1
|
Tang Y, Zhao J, Suo H, Hu C, Li Q, Li G, Han S, Su X, Song W, Jin M, Li Y, Li S, Wei L, Jiang X, Jiang S. Sinigrin reduces the virulence of Staphylococcus aureus by targeting coagulase. Microb Pathog 2024; 194:106841. [PMID: 39117013 DOI: 10.1016/j.micpath.2024.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Multi-resistant Staphylococcus aureus (S. aureus) infection is a significant global health concern owing to its high mortality and morbidity rates. Coagulase (Coa), a key enzyme that activates prothrombin to initiate host coagulation, has emerged as a promising target for anti-infective therapeutic approaches. This study identified sinigrin as a potent Coa inhibitor that significantly inhibited S. aureus-induced coagulation at concentration as low as 32 mg/L. Additionally, at a higher concentration of 128 mg/L, sinigrin disrupted the self-protection mechanism of S. aureus. Thermal shift and fluorescence-quenching assays confirmed the direct binding of sinigrin to the Coa protein. Molecular docking analysis predicted specific binding sites for sinigrin in the Coa molecule, and point mutation experiments highlighted the importance of Arg-187 and Asp-222 as critical binding sites for both Coa and sinigrin. In vivo studies demonstrated that the combination of sinigrin with oxacillin exhibited greater antibacterial efficacy than oxacillin alone in the treatment of S. aureus-induced pneumonia in mice. Furthermore, sinigrin was shown to reduce bacterial counts and inflammatory cytokine levels in the lung tissues of S. aureus-infected mice. In summary, sinigrin was shown to directly target Coa, resulting in the attenuation of S. aureus virulence, which suggests the potential of sinigrin as an adjuvant for future antimicrobial therapies.
Collapse
Affiliation(s)
- Yating Tang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jingming Zhao
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Huiqin Suo
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Chunjie Hu
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Qingjie Li
- PhD Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Guofeng Li
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shaoyu Han
- The University of Queensland, St Lucia, QLD, 4067, China
| | - Xin Su
- School of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yufen Li
- School of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Songyang Li
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Lin Wei
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Jiang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Shuang Jiang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Aizpurua O, Blijleven K, Trivedi U, Gilbert MTP, Alberdi A. Unravelling animal-microbiota evolution on a chip. Trends Microbiol 2023; 31:995-1002. [PMID: 37217368 DOI: 10.1016/j.tim.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Whether and how microorganisms have shaped the evolution of their animal hosts is a major question in biology. Although many animal evolutionary processes appear to correlate with changes in their associated microbial communities, the mechanistic processes leading to these patterns and their causal relationships are still far from being resolved. Gut-on-a-chip models provide an innovative approach that expands beyond the potential of conventional microbiome profiling to study how different animals sense and react to microbes by comparing responses of animal intestinal tissue models to different microbial stimuli. This complementary knowledge can contribute to our understanding of how host genetic features facilitate or prevent different microbiomes from being assembled, and in doing so elucidate the role of host-microbiota interactions in animal evolution.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Kees Blijleven
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Urvish Trivedi
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Chen X, Hu C, Shu Z, Wang X, Zhao Y, Song W, Chen X, Jin M, Xiu Y, Guo X, Kong X, Jiang Y, Guan J, Gongga L, Wang L, Wang B. Isovanillic acid protects mice against Staphylococcus aureus by targeting vWbp and Coa. Future Microbiol 2023; 18:735-749. [PMID: 37526178 DOI: 10.2217/fmb-2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Aim: Our primary objective was to investigate the protective effects and mechanisms of isovanillic acid in mice infected with Staphylococcus aureus Newman. Methods: In vitro coagulation assays were used to validate vWbp and Coa as inhibitory targets of isovanillic acid. The binding mechanism of isovanillic acid to vWbp and Coa was investigated using molecular docking and point mutagenesis. Importantly, a lethal pneumonia mouse model was used to assess the effect of isovanillic acid on survival and pathological injury in mice. Results & Conclusion: Isovanillic acid reduced the virulence of S. aureus by directly binding to inhibit the clotting activity of vWbp and Coa, thereby reducing lung histopathological damage and improving the survival rate in mice with pneumonia.
Collapse
Affiliation(s)
- Xiangqian Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunjie Hu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zunhua Shu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Center for Pathogen Biology & Infectious Diseases, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun,130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoyu Chen
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yang Xiu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xuerui Guo
- School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yijing Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lanzi Gongga
- Tibet University Medical College, Tibet, 850000, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
4
|
Zwack EE, Chen Z, Devlin JC, Li Z, Zheng X, Weinstock A, Lacey KA, Fisher EA, Fenyö D, Ruggles KV, Loke P, Torres VJ. Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils. Proc Natl Acad Sci U S A 2022; 119:e2123017119. [PMID: 35881802 PMCID: PMC9351360 DOI: 10.1073/pnas.2123017119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.
Collapse
Affiliation(s)
- Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ze Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Zhi Li
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ada Weinstock
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Edward A. Fisher
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department for Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
5
|
Fan J, Sun H, Liu Y, Li X, Wu H, Ren X. Sanchen powder extract combined with vancomycin against methicillin-resistant Staphylococcus aureus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Mi S, Tang Y, Shi L, Liu X, Si J, Yao Y, Augustino SMA, Fang L, Yu Y. Protective Roles of Folic Acid in the Responses of Bovine Mammary Epithelial Cells to Different Virulent Staphylococcus aureus Strains. BIOLOGY 2021; 10:biology10111164. [PMID: 34827157 PMCID: PMC8615268 DOI: 10.3390/biology10111164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Mastitis caused by Staphylococcus aureus (S. aureus) infection is one of the most difficult diseases to treat in dairy cattle. Exploring the biological progression of S. aureus mastitis via the interaction between host, pathogen, and environment is the key to an effective and sustainable improvement of animal health. Here, two strains of S. aureus and a strain of MRSA (Methicillin-resistant Staphylococcus aureus) isolated from cows with different inflammation phenotypes were used to challenge Mac-T cells and to investigate their effects on the global transcriptome of the cells, then to explore the potential regulatory mechanisms of folic acid on S. aureus mastitis prevention. Differential gene expression or splicing analysis showed that different strains of S. aureus led to distinct transcriptional responses from the host immune system. Folic acid could protect host defense against the challenge of S. aureus and MRSA partially through activating cytoplasmic DNA sensing and tight junction pathway. ZBP1 at the upstream of cytoplasmic DNA sensing pathway was verified and related to anti-pathogen through RNA interference. Further enrichment analysis using these transcriptome data with cattle large-scale genome-wide association study (GWAS) data confirmed that ZBP1 gene is highly associated with bovine somatic cell score (SCS) trait. Our data shed light on the potential effect of FA through regulating key gene and then protect host cells' defense against S. aureus and MRSA.
Collapse
Affiliation(s)
- Siyuan Mi
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Yongjie Tang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Liangyu Shi
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Xueqin Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Jingfang Si
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
| | - Yuelin Yao
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Serafino M. A. Augustino
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
- College of Natural Resources and Environmental Studies, University of Juba, Juba P.O. Box 82, South Sudan
| | - Lingzhao Fang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.M.); (Y.T.); (L.S.); (X.L.); (J.S.); (S.M.A.A.); (L.F.)
- Correspondence:
| |
Collapse
|
7
|
Pizauro LJL, de Almeida CC, Silva SR, MacInnes JI, Kropinski AM, Zafalon LF, de Avila FA, de Mello Varani A. Genomic comparisons and phylogenetic analysis of mastitis-related staphylococci with a focus on adhesion, biofilm, and related regulatory genes. Sci Rep 2021; 11:17392. [PMID: 34462461 PMCID: PMC8405628 DOI: 10.1038/s41598-021-96842-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Mastitis is a common and costly disease on dairy farms, commonly caused by Staphylococcus spp. though the various species are associated with different clinical outcomes. In the current study, we performed genomic analyses to determine the prevalence of adhesion, biofilm, and related regulatory genes in 478 staphylococcal species isolated from clinical and subclinical mastitis cases deposited in public databases. The most prevalent adhesin genes (ebpS, atl, pls, sasH and sasF) were found in both clinical and subclinical isolates. However, the ebpS gene was absent in subclinical isolates of Staphylococcus arlettae, S. succinus, S. sciuri, S. equorun, S. galinarum, and S. saprophyticus. In contrast, the coa, eap, emp, efb, and vWbp genes were present more frequently in clinical (vs. subclincal) mastitis isolates and were highly correlated with the presence of the biofim operon (icaABCD) and its transcriptional regulator, icaR. Co-phylogenetic analyses suggested that many of these adhesins, biofilm, and associated regulatory genes could have been horizontally disseminated between clinical and subclinical isolates. Our results further suggest that several adhesins, biofilm, and related regulatory genes, which have been overlooked in previous studies, may be of use for virulence profiling of mastitis-related Staphylococcus strains or as potential targets for vaccine development.
Collapse
Affiliation(s)
- Lucas José Luduverio Pizauro
- grid.410543.70000 0001 2188 478XDepartment of Technology, Sao Paulo State University, Jaboticabal, Sao Paulo Brazil
| | - Camila Chioda de Almeida
- grid.410543.70000 0001 2188 478XDepartment of Microbiology, Sao Paulo State University, Jaboticabal, Sao Paulo Brazil
| | - Saura Rodrigues Silva
- grid.410543.70000 0001 2188 478XDepartment of Technology, Sao Paulo State University, Jaboticabal, Sao Paulo Brazil
| | - Janet I. MacInnes
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON Canada
| | - Andrew M. Kropinski
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON Canada
| | - Luiz Francisco Zafalon
- grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation (EMBRAPA), Embrapa Southeast Livestock, Sao Carlos, Sao Paulo Brazil
| | - Fernando Antônio de Avila
- grid.410543.70000 0001 2188 478XDepartment of Microbiology, Sao Paulo State University, Jaboticabal, Sao Paulo Brazil
| | - Alessandro de Mello Varani
- grid.410543.70000 0001 2188 478XDepartment of Technology, Sao Paulo State University, Jaboticabal, Sao Paulo Brazil
| |
Collapse
|
8
|
Hamada M, Yamaguchi T, Sato A, Ono D, Aoki K, Kajiwara C, Kimura S, Maeda T, Sasaki M, Murakami H, Ishii Y, Tateda K. Increased Incidence and Plasma-Biofilm Formation Ability of SCC mec Type IV Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated From Patients With Bacteremia. Front Cell Infect Microbiol 2021; 11:602833. [PMID: 33842382 PMCID: PMC8032974 DOI: 10.3389/fcimb.2021.602833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
In Japan, Staphylococcal cassette chromosome mec (SCCmec) type IV methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prominent cause of bacteremia, but the virulence of most of these strains is unclear. We aimed to investigate the relationship between the molecular characteristics and the ability to form biofilms in the presence of blood plasma (plasma-biofilms) of MRSA strains isolated from bloodstream infections. In this study, the molecular characteristics and biofilms of MRSA strains isolated from blood cultures between 2015 and 2017 were analyzed by PCR-based assays, crystal violet staining, and confocal reflection microscopy methods. Among the 90 MRSA isolates, the detection rate of SCCmec type II clones decreased from 60.7 to 20.6%. The SCCmec type IV clone replaced the SCCmec type II clone as the dominant clone, with a detection rate increasing from 32.1 to 73.5%. The plasma-biofilm formation ability of the SCCmec type IV clone was higher than the SCCmec type II clone and even higher in strains harboring the cna or arcA genes. Plasma-biofilms, mainly composed of proteins, were formed quickly and strongly. Our study demonstrated the increased plasma-biofilm formation ability of SCCmec type IV strains.
Collapse
Affiliation(s)
- Masakaze Hamada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Ayami Sato
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Daisuke Ono
- Department of Infectious Diseases and Infection Control, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Tadashi Maeda
- Department of General Medicine and Emergency Care, Toho University Omori Medical Center, Tokyo, Japan
| | - Masakazu Sasaki
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| | - Hinako Murakami
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| |
Collapse
|
9
|
Persistence and progression of staphylococcal infection in the presence of public goods. NPJ Biofilms Microbiomes 2020; 6:55. [PMID: 33247129 PMCID: PMC7699630 DOI: 10.1038/s41522-020-00168-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 10/30/2020] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus is a prominent etiological agent of suppurative abscesses. In principle, abscess formation and purulent exudate are classical physiological features of healing and tissue repair. However, S. aureus deploys two coagulases that can usurp this classical host response and form distinct abscess lesions. Here, we establish that during coinfection with coagulase producers and non-producers, coagulases are shared public goods that contribute to staphylococcal persistence, abscess formation, and disease progression. Coagulase-negative mutants that do not produce the public goods themselves are able to exploit those cooperatively secreted by producers and thereby thrive during coinfection at the expense of others. This study shows the importance of social interactions among pathogens concerning clinical outcomes.
Collapse
|
10
|
Targeting staphylocoagulase with isoquercitrin protects mice from Staphylococcus aureus-induced pneumonia. Appl Microbiol Biotechnol 2020; 104:3909-3919. [PMID: 32130467 DOI: 10.1007/s00253-020-10486-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
Staphylocoagulase (Coa) is a virulence factor of Staphylococcus aureus (S. aureus) that promotes blood coagulation by activating prothrombin to convert fibrinogen to fibrin. Coa plays a crucial role in disease pathogenesis and is a promising target for the treatment of S. aureus infections. Here, we identified that isoquercitrin, a natural flavonol compound, can markedly reduce the activity of Coa at concentrations that have no effect on bacterial growth. Mechanistic studies employing molecular dynamics simulation revealed that isoquercitrin binds to Coa by interacting with Asp-181 and Tyr-188, thereby affecting the binding of Coa to prothrombin. Importantly, in vivo studies showed that isoquercitrin treatment significantly reduced the bacterial burden, pathological damage, and inflammation of lung tissue and improved the percentage of survival of mice infected with S. aureus Newman strain. These data suggest that isoquercitrin is a promising inhibitor of Coa that can be used for the development of therapeutic drugs to combat S. aureus infections.Key Points• Staphylocoagulase plays a key role in the pathogenesis of S. aureus infection.• We identified that isoquercitrin is a direct inhibitor of staphylocoagulase.• Isoquercitrin treatment can significantly attenuate S. aureus virulence in vivo.
Collapse
|
11
|
Otopathogenic Staphylococcus aureus Invades Human Middle Ear Epithelial Cells Primarily through Cholesterol Dependent Pathway. Sci Rep 2019; 9:10777. [PMID: 31346200 PMCID: PMC6658548 DOI: 10.1038/s41598-019-47079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/26/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic suppurative otitis media (CSOM) is one of the most common infectious diseases of the middle ear especially affecting children, leading to delay in language development and communication. Although Staphylococcus aureus is the most common pathogen associated with CSOM, its interaction with middle ear epithelial cells is not well known. In the present study, we observed that otopathogenic S. aureus has the ability to invade human middle ear epithelial cells (HMEECs) in a dose and time dependent manner. Scanning electron microscopy demonstrated time dependent increase in the number of S. aureus on the surface of HMEECs. We observed that otopathogenic S. aureus primarily employs a cholesterol dependent pathway to colonize HMEECs. In agreement with these findings, confocal microscopy showed that S. aureus colocalized with lipid rafts in HMEECs. The results of the present study provide new insights into the pathogenesis of S. aureus induced CSOM. The availability of in vitro cell culture model will pave the way to develop novel effective treatment modalities for CSOM beyond antibiotic therapy.
Collapse
|