE) with self-assembly properties for sonodynamic therapy (SDT). Pt-TPE forms a nanofiber network structure through Pt-Pt and π-π stacking interactions. Notably, under ultrasound (US), Pt-TPE demonstrates unique self-assembly-induced singlet oxygen (1O2) generation due to a significantly enhanced singlet-triplet intersystem crossing (ISC). This generation of 1O2 occurs exclusively in the self-assembled state of Pt-TPE. Additionally, Pt-TPE exhibits sono-cytotoxicity against cancer cells by impairing mitochondrial membrane potential (MMP), inhibiting glucose uptake, and aerobic glycolysis. Furthermore, US-activated Pt-TPE significantly inhibits deep solid tumors in mice, achieving remarkable therapeutic efficacy even at penetration depths greater than 10 cm. This study highlights the potential of self-assembled metal complexes to enhance the efficacy of SDT for treating deep tumors.
Collapse
Affiliation(s)
- Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hanqiang Wang
- Department of Chemistry and Dongguan Key Laboratory for Data Science and Intelligent Medicine, Great Bay University, Dongguan 523000, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Anyi Dao
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou 313000, China
| | - Zhigang Wang
- School of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Casula L, Elena Giacomazzo G, Conti L, Fornasier M, Manca B, Schlich M, Sinico C, Rheinberger T, Wurm FR, Giorgi C, Murgia S. Polyphosphoester-stabilized cubosomes encapsulating a Ru(II) complex for the photodynamic treatment of lung adenocarcinoma. J Colloid Interface Sci 2024; 670:234-245. [PMID: 38761576 DOI: 10.1016/j.jcis.2024.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Benedetto Manca
- Department of Mathematics and Computer Science, University of Cagliari, via Ospedale 72, 09124 Cagliari, CA, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
5
|
Prajapati D, Clegg JK, Mukherjee PS. Formation of a low-symmetry Pd 8 molecular barrel employing a hetero donor tetradentate ligand, and its use in the binding and extraction of C 70. Chem Sci 2024; 15:12502-12510. [PMID: 39118615 PMCID: PMC11304780 DOI: 10.1039/d4sc01332h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
The majority of reported metallo-supramolecules are highly symmetric homoleptic assemblies of M x L y type, with a few reports on assemblies that are obtained using multicomponent self-assembly or using ambidentate ligands. Herein, we report the use of an unsymmetrical tetratopic ligand (Lun) containing pyridyl and imidazole donor sites in combination with a cis-protected Pd(ii) acceptor for the formation of a low-symmetry M8Lun 4 molecular barrel (UNMB). Four potential orientational isomeric (HHHH, HHHT, HHTT, and HTHT) molecular barrels can be anticipated for the M8Lun 4 type metallo-assemblies. However, the formation of an orientational isomer (HHTT) of the barrel was suggested from single-crystal X-ray diffraction and 1H NMR analysis of UNMB. Two large open apertures at terminals and the hydrophobic confined space surrounded by four aromatic panels of Lun make UNMB a potential host for bigger guests. UNMB encapsulates fullerenes C70 and C60 favoured by non-covalent interactions between the fullerenes and aromatic panels of the ligand molecules. Experimental and theoretical studies revealed that UNMB has the ability to bind C70 more strongly than its lower analogue C60. The stronger affinity of UNMB towards C70 was exploited to separate C70 from an equimolar mixture of C70 and C60. Moreover, C70 can be extracted from the C70⊂UNMB complex by toluene, and therefore, UNMB can be reused as a recyclable separating agent for C70 extraction.
Collapse
Affiliation(s)
- Dharmraj Prajapati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
6
|
Tan Z, Lin M, Liu J, Wu H, Chao H. Cyclometalated iridium(III) tetrazine complexes for mitochondria-targeted two-photon photodynamic therapy. Dalton Trans 2024; 53:12917-12926. [PMID: 39028267 DOI: 10.1039/d4dt01665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The fast-moving field of photodynamic therapy (PDT) has provided fresh opportunities to expand the potential of metallodrugs to combat cancers in a light-controlled manner. As such, in the present study, a series of cyclometalated Ir(III) complexes modified with a tetrazine functional group (namely, Ir-ppy-Tz, Ir-pbt-Tz, and Ir-dfppy-Tz) are developed as potential two-photon photodynamic anticancer agents. These complexes target mitochondria but exhibit low toxicity towards HLF primary lung fibroblast normal cells in the dark. When receiving a low-dose one- or two-photon PDT, they become highly potent towards A549 lung cancer cells (with IC50 values ranging from 24.0 nM to 96.0 nM) through the generation of reactive oxygen species (ROS) to induce mitochondrial damage and subsequent apoptosis. Our results indicated that the incorporation of tetrazine with cyclometalated Ir(III) matrices would increase the singlet oxygen (1O2) quantum yield (ΦΔ) and, meanwhile, enable a type I PDT mechanism. Ir-pbt-Tz, with the largest two-photon absorption (TPA) cross-section (σ2 = 102 GM), shows great promise in serving as a two-photon PDT agent for phototherapy.
Collapse
Affiliation(s)
- Zanru Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Mingwei Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jiangping Liu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361102, P. R. China.
| | - Huihui Wu
- Department of Dermatology, The East Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510700, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
7
|
Aderinto SO, John T, Onawole A, Galleh RP, Thomas JA. Iridium(III)-based minor groove binding complexes as DNA photocleavage agents. Dalton Trans 2024; 53:7282-7291. [PMID: 38466178 DOI: 10.1039/d4dt00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.
Collapse
Affiliation(s)
- Stephen O Aderinto
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abdulmujeeb Onawole
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
8
|
Chong H, Liu X, Fang S, Yang X, Zhang Y, Wang T, Liu L, Kan Y, Zhao Y, Fan H, Zhang J, Wang X, Yao H, Yang Y, Gao Y, Zhao Q, Li S, Plymoth M, Xi J, Zhang Y, Wang C, Pang H. Organo-Pt ii Complexes for Potent Photodynamic Inactivation of Multi-Drug Resistant Bacteria and the Influence of Configuration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306936. [PMID: 38298088 PMCID: PMC11005693 DOI: 10.1002/advs.202306936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 02/02/2024]
Abstract
PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm-2) and 100 nM (18 J cm-2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm-2) and 1.50 µM (18 J cm-2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.
Collapse
Affiliation(s)
- Hui Chong
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Xuanwei Liu
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Siyu Fang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Xiaofei Yang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Yuefei Zhang
- Department of EmergencyAffiliated Hospital of Yangzhou UniversityYangzhouJiangsu225000China
| | - Tianyi Wang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Lin Liu
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Yinshi Kan
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Yueqi Zhao
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Hongying Fan
- Testing Center of Yangzhou UniversityNo. 48 Wenhui East Rd.Yangzhou225009P. R. China
| | - Jingqi Zhang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xiaoyu Wang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Hang Yao
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Yi Yang
- Center LaboratoryAffiliated Hospital of Yangzhou UniversityYangzhou225009P. R. China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Qi Zhao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Martin Plymoth
- Westmead hospitalSydneyNSW 2145Australia
- Department of Clinical MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Juqun Xi
- Department of PharmacologyInstitute of Translational MedicineSchool of MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesYangzhou225009P. R. China
| | - Yu Zhang
- School of NursingYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention andTreatment of Senile DiseasesNo. 88 South University Rd.Yangzhou225009P. R. China
| | - Chengyin Wang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| | - Huan Pang
- Department of Chemical and Chemical EngineeringYangzhou UniversityNo. 180, Si‐Wang‐Ting Rd.YangzhouJiangsu225009P. R. China
| |
Collapse
|
9
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
10
|
Li Z, Zhang Z, Ma L, Wen H, Kang M, Li D, Zhang W, Luo S, Wang W, Zhang M, Wang D, Li H, Li X, Wang H. Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202400049. [PMID: 38193338 DOI: 10.1002/anie.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Danxia Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
11
|
Li Z, Huan W, Wang Y, Yang YW. Multimodal Therapeutic Platforms Based on Self-Assembled Metallacycles/Metallacages for Cancer Radiochemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306245. [PMID: 37658495 DOI: 10.1002/smll.202306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Discrete organometallic complexes with defined structures are proceeding rapidly in combating malignant tumors due to their multipronged treatment modalities. Many innovative superiorities, such as high antitumor activity, extremely low systemic toxicity, active targeting ability, and enhanced cellular uptake, make them more competent for clinical applications than individual precursors. In particular, coordination-induced regulation of luminescence and photophysical properties of organic light-emitting ligands has demonstrated significant potential in the timely evaluation of therapeutic efficacy by bioimaging and enabled synergistic photodynamic therapy (PDT) or photothermal therapy (PTT). This review highlights instructive examples of multimodal radiochemotherapy platforms for cancer ablation based on self-assembled metallacycles/metallacages, which would be classified by functions in a progressive manner. Finally, the essential demands and some plausible prospects in this field for cancer therapy are also presented.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Zhang Z, Ye H, Cai F, Sun Y. Recent advances on the construction of long-wavelength emissive supramolecular coordination complexes for photo-diagnosis and therapy. Dalton Trans 2023; 52:15193-15202. [PMID: 37476886 DOI: 10.1039/d3dt01893h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Recently, metal-based drugs have attracted relentless interest in the biomedical field. However, their short excitation/emission wavelengths and unsatisfactory therapeutic efficiency limit their biological applications in vivo. Currently, the second near-infrared window (NIR-II, 1000-1700 nm) provides more accurate imaging and therapeutic options. Thus, there has been a constant focus on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. Fortunately, supramolecular coordination complexes (SCCs) formed by the coordination-driven self-assembly of NIR-II emissive ligands can address the above issues. Importantly, metal receptors with chemotherapeutic properties in SCCs can bind to luminescent ligands, thus becoming a versatile therapeutic platform for chemotherapy, imaging and phototherapy. In this context, we systematically summarize the evolution of NIR-II emissive SCCs for biomedical applications and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, P. R. China.
| | - Huan Ye
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Fei Cai
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, P. R. China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
13
|
Wang Y, Staudinger JN, Mindt TL, Gasser G. Theranostics with photodynamic therapy for personalized medicine: to see and to treat. Theranostics 2023; 13:5501-5544. [PMID: 37908729 PMCID: PMC10614685 DOI: 10.7150/thno.87363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/26/2023] [Indexed: 11/02/2023] Open
Abstract
Photodynamic Therapy (PDT) is an approved treatment modality, which is presently receiving great attention due to its limited invasiveness, high selectivity and limited susceptibility to drug resistance. Another related research area currently expanding rapidly is the development of novel theranostic agents based on the combination of PDT with different imaging technologies, which allows for both therapy and diagnosis. This combination can help to address issues of suboptimal biodistribution and selectivity through regional imaging, while therapeutic agents enable an effective and personalized therapy. In this review, we describe compounds, whose structures combine PDT photosensitizers with different imaging probes - including examples for near-infrared optical imaging, magnetic resonance imaging (MRI) and nuclear imaging (PET or SPECT), generating novel theranostic drug candidates. We have intentionally focused our attention on novel compounds, which have already been investigated preclinically in vivo in order to demonstrate the potential of such theranostic agents for clinical applications.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Johannes Nikodemus Staudinger
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Währingerstraße 42, and Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
14
|
Liu Y, Zhao J, Xu X, Xu Y, Cui W, Yang Y, Li J. Emodin-Based Nanoarchitectonics with Giant Two-Photon Absorption for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202308019. [PMID: 37358191 DOI: 10.1002/anie.202308019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Two-photon-excited photodynamic therapy (TPE-PDT) has significant advantages over conventional photodynamic therapy (PDT). However, obtaining easily accessible TPE photosensitizers (PSs) with high efficiency remains a challenge. Herein, we demonstrate that emodin (Emo), a natural anthraquinone (NA) derivative, is a promising TPE PS with a large two-photon absorption cross-section (TPAC: 380.9 GM) and high singlet oxygen (1 O2 ) quantum yield (31.9 %). When co-assembled with human serum albumin (HSA), the formed Emo/HSA nanoparticles (E/H NPs) possess a giant TPAC (4.02×107 GM) and desirable 1 O2 generation capability, thus showing outstanding TPE-PDT properties against cancer cells. In vivo experiments reveal that E/H NPs exhibit improved retention time in tumors and can ablate tumors at an ultra-low dosage (0.2 mg/kg) under an 800 nm femtosecond pulsed laser irradiation. This work is beneficial for the use of natural extracts NAs for high-efficiency TPE-PDT.
Collapse
Affiliation(s)
- Yilin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
15
|
Magni A, Mattiello S, Beverina L, Mattioli G, Moschetta M, Zucchi A, Paternò GM, Lanzani G. A membrane intercalating metal-free conjugated organic photosensitizer for bacterial photodynamic inactivation. Chem Sci 2023; 14:8196-8205. [PMID: 37538813 PMCID: PMC10395270 DOI: 10.1039/d3sc01168b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Photodynamic inhibition (PDI) of bacteria represents a powerful strategy for dealing with multidrug-resistant pathogens and infections, as it exhibits minimal development of antibiotic resistance. The PDI action stems from the generation of a triplet state in the photosensitizer (PS), which subsequently transfers energy or electrons to molecular oxygen, resulting in the formation of reactive oxygen species (ROS). These ROS are then able to damage cells, eventually causing bacterial eradication. Enhancing the efficacy of PDI includes the introduction of heavy atoms to augment triplet generation in the PS, as well as membrane intercalation to circumvent the problem of the short lifetime of ROS. However, the former approach can pose safety and environmental concerns, while achieving stable membrane partitioning remains challenging due to the complex outer envelope of bacteria. Here, we introduce a novel PS, consisting of a metal-free donor-acceptor thiophene-based conjugate molecule (BV-1). It presents several advantageous features for achieving effective PDI, namely: (i) it exhibits strong light absorption due to the conjugated donor-acceptor moieties; (ii) it exhibits spontaneous and stable membrane partitioning thanks to its amphiphilicity, accompanied by a strong fluorescence turn-on; (iii) it undergoes metal-free intersystem crossing, which occurs preferentially when the molecule resides in the membrane. All these properties, which we rationalized via optical spectroscopies and calculations, enable the effective eradication of Escherichia coli, with an inhibition concentration that is below that of current state-of-the-art treatments. Our approach holds significant potential for the development of new PS for controlling bacterial infections, particularly those caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Arianna Magni
- Department of Physics, Politecnico di Milano 20133 Milan Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia 20133 Milan Italy
| | - Sara Mattiello
- Department of Materials Science, University of Milano-Bicocca 20125 Milan Italy
| | - Luca Beverina
- Department of Materials Science, University of Milano-Bicocca 20125 Milan Italy
| | - Giuseppe Mattioli
- CNR - Istituto di Struttura della Materia I-00015 Monterotondo Scalo Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia 20133 Milan Italy
| | - Anita Zucchi
- Department of Materials Science, University of Milano-Bicocca 20125 Milan Italy
| | - Giuseppe Maria Paternò
- Department of Physics, Politecnico di Milano 20133 Milan Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia 20133 Milan Italy
| | - Guglielmo Lanzani
- Department of Physics, Politecnico di Milano 20133 Milan Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia 20133 Milan Italy
| |
Collapse
|
16
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
17
|
Tu L, Li C, Xiong X, Hyeon Kim J, Li Q, Mei L, Li J, Liu S, Seung Kim J, Sun Y. Engineered Metallacycle-Based Supramolecular Photosensitizers for Effective Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202301560. [PMID: 36786535 DOI: 10.1002/anie.202301560] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Although metallacycle-based supramolecular photosensitizers (PSs) have attracted increasing attention in biomedicine, their clinical translation is still hindered by their inherent dark toxicity. Herein, we report what to our knowledge is the first example of a molecular engineering approach to building blocks of metallacycles for constructing a series of supramolecular PSs (RuA-RuD), with the aim of simultaneously reducing dark toxicity and enhancing phototoxicity, and consequently obtaining high phototoxicity indexes (PI). Detailed in vitro investigations demonstrate that RuA-RuD display high cancer cellular uptake and remarkable antitumor activity even under hypoxic conditions. Notably, RuD exhibited no dark toxicity and displayed the highest PI value (≈406). Theoretical calculations verified that RuD has the largest steric hindrance and the lowest singlet-triplet energy gap (ΔEST , 0.61 eV). Further in vivo studies confirmed that RuD allows safe and effective phototherapy against A549 tumors.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Qian Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Qingdao University of Science & Technology, Qingdao, 266100, China
| | - Longcan Mei
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
18
|
López-Hernández JE, Contel M. Promising heterometallic compounds as anticancer agents: Recent studies in vivo. Curr Opin Chem Biol 2023; 72:102250. [PMID: 36566618 PMCID: PMC10880551 DOI: 10.1016/j.cbpa.2022.102250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Over the past decade, interest on multitarget anticancer drugs -including heterometallic compounds-has increased considerably. Heterometallic species display improved efficacy and physicochemical properties compared to the individual metallic fragments for a variety of metal pair combinations. By 2018, several compounds had emerged as promising candidates against cisplatin resistant cancers. Here, we summarize research contributions to this topic over the past four years (July 2018-July 2022). In particular, we highlight five articles reporting on the in vivo activity and preliminary mechanisms of action for five groups of compounds. From this selection, we further feature two families of compounds based on Pt(IV)-Gd(III) and Ti(IV)-Au(I) metal combinations, given their potential for clinical translation.
Collapse
Affiliation(s)
- Javier E López-Hernández
- Department of Chemistry, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Biochemistry, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA
| | - Maria Contel
- Department of Chemistry, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Biochemistry, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA; Chemistry, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA; Biology PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA.
| |
Collapse
|
19
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
20
|
Zhu Z, Wei L, Yadav AK, Fan Z, Kumar A, Miao M, Banerjee S, Huang H. Cyanine-Functionalized 2,2'-Bipyridine Compounds for Photocatalytic Cancer Therapy. J Org Chem 2023; 88:626-631. [PMID: 36522290 DOI: 10.1021/acs.joc.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently, interest has been given to developing photocatalytic anticancer drugs. This area of research is dominated by metal complexes. Here, we report the potential of lysosome/mitochondria targeting cyanine appended bipyridine compounds as the organic photocatalytic anticancer agents. The organocatalyst (bpyPCN) not only exhibits light-induced NADH oxidation but also generates intracellular ROS to demonstrate anticancer activity. This is the first example of organic compound induced catalytic NADH photo-oxidation in an aqueous solution and in cancer cells.
Collapse
Affiliation(s)
- Zilin Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Zhongxian Fan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Ashish Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Mengzhao Miao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
21
|
Moreno-Alcántar G, Casini A. Bioinorganic supramolecular coordination complexes and their biomedical applications. FEBS Lett 2023; 597:191-202. [PMID: 36345593 DOI: 10.1002/1873-3468.14535] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
The field of Bioinorganic Supramolecular Chemistry is an emerging research area including metal-based supramolecules resulting from coordination-driven self-assembly (CDSA), whereby metal ions and organic ligands can be easily linked by metal-ligand bonds via Lewis' acid/base interactions. The focus of this 'In a Nutshell' review will be on the family of supramolecular coordination complexes, discrete entities formed by CDSA, which have recently captured widespread attention as a new class of versatile multifunctional materials with broad biological applications including molecular recognition, biosensing, therapy, imaging and drug delivery. Herein, we provide a summary of the state-of-the-art use of these systems in biomedicine, with some selected representative examples, as well as our visions of the challenges and possible directions in the field.
Collapse
Affiliation(s)
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Garching bei München, Germany
| |
Collapse
|
22
|
Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules 2022; 28:molecules28010273. [PMID: 36615466 PMCID: PMC9822110 DOI: 10.3390/molecules28010273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.
Collapse
|
23
|
Lisboa LS, Riisom M, Dunne HJ, Preston D, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Hydrazone- and imine-containing [PdPtL 4] 4+ cages: a comparative study of the stability and host-guest chemistry. Dalton Trans 2022; 51:18438-18445. [PMID: 36416449 DOI: 10.1039/d2dt02720h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new [PdPtL4]4+ heterobimetallic cage containing hydrazone linkages has been synthesised using the sub-component self-assembly approach. 1H and DOSY nuclear magnetic resonance (NMR) spectroscopy and electrospray ionisation mass spectrometry (ESIMS) data were consistent with the formation of the [PdPtL4]4+ architecture. The cage was stimulus-responsive and could be partially disassembled and reassembled by the addition of dimethylaminopyridine (DMAP) and p-tolenesulfonic acid (TsOH), respectively. Additionally, the stability of the hydrazone cage against hydrolysis in the presence of water and nucleophilic decomposition in the presence of guest molecules was compared to a previously synthesised imine-containing [PdPtL4]4+ cage. It was established that the hydrazone linkage was more resistant to hydrolysis. Furthermore, the host-guest (HG) chemistry with a series of drug and drug-like molecules was examined. The hydrazone cage was shown to interact with cisplatin while the smaller imine cage was shown to interact with 5-fluorouracil and oxaliplatin in CD3CN. No HG interactions were observed in the more polar d6-DMSO. In vitro antiproliferative activity studies demonstrated both cages were active against the cancer cell lines tested and displayed half-maximal inhibitory (IC50) values in the range of 25-35 μM. Most [PdPtL4]4+-drug mixtures tested had higher IC50 values than the hosts. However, the [PdPtL4]4+ cages, and [PdPtL4]4+:drug mixtures were less cytotoxic than the well established anticancer drugs cisplatin, oxaliplatin and 5-fluorouracil.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Mie Riisom
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Henry J Dunne
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
24
|
Munegowda MA, Manalac A, Weersink M, Cole HD, McFarland SA, Lilge L. Ru(II) CONTAINING PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY: A CRITIQUE ON REPORTING AND AN ATTEMPT TO COMPARE EFFICACY. Coord Chem Rev 2022; 470:214712. [PMID: 36686369 PMCID: PMC9850455 DOI: 10.1016/j.ccr.2022.214712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ruthenium(II)-based coordination complexes have emerged as photosensitizers (PSs) for photodynamic therapy (PDT) in oncology as well as antimicrobial indications and have great potential. Their modular architectures that integrate multiple ligands can be exploited to tune cellular uptake and subcellular targeting, solubility, light absorption, and other photophysical properties. A wide range of Ru(II) containing compounds have been reported as PSs for PDT or as photochemotherapy (PCT) agents. Many studies employ a common scaffold that is subject to systematic variation in one or two ligands to elucidate the impact of these modifications on the photophysical and photobiological performance. Studies that probe the excited state energies and dynamics within these molecules are of fundamental interest and are used to design next-generation systems. However, a comparison of the PDT efficacy between Ru(II) containing PSs and 1st or 2nd generation PSs, already in clinical use or preclinical/clinical studies, is rare. Even comparisons between Ru(II) containing molecular structures are difficult, given the wide range of excitation wavelengths, power densities, and cell lines utilized. Despite this gap, PDT dose metrics quantifying a PS's efficacy are available to perform qualitative comparisons. Such models are independent of excitation wavelength and are based on common outcome parameters, such as the photon density absorbed by the Ru(II) compound to cause 50% cell kill (LD50) based on the previously established threshold model. In this focused photophysical review, we identified all published studies on Ru(II) containing PSs since 2005 that reported the required photophysical, light treatment, and in vitro outcome data to permit the application of the Photodynamic Threshold Model to quantify their potential efficacy. The resulting LD50 values range from less than 1013 to above 1020 [hν cm-3], indicating a wide range in PDT efficacy and required optical energy density for ultimate clinical translation.
Collapse
Affiliation(s)
| | - Angelica Manalac
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| | - Madrigal Weersink
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
| | - Houston D. Cole
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Sherri A. McFarland
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
25
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Dou R, Cai X, Ruan L, Zhang J, Rouzi A, Chen J, Chai Z, Hu Y. Precision Nanomedicines: Targeting Hot Mitochondria in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4103-4117. [PMID: 36066886 DOI: 10.1021/acsabm.2c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrion is a multifunctional organelle in a cell, and it is one of the important targets of antitumor therapy. Conventional mitochondrial targeting strategies can hardly distinguish the mitochondria in cancer cells from those in normal cells, which might raise a concern about the biosafety. Recent studies suggest that a relatively high temperature of mitochondria exists in cancer cells. We named it tumor intrinsic mitochondrial overheating (TIMO). By taking advantage of the difference in mitochondrial temperatures between cancer cells and normal cells, therapeutic agents can be specifically delivered to the mitochondria in cancer cells. Here we will briefly overview the mitochondria-targeted delivery strategies. In addition, the recent discovery of hot mitochondria in cancer cells and the development of mitochondrial temperature-responsive delivery systems for antitumor therapy will be reviewed.
Collapse
Affiliation(s)
- Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Aisha Rouzi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| |
Collapse
|
27
|
Tu L, Li C, Liu C, Bai S, Yang J, Zhang X, Xu L, Xiong X, Sun Y. Rationally designed Ru(II) metallacycles with tunable imidazole ligands for synergistical chemo-phototherapy of cancer. Chem Commun (Camb) 2022; 58:9068-9071. [PMID: 35894452 DOI: 10.1039/d2cc03118c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we construct a series of Ru(II) metallacycles with multimodal chemo-phototherapeutic properties, which exhibited much higher anticancer activity and better cancer-cell selectivity than cisplatin. The antitumor mechanism could be ascribed to the activation of caspase 3/7 and the resulting apoptosis. These results open new possibilities for Ru(II) metallacycles in biomedicine.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China. .,Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chonglu Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chang Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Suya Bai
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jingfang Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xian Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Liying Xu
- Zhongnan Hospital of Wuhan University, Wuhan 430062, P. R. China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China.
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
28
|
Yu F, Shao Y, Chai X, Zhao Y, Li L. Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondria-Targeted Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202203238. [PMID: 35412703 DOI: 10.1002/anie.202203238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Tracking spatial and temporal dynamics of bioactive molecules such as enzymes responding to therapeutic treatment is highly important for understanding of the related functions. However, in situ molecular imaging at subcellular level during photodynamic therapy (PDT) has been hampered by the limitations of existing methods. Herein, we present a multifunctional nanoplatform (termed as UR-HAPT) that is able to simultaneously monitor subcellular dynamics of human apurinic/apyrimidinic endonuclease 1 (APE1) during the near-infrared (NIR) light-mediated PDT. UR-HAPT was constructed by the combination of an upconversion nanoparticle-based PDT design and a mitochondria-targeting strategy with an APE1-responsive DNA reporter. Benefiting from the gain-of-function approach, activatable mitochondrial accumulation of APE1 in response to the oxidative stress was observed during the NIR light-triggered, mitochondria-targeted PDT process. We envision that this nanoplatform can be applicable to screen and evaluate potential enzyme inhibitors to improve the PDT efficacy.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xin Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Abstract
Although boron dipyrromethene (BODIPY)-based metallacycles are expected to be promising candidates for imaging probes and therapeutic agents, their biomedical applications are restricted by their short absorption/emission wavelengths. In this work, we report a rhombic metallacycle M with broad absorption in the near-infrared (NIR) range and emissions at wavelengths >800 nm, which exhibits an efficient photothermal conversion capacity. Metallacycle M was encapsulated via Pluronic F127 to fit the biotic environment, resulting in the generation of F127/M nanoparticles (NPs) with high hydrophilicity and biocompatibility. In vitro studies demonstrated that the F127/M NPs underwent efficient cellular uptake and exhibited satisfactory photothermal therapeutic activity. Furthermore, in vivo experiments revealed that tumor growth was effectively inhibited, and the degree of undesirable biological damage was minimal in treatment with F127/M NPs and laser irradiation. Finally, the F127/M NPs could be visualized through NIR fluorescence imaging in living mice, thereby allowing their distribution to be monitored in order to enhance treatment accuracy during photothermal therapy. We envision that such BODIPY-based metallacycles will provide emerging opportunities for the development of novel therapeutic agents for biomedical applications.
Collapse
|
30
|
Li C, Xu Y, Tu L, Choi M, Fan Y, Chen X, Sessler JL, Kim JS, Sun Y. Rationally designed Ru(ii)-metallacycle chemo-phototheranostic that emits beyond 1000 nm. Chem Sci 2022; 13:6541-6549. [PMID: 35756528 PMCID: PMC9172562 DOI: 10.1039/d2sc01518h] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Ruthenium complexes are emerging as potential complements to platinum drugs. They also show promise as photo-diagnostic and therapeutic agents. However, most ruthenium species studied to date as potential drugs are characterized by short excitation/emission wavelengths. This limits their applicability for deep-tissue fluorescence imaging and light-based therapeutic treatments. Here, we report a Ru(ii) metallacycle (Ru1100) that emits at ≥1000 nm. This system possesses excellent deep-tissue penetration capability (∼7 mm) and displays good chemo-phototherapeutic performance. In vitro studies revealed that Ru1100 benefits from good cellular uptake and produces a strong anticancer response against several cancer cell lines, including a cisplatin-resistant A549 cell line (IC50 = 1.6 μM vs. 51.4 μM for cisplatin). On the basis of in vitro studies, it is concluded that Ru1100 exerts its anticancer action by regulating cell cycle progression and triggering cancer cell apoptosis. In vivo studies involving the use of a nanoparticle formulation served to confirm that Ru1100 allows for high-performance NIR-II fluorescence imaging-guided precise chemo-phototherapy in the case of A549 tumour mouse xenografts with no obvious side effects. This work thus provides a paradigm for the development of long-wavelength emissive supramolecular theranostic agents based on ruthenium.
Collapse
Affiliation(s)
- Chonglu Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Yuling Xu
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Le Tu
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Minhyeok Choi
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Yifan Fan
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin Austin Texas 78712-1224 USA
| | - Jong Seung Kim
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| |
Collapse
|
31
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Fan Y, Li C, Bai S, Ma X, Yang J, Guan X, Sun Y. NIR-II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201625. [PMID: 35560771 DOI: 10.1002/smll.202201625] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Despite the success of emissive Ruthenium (Ru) agents in biomedicine, problems such as the visible-light excitation/emission and single chemo- or phototherapy modality still hamper their applications in deep-tissue imaging and efficient cancer therapy. Herein, an second nearinfrared window (NIR-II) emissive Ru(II) metallacycle (Ru1000, λem = 1000 nm) via coordination-driven self-assembly is reported, which holds remarkable deep-tissue imaging capability (≈6 mm) and satisfactory chemo-phototherapeutic performance. In vitro results indicate Ru1000 displays promising cellular uptake, good cancer-cell selectivity, attractive anti-metastasis properties, and remarkable anticancer activity against various cancer cells, including cisplatin-resistant A549 cells (IC50 = 3.4 × 10-6 m vs 92.8 × 10-6 m for cisplatin). The antitumor mechanism could be attributed to Ru1000-induced lysosomal membrane damage and mitochondrial-mediated apoptotic cell death. Furthermore, Ru1000 also allows the high-performance in vivo NIR-II fluorescence imaging-guided chemo-phototherapy against A549 tumors. This work may provide a paradigm for the development of long-wavelength emissive metallacycle-based agents for future biomedicine.
Collapse
Affiliation(s)
- Yifan Fan
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Chonglu Li
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Suya Bai
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Normal University, Wuhu, 241000, China
| | - Xin Ma
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Jingfang Yang
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Xiaofang Guan
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, 450016, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
33
|
Wang Y, Shi X, Fang H, Han Z, Yuan H, Zhu Z, Dong L, Guo Z, Wang X. Platinum-Based Two-Photon Photosensitizer Responsive to NIR Light in Tumor Hypoxia Microenvironment. J Med Chem 2022; 65:7786-7798. [PMID: 35605111 DOI: 10.1021/acs.jmedchem.2c00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platinum-based photosensitizers are promising anticancer agents in photodynamic therapy. The cytotoxic effects primarily arise from the production of singlet oxygen and platination of DNA. However, their efficacy is limited by drug resistance and hypoxic tumor microenvironment. A naphthalimide-modified cyclometalated platinum(II) complex PtPAN [PA = N-(2-(diethylamino)ethyl)picolinamide, N = N-(2'-ethylhexyl)-4-ethynyl-1,8-naphthalimide] is designed to conquer these problems. PtPAN generates ROS efficiently under both normoxia and hypoxia. It does not interact with DNA and shows low cytotoxicity in the dark, while it kills tumor cells via ROS under near-infrared light irradiation; moreover, it inhibits tumor growth in mice at a low light dose with negligible side effects. PtPAN is the first reported platinum-based photosensitizer that is unreactive to DNA in the dark but highly cytotoxic upon near-infrared (NIR) irradiation for oxygen-independent photodynamic therapy. Owing to its two-photon excitation property (λ = 825 nm), PtPAN may be suitable for the treatment of deep solid tumors.
Collapse
Affiliation(s)
- Yanjun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xiangchao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
34
|
Li C, Liu J, Hong Y, Lin R, Liu Z, Chen M, Lam JWY, Ning GH, Zheng X, Qin A, Tang BZ. Click Synthesis Enabled Sulfur Atom Strategy for Polymerization-Enhanced and Two-Photon Photosensitization. Angew Chem Int Ed Engl 2022; 61:e202202005. [PMID: 35257452 DOI: 10.1002/anie.202202005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 01/10/2023]
Abstract
Facile tailoring of photosensitizers (PSs) with advanced and synergetic properties is highly expected to broaden and deepen photodynamic therapy (PDT) applications. Herein, a catalyst-free thiol-yne click reaction was employed to develop the sulfur atom-based PSs by using the in situ formed sulfur "heavy atom effect" to enhance the intersystem crossing (ISC), while such an effect can be remarkably magnified by the polymerization. The introduction of a tetraphenylpyrazine-based aggregation-induced emission (AIE) unit was also advantageous in PS design by suppressing their non-radiative decay to facilitate the ISC in the aggregated state. Besides, the resulting sulfur atom electron donor, together with a double-bond π bridge and AIE electron acceptor, created a donor-π-acceptor (D-π-A) molecular system with good two-photon excitation properties. Combined with the high singlet oxygen generation efficiency, the fabricated polymer nanoparticles exhibited an excellent in vitro two-photon-excited PDT towards cancer cells, therefore possessing a huge potential for the deep-tissue disease therapy.
Collapse
Affiliation(s)
- Chongyang Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Junkai Liu
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yingjuan Hong
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Runfeng Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zicheng Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Ming Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jacky W Y Lam
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anjun Qin
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China.,Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
35
|
Kumar S, Jana A, Bhowmick S, Das N. Topical progress in medicinal applications of self‐assembled organoplatinum complexes using diverse Pt (II)– and N–based tectons. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saurabh Kumar
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Achintya Jana
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Sourav Bhowmick
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Neeladri Das
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| |
Collapse
|
36
|
Yu F, Shao Y, Chai X, Zhao Y, Li L. Spatially Selective Monitoring of Subcellular Enzyme Dynamics in Response to Mitochondria‐Targeted Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Xin Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
37
|
Li C, Liu J, Hong Y, Lin R, Liu Z, Chen M, Lam JWY, Ning G, Zheng X, Qin A, Tang BZ. Click Synthesis Enabled Sulfur Atom Strategy for Polymerization‐Enhanced and Two‐Photon Photosensitization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chongyang Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Junkai Liu
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Yingjuan Hong
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Runfeng Lin
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Zicheng Liu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Ming Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Jacky W. Y. Lam
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Guo‐Hong Ning
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Anjun Qin
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen No. 2001 Longxiang Boulevard, Longgang District Shenzhen Guangdong 518172 China
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
38
|
Kuang S, Wei F, Karges J, Ke L, Xiong K, Liao X, Gasser G, Ji L, Chao H. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia. J Am Chem Soc 2022; 144:4091-4101. [PMID: 35171598 DOI: 10.1021/jacs.1c13137] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the clinical success of photodynamic therapy (PDT), the application of this medical technique is intrinsically limited by the low oxygen concentrations found in cancer tumors, hampering the production of therapeutically necessary singlet oxygen (1O2). To overcome this limitation, we report on a novel mitochondria-localized iridium(III) endoperoxide prodrug (2-O-IrAn), which, upon two-photon irradiation in NIR, synergistically releases a highly cytotoxic iridium(III) complex (2-IrAn), singlet oxygen, and an alkoxy radical. 2-O-IrAn was found to be highly (photo-)toxic in hypoxic tumor cells and multicellular tumor spheroids (MCTS) in the nanomolar range. To provide cancer selectivity and improve the pharmacological properties of 2-O-IrAn, it was encapsulated into a biotin-functionalized polymer. The generated nanoparticles were found to nearly fully eradicate the tumor inside a mouse model within a single treatment. This study presents, to the best of our knowledge, the first example of an iridium(III)-based endoperoxide prodrug for synergistic photodynamic therapy/photoactivated chemotherapy, opening up new avenues for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, United States
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
39
|
Gupta G, Sun Y, Das A, Stang PJ, Lee CY. BODIPY based Metal-Organic Macrocycles and Frameworks: Recent Therapeutic Developments. Coord Chem Rev 2022; 452:214308. [PMID: 35001940 PMCID: PMC8730361 DOI: 10.1016/j.ccr.2021.214308] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Boron dipyrromethene, commonly known as BODIPY, based metal-organic macrocycles (MOCs) and metal-organic frameworks (MOFs) represent an interesting part of materials due to their versatile tunability of structure and functionality as well as significant physicochemical properties, thus broadening their applications in various scientific domains, especially in biomedical sciences. With increasing concern over the efficacy of cancer drugs versus quality of patient's life dilemma, scientists have been trying to fabricate novel comprehensive therapeutic strategies along with the discovery of novel safer drugs where research with BODIPY metal complexes has shown vital advancements. In this review, we have exclusively examined the articles involving studies related to light harvesting and photophysical properties of BODIPY based MOCs and MOFs, synthesized through self-assembly process, with a special focus on biomolecular interaction and its importance in anti-cancer drug research. In the end, we also emphasized the possible practical challenges involved during the synthetic process, based on our experience on dealing with BODIPY molecules and steps to overcome them along with their future potentials. This review will significantly help our fellow research groups, especially the budding researchers, to quickly and comprehensively get the near to wholesome picture of BODIPY based MOCs and MOFs and their present status in anti-cancer drug discovery.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yan Sun
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
40
|
|
41
|
Xu Y, Tuo W, Yang L, Sun Y, Li C, Chen X, Yang W, Yang G, Stang PJ, Sun Y. Design of a Metallacycle-Based Supramolecular Photosensitizer for In Vivo Image-Guided Photodynamic Inactivation of Bacteria. Angew Chem Int Ed Engl 2022; 61:e202110048. [PMID: 34806264 DOI: 10.1002/anie.202110048] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/22/2022]
Abstract
Bacterial infection is one of the greatest threats to public health. In vivo real-time monitoring and effective treatment of infected sites through non-invasive techniques, remain a challenge. Herein, we designed a PtII metallacycle-based supramolecular photosensitizer through the host-guest interaction between a pillar[5]arene-modified metallacycle and 1-butyl-4-[4-(diphenylamino)styryl]pyridinium. Leveraging the aggregation-induced emission supramolecular photosensitizer, we improved fluorescence performance and antimicrobial photodynamic inactivation. In vivo studies revealed that it displayed precise fluorescence tracking of S. aureus-infected sites, and in situ performed image-guided efficient PDI of S. aureus without noticeable side effects. These results demonstrated that metallacycle combined with host-guest chemistry could provide a paradigm for the development of powerful photosensitizers for biomedicine.
Collapse
Affiliation(s)
- Yuling Xu
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wei Tuo
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Liang Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Chonglu Li
- Guangxi Key laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, China
| | - Wenchao Yang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
42
|
Xu Y, Tuo W, Yang L, Sun Y, Li C, Chen X, Yang W, Yang G, Stang PJ, Sun Y. Design of a Metallacycle‐Based Supramolecular Photosensitizer for In Vivo Image‐Guided Photodynamic Inactivation of Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuling Xu
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Wei Tuo
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Liang Yang
- Department of Radiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Yan Sun
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Chonglu Li
- Guangxi Key laboratory of High-Incidence-Tumor Prevention & Treatment Guangxi Medical University Nanning 530021 China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing University of Technology Nanjing 210009 China
| | - Wenchao Yang
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Peter J. Stang
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| |
Collapse
|
43
|
Xu ZY, Mao W, Zhao Z, Wang ZK, Liu YY, Wu Y, Wang H, Zhang DW, Li ZT, Ma D. Self-assembled nanoparticles based on supramolecular-organic frameworks and temoporfin for an enhanced photodynamic therapy in vitro and in vivo. J Mater Chem B 2022; 10:899-908. [PMID: 35043828 DOI: 10.1039/d1tb02601a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Water-soluble three-dimensional supramolecular-organic frameworks (SOFs) and temoporfin (mTHPC) are discovered to form uniform self-assembled nanoparticles. These nanoparticles demonstrate an improved 1O2 generation efficiency due to the reduced aggregation-caused quenching effect. SOFs and self-assembled nanoparticles are biocompatible. Self-assembled nanoparticles display an improved photo cytotoxicity toward four types of human cancer cells. The tumor model in mice shows that self-assembled nanoparticles could efficiently suppress tumor growth in vivo.
Collapse
Affiliation(s)
- Zi-Yue Xu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Weipeng Mao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Ze-Kun Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yan Wu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Hui Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China. .,School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang 318000, Zhejiang, China
| |
Collapse
|
44
|
Banerjee A, Mukherjee PS. Self-assembled discrete coordination architectures toward biological applications. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Lai Y, Lu N, Ouyang A, Zhang Q, Zhang P. Ferroptosis promotes sonodynamic therapy: a platinum( ii)–indocyanine sonosensitizer. Chem Sci 2022; 13:9921-9926. [PMID: 36128230 PMCID: PMC9430585 DOI: 10.1039/d2sc02597c] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 12/07/2022] Open
Abstract
Sonodynamic therapy (SDT) has unique advantages in deep tumour ablation due to its deep penetration depth, showing great preclinical and clinical potential. Herein, a platinum(ii)–cyanine complex has been designed to investigate its potential as a SDT anticancer agent. It generates singlet oxygen (1O2) under ultrasound (US) irradiation or light irradiation, and exhibits US-cytotoxicity in breast cancer 4T1 cells but with negligible dark-cytotoxicity. Mechanistic investigations reveal that Pt-Cy reduces the cellular GSH and GPX4, and triggers cancer cell ferroptosis under US irradiation. The metabolomics analysis illustrates that Pt-Cy upon US treatment significantly dysregulates glutathione metabolism, and finally induces ferroptosis. In vivo studies further demonstrate that Pt-Cy inhibits tumor growth under US irradiation and its efficiency for SDT is better than that for PDT in vivo. This is the first example of platinum(ii) complexes for sonodynamic therapy. This work extends the biological applications of metal complexes from PDT to SDT. A novel platinum(ii)–cyanine complex showed a greater excellent sonodynamic therapeutic effect than photodynamic therapy in vivo. This work expands the biological applications of metal complexes from traditional photodynamic therapy to sonodynamic therapy.![]()
Collapse
Affiliation(s)
- Yidan Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nong Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
46
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
47
|
Gandioso A, Purkait K, Gasser G. Recent Approaches towards the Development of Ru(II) Polypyridyl Complexes for Anticancer Photodynamic Therapy. Chimia (Aarau) 2021; 75:845-855. [PMID: 34728011 DOI: 10.2533/chimia.2021.845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a remarkable alternative or complementary technique to chemotherapy, radiotherapy or immunotherapy to treat certain forms of cancer. The synergistic effect of light, photosensitizer (PS) and oxygen allows for the treatment of tumours with an extremely high spatio-tumoral control, therefore minimizing the severe side effects usually observed in chemotherapy. The currently employed PDT PSs based on porphyrins have, in some cases, some limitations, which include a low absorbance in the therapeutic window, a low body clearance, photobleaching, among others. In this context, Ru(ii) polypyridyl complexes are interesting alternatives. They have low lying excited energy states and the presence of a heavy metal increases the possibility of spin-orbit coupling. Moreover, their photophysical properties are relatively easy to tune and they have very low photobleaching rates. All of these make them attractive candidates for further development as therapeutically suitable PDT PSs. In this review, after having presented this field of research, we discuss the developments made by our group in this field of research since 2017. We notably describe how we tuned the photophysical properties of our complexes from the visible region to the therapeutically suitable red region. This was accompanied by the preparation of PSs with enhanced phototoxicity and high phototoxicity index. We also discuss the use of two-photon excitation to eradicate tumours in nude mice. Furthermore, we describe our approach for the selective delivery of our complexes using targeting agents. Lastly, we report on our very recent synergistic approach to treat cancer using bimetallic Ru(ii)-Pt(iv) prodrug candidates.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Kallol Purkait
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France;,
| |
Collapse
|
48
|
Qiao L, Liu J, Kuang S, Liao X, Kou J, Ji L, Chao H. A mitochondrion-targeted BODIPY-Ir(III) conjugate as a photoinduced ROS generator for the oxidative destruction of triple-negative breast cancer cells. Dalton Trans 2021; 50:14332-14341. [PMID: 34558567 DOI: 10.1039/d1dt01460a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT) provides an alternative option to root out localized triple-negative breast cancer (TNBC) and has been experiencing a surge of research interest over recent years. In this study, we put forward a paradigm of designing novel transition metal-based PSs with the following characteristics: favorable cell-permeability, significant light-harvesting ability and prominent ROS yield. A novel BODIPY-Ir(III) conjugate has been designed as a photoinduced ROS (1O2, ˙OH and ˙O2-) generator. BODIPY-Ir is highly photoactive in subduing cancer cells in the PDT regimen with PI values ranging from 172 to 519 and EC50 in the nanomolar regime. Among various cancerous cell lines, TNBC was especially sensitive to BODIPY-Ir-mediated PDT, with a stunning EC50 value of 4.32 nM (PI = 519) under a moderate flux of visible-light irradiation (500 nm, 10.5 mW cm-2). BODIPY-Ir mainly accumulates in mitochondria and induces cell apoptosis under irradiation. Furthermore, the nanomolar antiproliferative activity of BODIPY-Ir is retained under hypoxia (2.5% O2). This work sheds light on instilling the O2-independent type I mechanism and conferring a red-shift absorption to metal-based PSs which fundamentally facilitate the clinical translation of PSs.
Collapse
Affiliation(s)
- Liping Qiao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Junfeng Kou
- College of Chemistry and Chemical Engineering, Yunan Normal University, Kunming, 650500, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China. .,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
49
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
50
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|