1
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
3
|
Agno KC, Yang K, Byun SH, Oh S, Lee S, Kim H, Kim K, Cho S, Jeong WI, Jeong JW. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat Biomed Eng 2024; 8:963-976. [PMID: 37903901 DOI: 10.1038/s41551-023-01116-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/26/2023] [Indexed: 11/01/2023]
Abstract
The high stiffness of intravenous needles can cause tissue injury and increase the risk of transmission of blood-borne pathogens through accidental needlesticks. Here we describe the development and performance of an intravenous needle whose stiffness and shape depend on body temperature. The needle is sufficiently stiff for insertion into soft tissue yet becomes irreversibly flexible after insertion, adapting to the shape of the blood vessel and reducing the risk of needlestick injury on removal, as we show in vein phantoms and ex vivo porcine tissue. In mice, the needles had similar fluid-delivery performance and caused substantially less inflammation than commercial devices for intravenous access of similar size. We also show that an intravenous needle integrated with a thin-film temperature sensor can monitor core body temperature in mice and detect fluid leakage in porcine tissue ex vivo. Temperature-responsive intravenous needles may improve patient care.
Collapse
Affiliation(s)
- Karen-Christian Agno
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Keungmo Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyuk Byun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heesoo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyurae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sungwoo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Nour SA, Foda DS, Elsehemy IA, Hassan ME. Co-administration of xylo-oligosaccharides produced by immobilized Aspergillus terreus xylanase with carbimazole to mitigate its adverse effects on the adrenal gland. Sci Rep 2024; 14:17481. [PMID: 39080323 PMCID: PMC11289116 DOI: 10.1038/s41598-024-67310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Carbimazole has disadvantages on different body organs, especially the thyroid gland and, rarely, the adrenal glands. Most studies have not suggested any solution or medication for ameliorating the noxious effects of drugs on the glands. Our study focused on the production of xylooligosaccharide (XOS), which, when coadministered with carbimazole, relieves the toxic effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity. This XOS produced by Aspergillus terreus xylanase was covalently immobilized using microbial Scleroglucan gel beads, which improved the immobilization yield, efficiency, and operational stability. Over a wide pH range (6-7.5), the covalent immobilization of xylanase on scleroglucan increased xylanase activity compared to that of its free form. Additionally, the reaction temperature was increased to 65 °C. However, the immobilized enzyme demonstrated superior thermal stability, sustaining 80.22% of its original activity at 60 °C for 120 min. Additionally, the full activity of the immobilized enzyme was sustained after 12 consecutive cycles, and the activity reached 78.33% after 18 cycles. After 41 days of storage at 4 °C, the immobilized enzyme was still active at approximately 98%. The immobilized enzyme has the capability to produce xylo-oligosaccharides (XOSs). Subsequently, these XOSs can be coadministered alongside carbimazole to mitigate the adverse effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity.
Collapse
Affiliation(s)
- Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Doaa S Foda
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Islam A Elsehemy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
- Centre of Excellence, Encapsulation and Nano Biotechnology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
| |
Collapse
|
5
|
Zhang N, Zhao S, Ma Y, Xiao Z, Xue B, Dong Y, Wang Q, Xu H, Zhang X, Wang Y. Hyperexcitation of ovBNST CRF neurons during stress contributes to female-biased expression of anxiety-like avoidance behaviors. SCIENCE ADVANCES 2024; 10:eadk7636. [PMID: 38728397 PMCID: PMC11086623 DOI: 10.1126/sciadv.adk7636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies. Moreover, optogenetic modulation to exchange the activation pattern of ovBNST CRF neurons during stress between female and male mice could reverse their susceptibility to anxiety. Last, CRF receptor type 1 (CRFR1) mediated the CRF-induced excitation of ovBNST CRF neurons and showed female-biased expression. Specific knockdown of the CRFR1 level in ovBNST CRF neurons in female or overexpression that in male could reverse their susceptibility to anxiety. Therefore, we identify that CRFR1-mediated hyperexcitation of ovBNST CRF neurons in female mice encode the female-biased susceptibility to anxiety.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Sha Zhao
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yanqiao Ma
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhixin Xiao
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bao Xue
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yuan Dong
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Huamin Xu
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xia Zhang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
6
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Ok J, Park S, Jung YH, Kim TI. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211595. [PMID: 36917076 DOI: 10.1002/adma.202211595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cortisol is a steroid hormone that is released from the body in response to stress. Although a moderate level of cortisol secretion can help the body maintain homeostasis, excessive secretion can cause various diseases, such as depression and anxiety. Conventional methods for cortisol measurement undergo procedures that limit continuous monitoring, typically collecting samples of bodily fluids, followed by separate analysis in a laboratory setting that takes several hours. Thus, recent studies demonstrate wearable, miniaturized sensors integrated with electronic modules that enable wireless real-time analysis. Here, the primary focus is on wearable and implantable electronic devices that continuously measure cortisol concentration. Diverse types of cortisol-sensing techniques, such as antibody-, DNA-aptamer-, and molecularly imprinted polymer-based sensors, as well as wearable and implantable devices that aim to continuously monitor cortisol in a minimally invasive fashion are discussed. In addition to the cortisol monitors that directly measure stress levels, other schemes that indirectly measure stress, such as electrophysiological signals and sweat are also summarized. Finally, the challenges and future directions in stress monitoring and management electronics are reviewed.
Collapse
Affiliation(s)
- Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sumin Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
8
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
9
|
Van de Steene T, Tanghe E, Martens L, Garripoli C, Stanzione S, Joseph W. Optimal Frequency and Wireless Power Budget for Miniature Receivers in Obese People. SENSORS (BASEL, SWITZERLAND) 2023; 23:8084. [PMID: 37836914 PMCID: PMC10574982 DOI: 10.3390/s23198084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
This study investigates wireless power transfer for deep in-body receivers, determining the optimal frequency, power budget, and design for the transmitter and receiver. In particular, the focus is on small, in-body receivers at large depths up to 20 cm for obese patients. This enables long-term monitoring of the gastrointestinal tract for all body types. Numerical simulations are used to investigate power transfer and losses as a function of frequency and to find the optimal design at the selected frequency for an obese body model. From all ISM-frequencies in the investigated range (1 kHz-10 GHz), the value of 13.56 MHz yields the best performance. This optimum corresponds to the transition from dominant copper losses in conductors to dominant losses in conductive tissue. At this frequency, a transmitting and receiving coil are designed consisting of 12 and 23 windings, respectively. With a power transfer efficiency of 2.70×10-5, 18 µW can be received for an input power of 0.68 W while still satisfying exposure guidelines. The power transfer is validated by measurements. For the first time, efficiency values and the power budget are reported for WPT through 20 cm of tissue to mm sized receivers. Compared to WPT at higher frequencies, as commonly used for small receivers, the proposed system is more suitable for WPT to large depths in-body and comes with the advantage that no focusing is required, which can accommodate multiple receivers and uncertainty about receiver location more easily. The received power allows long-term sensing in the gastrointestinal tract by, e.g., temperature, pressure, and pH sensors, motility sensing, or even gastric stimulation.
Collapse
Affiliation(s)
- Tom Van de Steene
- Department of Information Technology, Ghent University/imec, B-9052 Ghent, Belgium
| | - Emmeric Tanghe
- Department of Information Technology, Ghent University/imec, B-9052 Ghent, Belgium
| | - Luc Martens
- Department of Information Technology, Ghent University/imec, B-9052 Ghent, Belgium
| | | | | | - Wout Joseph
- Department of Information Technology, Ghent University/imec, B-9052 Ghent, Belgium
| |
Collapse
|
10
|
Omar MH, Kihiu M, Byrne DP, Lee KS, Lakey TM, Butcher E, Eyers PA, Scott JD. Classification of Cushing's syndrome PKAc mutants based upon their ability to bind PKI. Biochem J 2023; 480:875-890. [PMID: 37306403 PMCID: PMC11136536 DOI: 10.1042/bcj20230183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Cushing's syndrome is an endocrine disorder caused by excess production of the stress hormone cortisol. Precision medicine strategies have identified single allele mutations within the PRKACA gene that drive adrenal Cushing's syndrome. These mutations promote perturbations in the catalytic core of protein kinase A (PKAc) that impair autoinhibition by regulatory subunits and compartmentalization via recruitment into AKAP signaling islands. PKAcL205R is found in ∼45% of patients, whereas PKAcE31V, PKAcW196R, and L198insW and C199insV insertion mutants are less prevalent. Mass spectrometry, cellular, and biochemical data indicate that Cushing's PKAc variants fall into two categories: those that interact with the heat-stable protein kinase inhibitor PKI, and those that do not. In vitro activity measurements show that wild-type PKAc and W196R activities are strongly inhibited by PKI (IC50 < 1 nM). In contrast, PKAcL205R activity is not blocked by the inhibitor. Immunofluorescent analyses show that the PKI-binding variants wild-type PKAc, E31V, and W196R are excluded from the nucleus and protected against proteolytic processing. Thermal stability measurements reveal that upon co-incubation with PKI and metal-bound nucleotide, the W196R variant tolerates melting temperatures 10°C higher than PKAcL205. Structural modeling maps PKI-interfering mutations to a ∼20 Å diameter area at the active site of the catalytic domain that interfaces with the pseudosubstrate of PKI. Thus, Cushing's kinases are individually controlled, compartmentalized, and processed through their differential association with PKI.
Collapse
Affiliation(s)
- Mitchell H. Omar
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Maryanne Kihiu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Dominic P. Byrne
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Tyler M. Lakey
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Erik Butcher
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Patrick A. Eyers
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
11
|
Kim H, Song J, Kim S, Lee S, Park Y, Lee S, Lee S, Kim J. Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review. BIOSENSORS 2023; 13:bios13040470. [PMID: 37185545 PMCID: PMC10136450 DOI: 10.3390/bios13040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Researchers are interested in measuring mental stress because it is linked to a variety of diseases. Real-time stress monitoring via wearable sensor systems can aid in the prevention of stress-related diseases by allowing stressors to be controlled immediately. Physical tests, such as heart rate or skin conductance, have recently been used to assess stress; however, these methods are easily influenced by daily life activities. As a result, for more accurate stress monitoring, validations requiring two or more stress-related biomarkers are demanded. In this review, the combinations of various types of sensors (hereafter referred to as multiplexed sensor systems) that can be applied to monitor stress are discussed, referring to physical and chemical biomarkers. Multiplexed sensor systems are classified as multiplexed physical sensors, multiplexed physical-chemical sensors, and multiplexed chemical sensors, with the effect of measuring multiple biomarkers and the ability to measure stress being the most important. The working principles of multiplexed sensor systems are subdivided, with advantages in measuring multiple biomarkers. Furthermore, stress-related chemical biomarkers are still limited to cortisol; however, we believe that by developing multiplexed sensor systems, it will be possible to explore new stress-related chemical biomarkers by confirming their correlations to cortisol. As a result, the potential for further development of multiplexed sensor systems, such as the development of wearable electronics for mental health management, is highlighted in this review.
Collapse
Affiliation(s)
- Heena Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeyoon Song
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Sehyeon Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Suyoung Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Yejin Park
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Seungjun Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Seunghee Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
12
|
Lingle C. New insights about non-neurogenic excitability revealed by MEA recordings from rat adrenal chromaffin cells. Pflugers Arch 2023; 475:151-152. [PMID: 36547699 PMCID: PMC9983419 DOI: 10.1007/s00424-022-02783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Christopher Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Marcantoni A, Chiantia G, Tomagra G, Hidisoglu E, Franchino C, Carabelli V, Carbone E. Two firing modes and well-resolved Na +, K +, and Ca 2+ currents at the cell-microelectrode junction of spontaneously active rat chromaffin cell on MEAs. Pflugers Arch 2023; 475:181-202. [PMID: 36260174 PMCID: PMC9849155 DOI: 10.1007/s00424-022-02761-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going). Negative-going eAPs were found to represent the trajectory of the Na+, Ca2+, and K+ currents passing through the cell area in tight contact with the microelectrode during an AP (point-contact junction). The inward Nav component of eAPs was blocked by TTX in a dose-dependent manner (IC50 ~ 10 nM) while the outward component was strongly attenuated by the BK channel blocker paxilline (200 nM) or TEA (5 mM). The SK channel blocker apamin (200 nM) had no effect on eAPs. Inward Nav and Cav currents were well-resolved after block of Kv and BK channels or in cells showing no evident outward K+ currents. Unexpectedly, on the same type of cells, we could also resolve inward L-type currents after adding nifedipine (3 μM). In conclusion, MEAs provide a direct way to record different firing modes of rat CCs and to estimate the Na+, Ca2+, and K+ currents that sustain cell firing and spontaneous catecholamines secretion.
Collapse
Affiliation(s)
- Andrea Marcantoni
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Giuseppe Chiantia
- grid.7605.40000 0001 2336 6580Department of Neuroscience, University of Torino, 10125 Turin, Italy
| | - Giulia Tomagra
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Enis Hidisoglu
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Claudio Franchino
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Valentina Carabelli
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Emilio Carbone
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
14
|
Sadek D, Abunasef S, Khalil S. Role of adrenal progenitor cells in the structural response of adrenal gland to various forms of acute stress and subsequent recovery in adult male albino rats. J Microsc Ultrastruct 2023. [DOI: 10.4103/jmau.jmau_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
15
|
Stuart T, Hanna J, Gutruf P. Wearable devices for continuous monitoring of biosignals: Challenges and opportunities. APL Bioeng 2022; 6:021502. [PMID: 35464617 PMCID: PMC9010050 DOI: 10.1063/5.0086935] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The ability for wearable devices to collect high-fidelity biosignals continuously over weeks and months at a time has become an increasingly sought-after characteristic to provide advanced diagnostic and therapeutic capabilities. Wearable devices for this purpose face a multitude of challenges such as formfactors with long-term user acceptance and power supplies that enable continuous operation without requiring extensive user interaction. This review summarizes design considerations associated with these attributes and summarizes recent advances toward continuous operation with high-fidelity biosignal recording abilities. The review also provides insight into systematic barriers for these device archetypes and outlines most promising technological approaches to expand capabilities. We conclude with a summary of current developments of hardware and approaches for embedded artificial intelligence in this wearable device class, which is pivotal for next generation autonomous diagnostic, therapeutic, and assistive health tools.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA
- Neuroscience GIDP, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
16
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
17
|
Churilov AN, Milton JG. Modeling pulsativity in the hypothalamic-pituitary-adrenal hormonal axis. Sci Rep 2022; 12:8480. [PMID: 35589935 PMCID: PMC9120490 DOI: 10.1038/s41598-022-12513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
A new mathematical model for biological rhythms in the hypothalamic–pituitary–adrenal (HPA) axis is proposed. This model takes the form of a system of impulsive time-delay differential equations which include pulsatile release of adrenocorticotropin (ACTH) by the pituitary gland and a time delay for the release of glucocorticoid hormones by the adrenal gland. Numerical simulations demonstrate that the model’s response to periodic and circadian inputs from the hypothalamus are consistent with those generated by recent models which do not include a pulsatile pituitary. In contrast the oscillatory phenomena generated by the impulsive delay equation mode occur even if the time delay is zero. The observation that the time delay merely introduces a small phase shift suggesting that the effects of the adrenal gland are “downstream” to the origin of pulsativity. In addition, the model accounts for the occurrence of ultradian oscillations in an isolated pituitary gland. These observations suggest that principles of pulse modulated control, familiar to control engineers, may have an increasing role to play in understanding the HPA axis.
Collapse
Affiliation(s)
- Alexander N Churilov
- Faculty of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg, Russia
| | - John G Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA, USA.
| |
Collapse
|
18
|
Ganpat Chavan S, Kumar Yagati A, Koyappayil A, Go A, Yeon S, Lee MH. Recombinant Histidine-Tagged Nano-protein-based Highly Sensitive Electro-Sensing Device for Salivary Cortisol. Bioelectrochemistry 2022; 144:108046. [PMID: 35030457 DOI: 10.1016/j.bioelechem.2021.108046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022]
Abstract
We have developed a powerful biosensing strategy for immobilizing histidine-tagged (His-Tag)-oriented recombinant nano-protein immobilization on a chemically modified glassy carbon electrode (GCE) surfaces via (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (ANTA) acting as a chelating Ni2+ centered interaction. Here, we introduce a label-free electro-sensor to quantify cortisol levels in saliva samples for point-of-care testing (POCT). The high specificity of the chemically modified GCE was established by genetically bio-engineered metal-binding sites on the selected recombinant apoferritin (R-AFTN) nano-protein to impart functionality to its surface and by coating the carbon surface with the self-assembled monolayers of 4-aminobenzoic acid (4-ABA) attached to ANTA groups complexed with Ni2+ transition metal ions. Despite the variety of conventional assays available to monitor cortisol levels, they require bulky exterior outfits, which hinders use in the healthcare systems. Therefore, we performed a rapid, easy-to-implement, and low-cost quantitative electro-sensor to enable the real-time detection of cortisol levels in saliva samples. As a result, the cortisol electro-sensor fabricated with high specificity utilizing a GCE could measure cortisol levels with a detection limit of 0.95 ng/ml and sensitivity of 7.91 μA/(ng/mL), which is a practical approach in human saliva. Thus, protein nanoprobe-based cortisol biosensing showed high sensitivity and selectivity for the direct electro-sensing of cortisol for POCT.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Ajay Kumar Yagati
- Institute of Analytical Chemistry/Chemo-and Biosensors, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Sangho Yeon
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
19
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
20
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
21
|
Thrivikraman KV, Kinkead B, Owens MJ, Rapaport MH, Plotsky PM. Locus Coeruleus Noradrenergic Modulation of Diurnal Corticosterone, Stress Reactivity, and Cardiovascular Homeostasis in Male Rats. Neuroendocrinology 2022; 112:763-776. [PMID: 34649254 PMCID: PMC9037608 DOI: 10.1159/000520192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Activation of the locus coeruleus-noradrenergic (LC-NA) system during awakening is associated with an increase in plasma corticosterone and cardiovascular tone. These studies evaluate the role of the LC in this corticosterone and cardiovascular response. METHODS Male rats, on day 0, were treated intraperitoneally with either DSP4 (50 mg/kg body weight) (DSP), an LC-NA specific neurotoxin, or normal saline (SAL). On day 10, animals were surgically prepared with jugular vein (hypothalamic-pituitary-adrenal [HPA] axis) or carotid artery (hemodynamics) catheters and experiments performed on day 14. HPA axis activity, diurnally (circadian) and after stress (transient hemorrhage [14 mL/kg body weight] or air puff-startle), and basal and post-hemorrhage hemodynamics were evaluated. On day 16, brain regions from a subset of rats were dissected for norepinephrine and corticotropin-releasing factor (CRF) assay. RESULTS In DSP rats compared to SAL rats, (1) regional brain norepinephrine was decreased, but there was no change in median eminence or olfactory bulb CRF content; (2) during HPA axis acrophase, the plasma corticosterone response was blunted; (3) after hemorrhage and air puff-startle, the plasma adrenocorticotropic hormone response was attenuated, whereas the corticosterone response was dependent on stressor category; (4) under basal conditions, hemodynamic measures exhibited altered blood flow dynamics and systemic vasodilation; and (5) after hemorrhage, hemodynamics exhibited asynchronous responses. CONCLUSION LC-NA modulation of diurnal and stress-induced HPA axis reactivity occurs via distinct neurocircuits. The integrity of the LC-NA system is important to maintain blood flow dynamics. The importance of increases in plasma corticosterone at acrophase to maintain short- and long-term cardiovascular homeostasis is discussed.
Collapse
Affiliation(s)
- K. V. Thrivikraman
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Becky Kinkead
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Michael J. Owens
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Paul M. Plotsky
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Lopez Ruiz JR, Ernst SA, Holz RW, Stuenkel EL. Basal and Stress-Induced Network Activity in the Adrenal Medulla In Vivo. Front Endocrinol (Lausanne) 2022; 13:875865. [PMID: 35795145 PMCID: PMC9250985 DOI: 10.3389/fendo.2022.875865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
The adrenal medulla plays a critical role in mammalian homeostasis and the stress response. It is populated by clustered chromaffin cells that secrete epinephrine or norepinephrine along with peptides into the bloodstream affecting distant target organs. Despite been heavily studied, the central control of adrenal medulla and in-situ spatiotemporal responsiveness remains poorly understood. For this work, we continuously monitored the electrical activity of individual adrenomedullary chromaffin cells in the living anesthetized rat using multielectrode arrays. We measured the chromaffin cell activity under basal and physiological stress conditions and characterized the functional micro-architecture of the adrenal medulla. Under basal conditions, chromaffin cells fired action potentials with frequencies between ~0.2 and 4 Hz. Activity was almost completely driven by sympathetic inputs coming through the splanchnic nerve. Chromaffin cells were organized into independent local networks in which cells fired in a specific order, with latencies from hundreds of microseconds to a few milliseconds. Electrical stimulation of the splanchnic nerve evoked almost exactly the same spatiotemporal firing patterns that occurred spontaneously. Hypoglycemic stress, induced by insulin administration resulted in increased activity of a subset of the chromaffin cells. In contrast, respiratory arrest induced by lethal anesthesia resulted in an increase in the activity of virtually all chromaffin cells before cessation of all activity. These results suggest a stressor-specific activation of adrenomedullary chromaffin cell networks and revealed a surprisingly complex electrical organization that likely reflects the dynamic nature of the adrenal medulla's neuroendocrine output during basal conditions and during different types of physiological stress.
Collapse
Affiliation(s)
- Jose R Lopez Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen A Ernst
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Edward L Stuenkel
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
23
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Cho Y, Park S, Lee J, Yu KJ. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005786. [PMID: 34050691 PMCID: PMC11468537 DOI: 10.1002/adma.202005786] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Neuroscience is an essential field of investigation that reveals the identity of human beings, with a comprehensive understanding of advanced mental activities, through the study of neurobiological structures and functions. Fully understanding the neurotransmission system that allows for connectivity among neuronal circuits has paved the way for the development of treatments for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and depression. The field of flexible implants has attracted increasing interest mainly to overcome the mechanical mismatch between rigid electrode materials and soft neural tissues, enabling precise measurements of neural signals from conformal contact. Here, the current issues of flexible neural implants (chronic device failure, non-bioresorbable electronics, low-density electrode arrays, among others are summarized) by presenting material candidates and designs to address each challenge. Furthermore, the latest investigations associated with the aforementioned issues are also introduced, including suggestions for ideal neural implants. In terms of the future direction of these advances, designing flexible devices would provide new opportunities for the study of brain-machine interfaces or brain-computer interfaces as part of locomotion through brain signals, and for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Younguk Cho
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Sanghoon Park
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Juyoung Lee
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Ki Jun Yu
- School of Electrical EngineeringYU‐KIST InstituteYonsei UniversitySeoul03722Korea
| |
Collapse
|
25
|
Won C, Kwon C, Park K, Seo J, Lee T. Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005930. [PMID: 33938022 DOI: 10.1002/adma.202005930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in diagnostics and medicines emphasize the spatial and temporal aspects of monitoring and treating diseases. However, conventional therapeutics, including oral administration and injection, have difficulties meeting these aspects due to physiological and technological limitations, such as long-term implantation and a narrow therapeutic window. As an innovative approach to overcome these limitations, electronic devices known as electronic drugs (e-drugs) have been developed to monitor real-time body signals and deliver specific treatments to targeted tissues or organs. For example, ingestible and patch-type e-drugs could detect changes in biomarkers at the target sites, including the gastrointestinal (GI) tract and the skin, and deliver therapeutics to enhance healing in a spatiotemporal manner. However, medical treatments often require invasive surgical procedures and implantation of medical equipment for either short or long-term use. Therefore, approaches that could minimize implantation-associated side effects, such as inflammation and scar tissue formation, while maintaining high functionality of e-drugs, are highly needed. Herein, the importance of the spatial and temporal aspects of medical treatment is thoroughly reviewed along with how e-drugs use cutting-edge technological innovations to deal with unresolved medical challenges. Furthermore, diverse uses of e-drugs in clinical applications and the future perspectives of e-drugs are discussed.
Collapse
Affiliation(s)
- Chihyeong Won
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaebeen Kwon
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kijun Park
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jungmok Seo
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeyoon Lee
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
26
|
Shim HJ, Sunwoo S, Kim Y, Koo JH, Kim D. Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Adv Healthc Mater 2021; 10:e2002105. [PMID: 33506654 DOI: 10.1002/adhm.202002105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Elastomers are suitable materials for constructing a conformal interface with soft and curvilinear biological tissue due to their intrinsically deformable mechanical properties. Intrinsically soft electronic devices whose mechanical properties are comparable to human tissue can be fabricated using suitably functionalized elastomers. This article reviews recent progress in functionalized elastomers and their application to intrinsically soft and biointegrated electronics. Elastomers can be functionalized by adding appropriate fillers, either nanoscale materials or polymers. Conducting or semiconducting elastomers synthesized and/or processed with these materials can be applied to the fabrication of soft biointegrated electronic devices. For facile integration of soft electronics with the human body, additional functionalization strategies can be employed to improve adhesive or autonomous healing properties. Recently, device components for intrinsically soft and biointegrated electronics, including sensors, stimulators, power supply devices, displays, and transistors, have been developed. Herein, representative examples of these fully elastomeric device components are discussed. Finally, the remaining challenges and future outlooks for the field are presented.
Collapse
Affiliation(s)
- Hyung Joon Shim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Yeongjun Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
27
|
Yoo S, Lee J, Joo H, Sunwoo S, Kim S, Kim D. Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100614. [PMID: 34075721 DOI: 10.1002/adhm.202100614] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Implantable bioelectronic devices are becoming useful and prospective solutions for various diseases owing to their ability to monitor or manipulate body functions. However, conventional implantable devices (e.g., pacemaker and neurostimulator) are still bulky and rigid, which is mostly due to the energy storage component. In addition to mechanical mismatch between the bulky and rigid implantable device and the soft human tissue, another significant drawback is that the entire device should be surgically replaced once the initially stored energy is exhausted. Besides, retrieving physiological information across a closed epidermis is a tricky procedure. However, wireless interfaces for power and data transfer utilizing radio frequency (RF) microwave offer a promising solution for resolving such issues. While the RF interfacing devices for power and data transfer are extensively investigated and developed using conventional electronics, their application to implantable bioelectronics is still a challenge owing to the constraints and requirements of in vivo environments, such as mechanical softness, small module size, tissue attenuation, and biocompatibility. This work elucidates the recent advances in RF-based power transfer and telemetry for implantable bioelectronics to tackle such challenges.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Jonghun Lee
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Hyunwoo Joo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sanghoek Kim
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
28
|
Mei X, Ye D, Zhang F, Di C. Implantable application of polymer‐based biosensors. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangyuan Mei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Fengjiao Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
29
|
Lim HS, Yoon KN, Chung JH, Lee YS, Lee DH, Park G. Chronic Ultraviolet Irradiation to the Skin Dysregulates Adrenal Medulla and Dopamine Metabolism In Vivo. Antioxidants (Basel) 2021; 10:antiox10060920. [PMID: 34200115 PMCID: PMC8228565 DOI: 10.3390/antiox10060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) radiation has a strong biological effect on skin biology, and it switches on adaptive mechanisms to maintain homeostasis in organs such as the skin, adrenal glands, and brain. In this study, we examined the adaptation of the body to repeated bouts of UVB radiation, especially with respect to the catecholamine synthesis pathway of the adrenal glands. The effects of UVB on catecholamine-related enzymes were determined by neurochemical and histological analyses. To evaluate catecholamine changes after chronic excessive UVB irradiation of mouse skin, we examined dopamine and norepinephrine levels in the adrenal glands and blood from UV-irradiated and sham-irradiated mice. We found that chronic excessive UVB exposure significantly reduced dopamine levels in both tissues but did not affect norepinephrine levels. In addition, UVB irradiation significantly increased the levels of related enzymes tyrosine hydroxylase and dopamine-β-hydroxylase. Furthermore, we also found that apoptosis-associated markers were increased and that oxidative defense proteins were decreased, which might have contributed to the marked structural abnormalities in the adrenal medullas of the chronically UVB-irradiated mice. This is the first evidence of the damage to the adrenal gland and subsequent dysregulation of catecholamine metabolism induced by chronic exposure to UVB.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju 58245, Korea;
| | - Kyeong-No Yoon
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea; (K.-N.Y.); (J.H.C.)
| | - Jin Ho Chung
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea; (K.-N.Y.); (J.H.C.)
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
- Institute on Aging, Seoul National University, Seoul 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong Hun Lee
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea; (K.-N.Y.); (J.H.C.)
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
- Institute on Aging, Seoul National University, Seoul 03080, Korea
- Correspondence: (D.H.L.); (G.P.); Tel.: +82-2-2072-2415 (D.H.L.); +82-61-338-7112 (G.P.)
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju 58245, Korea;
- Correspondence: (D.H.L.); (G.P.); Tel.: +82-2-2072-2415 (D.H.L.); +82-61-338-7112 (G.P.)
| |
Collapse
|
30
|
Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annu Rev Chem Biomol Eng 2021; 12:359-391. [PMID: 34097846 DOI: 10.1146/annurev-chembioeng-101420-024336] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ho Ha
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA;
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea;
| | - Nanshu Lu
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA; .,Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Department of Biomedical Engineering, and Texas Material Institute, The University of Texas at Austin, Texas 78712, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Ren J, Guo J, Zhu S, Wang Q, Gao R, Zhao C, Feng C, Qin C, He Z, Qin C, Wang Z, Zang L. The Role of Potassium Channels in Chronic Stress-Induced Brain Injury. Biol Pharm Bull 2021; 44:169-180. [PMID: 33239494 DOI: 10.1248/bpb.b20-00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic stress-induced brain injury (CSBI) is the organic damage of brain tissue caused by long-term psychological and environmental stress. However, there is no effective drug for the treatment of CSBI. The present study aimed to investigate possible mechanisms of CSBI and to explore related therapeutic targets. A rat model of CSBI was established by combining chronic restraint and cold water immersion. Our CSBI model was validated via Nissl staining, Western blotting, and behavioral tests. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) within brain tissue during CSBI. Both Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to determine signaling pathways associated with CSBI-induced DEGs. Agonists/antagonists were used to validate the pharmacodynamics of potential therapeutic targets. A combination of chronic restraint and cold water immersion successfully induced a rat model of CSBI, as indicated by various markers of brain injury and cell apoptosis that were verified via Nissl staining, Western blotting, and behavioral tests. RNA-seq analysis identified 1131 DEGs in CSBI rats. Of these DEGs, 553 genes were up-regulated and 778 genes were down-regulated. GO and KEGG pathway analyses revealed that significant DEGs were predominantly related to membrane-bound ion channels, among which the potassium channel function was found to be significantly affected. Pharmacological experiments revealed that retigabine, a voltage-gated potassium channel opener, demonstrated a protective effect in CSBI rats. Taken together, our findings suggest that potassium channel function is disrupted in CSBI, and that potassium channel regulators may function as anti-CSBI drugs.
Collapse
Affiliation(s)
- Jianhui Ren
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Jiquan Guo
- Department of Respiratory, Guangdong Provincial People's Hospital
| | - Shuguang Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Qiyou Wang
- Orthopedics, Third Affiliated Hospital of Sun Yat-Sen University
| | - Ruiping Gao
- School of Clinical Medicine, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Chunhe Zhao
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Chuyu Feng
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Cuiying Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhenfeng He
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Changyun Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhanle Wang
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University
| |
Collapse
|
32
|
Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020; 108:270-285. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
The development of new tools to interface with the nervous system, empowered by advances in electronics and materials science, has transformed neuroscience and is informing therapies for neurological and mental conditions. Although the vast majority of neural engineering research has focused on advancing tools to study the brain, understanding the peripheral nervous system and other organs can similarly benefit from these technologies. To realize this vision, the neural interface technologies need to address the biophysical, mechanical, and chemical challenges posed by the peripheral nerves and organs. In this Perspective, we discuss design considerations and recent technological advances to modulate electrical signaling outside the central nervous system. The innovations in bioelectronics borne out of interdisciplinary collaborations between biologists and physical scientists may not only advance fundamental study of peripheral (neuro)physiology but also empower clinical interventions for conditions including neurological, gastrointestinal, and immune dysfunction.
Collapse
Affiliation(s)
- Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Lee MA, Wang S, Jin X, Bakh NA, Nguyen FT, Dong J, Silmore KS, Gong X, Pham C, Jones KK, Muthupalani S, Bisker G, Son M, Strano MS. Implantable Nanosensors for Human Steroid Hormone Sensing In Vivo Using a Self-Templating Corona Phase Molecular Recognition. Adv Healthc Mater 2020; 9:e2000429. [PMID: 32940022 DOI: 10.1002/adhm.202000429] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Dynamic measurements of steroid hormones in vivo are critical, but steroid sensing is currently limited by the availability of specific molecular recognition elements due to the chemical similarity of these hormones. In this work, a new, self-templating synthetic approach is applied using corona phase molecular recognition (CoPhMoRe) targeting the steroid family of molecules to produce near infrared fluorescent, implantable sensors. A key limitation of CoPhMoRe has been its reliance on library generation for sensor screening. This problem is addressed with a self-templating strategy of polymer design, using the examples of progesterone and cortisol sensing based on a styrene and acrylic acid copolymer library augmented with an acrylated steroid. The pendant steroid attached to the corona backbone is shown to self-template the phase, providing a unique CoPhMoRE design strategy with high efficacy. The resulting sensors exhibit excellent stability and reversibility upon repeated analyte cycling. It is shown that molecular recognition using such constructs is viable even in vivo after sensor implantation into a murine model by employing a poly (ethylene glycol) diacrylate (PEGDA) hydrogel and porous cellulose interface to limit nonspecific absorption. The results demonstrate that CoPhMoRe templating is sufficiently robust to enable a new class of continuous, in vivo biosensors.
Collapse
Affiliation(s)
- Michael A. Lee
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Song Wang
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Xiaojia Jin
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Naveed Ali Bakh
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Freddy T. Nguyen
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Juyao Dong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kevin S. Silmore
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Xun Gong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Crystal Pham
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kelvin K. Jones
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Gili Bisker
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Biomedical Engineering Tel‐Aviv University Tel Aviv 6997801 Israel
| | - Manki Son
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Michael S. Strano
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
34
|
Ku M, Kim J, Won JE, Kang W, Park YG, Park J, Lee JH, Cheon J, Lee HH, Park JU. Smart, soft contact lens for wireless immunosensing of cortisol. SCIENCE ADVANCES 2020; 6:eabb2891. [PMID: 32923592 PMCID: PMC7455488 DOI: 10.1126/sciadv.abb2891] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/26/2020] [Indexed: 05/04/2023]
Abstract
Despite various approaches to immunoassay and chromatography for monitoring cortisol concentrations, conventional methods require bulky external equipment, which limits their use as mobile health care systems. Here, we describe a human pilot trial of a soft, smart contact lens for real-time detection of the cortisol concentration in tears using a smartphone. A cortisol sensor formed using a graphene field-effect transistor can measure cortisol concentration with a detection limit of 10 pg/ml, which is low enough to detect the cortisol concentration in human tears. In addition, this soft contact lens only requires the integration of this cortisol sensor with transparent antennas and wireless communication circuits to make a smartphone the only device needed to operate the lens remotely without obstructing the wearer's view. Furthermore, in vivo tests using live rabbits and the human pilot experiment confirmed the good biocompatibility and reliability of this lens as a noninvasive, mobile health care solution.
Collapse
Affiliation(s)
- Minjae Ku
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Joohee Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jong-Eun Won
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Wonkyu Kang
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Ho Lee
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Morera LP, Gallea JI, Trógolo MA, Guido ME, Medrano LA. From Work Well-Being to Burnout: A Hypothetical Phase Model. Front Neurosci 2020; 14:360. [PMID: 32425748 PMCID: PMC7212378 DOI: 10.3389/fnins.2020.00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 01/18/2023] Open
Abstract
Upon exposure to chronic stressors, how do individuals move from being in a healthy state to a burnout? Strikingly in literature, this has prevailed a categorical view rather than a dimensional one, thus the underlying process that explains the transition from one state to another remains unclear. The aims of the present study are (a) to examine intermediate states between work engagement and burnout using cluster analysis and (b) to examine cortisol differences across these states. Two-hundred and eighty-one Argentine workers completed self-report measures of work engagement and burnout. Salivary cortisol was measured at three time-points: immediately after awakening and 30 and 40min thereafter. Results showed four different states based on the scores in cynicism, exhaustion, vigor, and dedication: engaged, strained, cynical, and burned-out. Cortisol levels were found to be moderate in the engaged state, increased in the strained and cynical states, and decreased in the burned-out state. The increase/decrease in cortisol across the four stages reconciles apparent contradictory findings regarding hypercortisolism and hypocortisolism, and suggests that they may represent different phases in the transition from engagement to burnout. A phase model from engagement to burnout is proposed and future research aimed at evaluating this model is suggested.
Collapse
Affiliation(s)
- L P Morera
- Instituto de Organizaciones Saludables, Universidad Siglo 21, Córdoba, Argentina
| | - J I Gallea
- Instituto de Organizaciones Saludables, Universidad Siglo 21, Córdoba, Argentina
| | - M A Trógolo
- Instituto de Organizaciones Saludables, Universidad Siglo 21, Córdoba, Argentina
| | - M E Guido
- Departamento de Biología Química, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L A Medrano
- Instituto de Organizaciones Saludables, Universidad Siglo 21, Córdoba, Argentina.,Pontifica Universidad Católica Madre y Maestra, Vicerrectoría de Investigación, Santiago de los Caballeros, Dominican Republic
| |
Collapse
|
36
|
Jung YH, Kim JU, Lee JS, Shin JH, Jung W, Ok J, Kim TI. Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907478. [PMID: 32104960 DOI: 10.1002/adma.201907478] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The rapid pace of progress in implantable electronics driven by novel technology has created devices with unconventional designs and features to reduce invasiveness and establish new sensing and stimulating techniques. Among the designs, injectable forms of biomedical electronics are explored for accurate and safe targeting of deep-seated body organs. Here, the classes of biomedical electronics and tools that have high aspect ratio structures designed to be injected or inserted into internal organs for minimally invasive monitoring and therapy are reviewed. Compared with devices in bulky or planar formats, the long shaft-like forms of implantable devices are easily placed in the organs with minimized outward protrusions via injection or insertion processes. Adding flexibility to the devices also enables effortless insertions through complex biological cavities, such as the cochlea, and enhances chronic reliability by complying with natural body movements, such as the heartbeat. Diverse types of such injectable implants developed for different organs are reviewed and the electronic, optoelectronic, piezoelectric, and microfluidic devices that enable stimulations and measurements of site-specific regions in the body are discussed. Noninvasive penetration strategies to deliver the miniscule devices are also considered. Finally, the challenges and future directions associated with deep body biomedical electronics are explained.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ju Seung Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Department of Biomedical Engineering, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
37
|
Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906270. [PMID: 32022440 DOI: 10.1002/smll.201906270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Stretchable conductive nanocomposites fabricated by integrating metallic nanomaterials with elastomers have become a vital component of human-friendly electronics, such as wearable and implantable devices, due to their unconventional electrical and mechanical characteristics. Understanding the detailed material design and fabrication strategies to improve the conductivity and stretchability of the nanocomposites is therefore important. This Review discusses the recent technological advances toward high performance stretchable metallic nanocomposites. First, the effect of the filler material design on the conductivity is briefly discussed, followed by various nanocomposite fabrication techniques to achieve high conductivity. Methods for maintaining the initial conductivity over a long period of time are also summarized. Then, strategies on controlled percolation of nanomaterials are highlighted, followed by a discussion regarding the effects of the morphology of the nanocomposite and postfabricated 3D structures on achieving high stretchability. Finally, representative examples of applications of such nanocomposites in biointegrated electronics are provided. A brief outlook concludes this Review.
Collapse
Affiliation(s)
- Hyunwoo Joo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
38
|
Zakrevska MV, Tybinka AM. Peculiarities of microstructure of the suprarenal glands of rabbits with different types of autonomic tone. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The article investigates the structure of the suprarenal (adrenal) glands of male rabbits (Oryctolagus cuniculus), in which, on the basis of electrocardiographic and variational-pulsometric studies, different types of autonomic tone were observed. This allowed the animals to be divided into three groups: 1) sympathicotonic rabbits; 2) normotonic rabbits; 3) parasympathicotonic rabbits. The animals of the first two groups were characterized by almost the same body weight, while weight of the rabbits of the third group was slightly higher. After euthanasia, the suprarenal glands were extracted for histological and histochemical analyses. Morphometric study of histopreparations revealed that in the normotonic rabbits the thickness of the zona glomerulosa and zona fasciculata of the suprarenal glands were of average sizes, and the area of the medulla was the smallest. The parasympathicotonic rabbits had the thickest zona glomerulosa and greatest area of the medulla, but the thinnest zona fasciculata. The sympathicotonic rabbits were observed to have the greatest thickness of the zona fasciculata of the suprarenal glands, the area of the medulla was of average values, and the thickness of the zona glumerulosa was of minimum value. The type of autonomic tone also manifests in the saturation of each of the zones with cells. The normotonic rabbits were observed to have the highest number of cells per area of 1,000 µm² in the zona fasciculata and the medulla, sympathicotonic rabbits – in the zona glomerulosa and zona reticularis, and in parasympathicotonic rabbits this parameter had average or lowest values in all the zones. The sizes of cells and their structural parts were characterized on the basis of nuclear-cytoplasmic ratio. In the zona fasciculata and medulla this parameter was highest among parasympathicotonic rabbits, and lowest in sympathicotonic rabbits. In the zona glomerulosa, almost equal values were observed in the normotonic and parasympathicotonic rabbits, while being reliably lower in sympathicotonic rabbits. By the value of nuclear-cytoplasmic ratio in the zona reticularis, the normotonic rabbits dominated, followed by the sympathicotonic animals, and the parasympathicotonic rabbits had the lowest parameters.
Collapse
|