1
|
Groff BD, Cattaneo M, Rinaolo KC, Mercado BQ, Mayer JM. Disentangling Driving Force Effects, Polar Effects, e-/H + Imbalance, and Other Influences on H-Atom Transfer Reactions. J Am Chem Soc 2025; 147:4766-4777. [PMID: 39883481 DOI: 10.1021/jacs.4c10596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Hydrogen atom transfer (HAT) reactions and their kinetic barriers ΔGHAT‡ are important in organic and inorganic chemistry. This study examines factors that influence ΔGHAT‡, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the ΔGPT° and ΔGHAT° can be independently varied, with different sets of Ru complexes primarily tuning either their pKas or their E°s. The ΔΔGHAT‡ are analyzed using multiple linear free energy relationships (LFERs), the first largely experimental study of its kind. The barriers vary most strongly with the overall driving force, ΔΔGHAT‡ = 0.28 × ΔΔGHAT°, but are also affected by HAT intrinsic barriers (λ), sterics, and the thermochemical e-/H+ imbalance of the reactions, |ΔGPT° - ΔGET°|. The latter is a small but significant effect, revealed only by comparing LFERs. The imbalance analysis is closely related to traditional explanations of polar effects, but it is quantitative: ΔGHAT‡ shifts by ∼4% with changes in |ΔGPT° - ΔGET°|. This is the same dependence as was observed for purely organic HAT from toluenes─a remarkable result because traditional explanations of organic polar effects, e.g., using X-H bond polarities, do not apply to the Ru complexes in which the e- and H+ are spatially separated. This work demonstrates the strong similarities between different kinds of HAT reactions when viewed through the lens of H+/e- (PCET) free energies. This lens also shows that ΔGHAT‡ are ∼10-fold more sensitive to changes in ΔGHAT° and λ than to the e-/H+ free-energy imbalance.
Collapse
Affiliation(s)
- Benjamin D Groff
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Mauricio Cattaneo
- INQUINOA (CONICET-UNT), Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, T4000INI San Miguel de Tucumán, Argentina
| | - Katheryn C Rinaolo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Cooney SE, Duggan SG, Walls MRA, Gibson NJ, Mayer JM, Miro P, Matson EM. Engineering mechanisms of proton-coupled electron transfer to a titanium-substituted polyoxovanadate-alkoxide. Chem Sci 2025; 16:2886-2897. [PMID: 39822902 PMCID: PMC11733765 DOI: 10.1039/d4sc06468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Metal oxides are promising catalysts for small molecule hydrogen chemistries, mediated by interfacial proton-coupled electron transfer (PCET) processes. Engineering the mechanism of PCET has been shown to control the selectivity of reduced products, providing an additional route for improving reductive catalysis with metal oxides. In this work, we present kinetic resolution of the rate determining proton-transfer step of PCET to a titanium-doped POV, TiV5O6(OCH3)13 with 9,10-dihydrophenazine by monitoring the loss of the cationic radical intermediate using stopped-flow analysis. For this reductant, a 5-fold enhanced rate (k PT = 1.2 × 104 M-1 s-1) is accredited to a halved activation barrier in comparison to the homometallic analogue, [V6O7(OCH3)12]1-. By switching to hydrazobenzene as a reductant, a substrate where the electron transfer component of the PCET is thermodynamically unfavorable (ΔG ET = +11 kcal mol-1), the mechanism is found to be altered to a concerted PCET mechanism. Despite the similar mechanisms and driving forces for TiV5O6(OCH3)13 and [V6O7(OCH3)12]1-, the rate of PCET is accellerated by 3-orders of magnitude (k PCET = 0.3 M-1 s-1) by the presence of the Ti(iv) ion. Possible origins of the accelleration are considered, including the possibility of strong electronic coupling interactions between TiV5O6(OCH3)13 with hydrazobenzene. Overall, these results offer insight into the governing factors that control the mechanism of PCET in metal oxide systems.
Collapse
Affiliation(s)
- Shannon E Cooney
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - S Genevieve Duggan
- Department of Chemistry, University of Iowa Iowa City IA 52240 USA
- Department of Chemistry, University of South Dakota Vermillion SD 57069 USA
| | - M Rebecca A Walls
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - Noah J Gibson
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - James M Mayer
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Pere Miro
- Department of Chemistry, University of Iowa Iowa City IA 52240 USA
- Department of Chemistry, University of South Dakota Vermillion SD 57069 USA
| | - Ellen M Matson
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| |
Collapse
|
3
|
Kuziola J, Moon HW, Leutzsch M, Nöthling N, Béland VA, Cornella J. Synthesis and Characterization of Monomeric Triarylbismuthine Oxide. Angew Chem Int Ed Engl 2025; 64:e202415169. [PMID: 39436750 DOI: 10.1002/anie.202415169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The synthesis and isolation of a bismuth-based analogue of the venerable triphenylphosphine oxide (Ph3PO) has remained a chimera to synthetic chemists for many years, due to its predicted high reactivity and instability. Through the hydrolysis of a cationic fluorotriarylbismuthonium(V) salt, we report here the isolation of unique hydroxytriarylbismuth(V) complexes, which served as precursor for the formation of the elusive monomeric triarylbismuthine oxide Dipp3Bi=O. Combined spectroscopic, crystallographic and computational studies provided insight into the bonding situation of the first monomeric triorganobismuth oxide complex. The Dipp3Bi=O and Mes3BiO⋅LiBArF complex exhibits O-atom transfer reactivity, an uncommon reactivity feature for Ar3Pn=O.
Collapse
Affiliation(s)
- Jennifer Kuziola
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Vanessa A Béland
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Das A, Pal N, Xiong J, Young VG, Guo Y, Swart M, Que L. 10-Fold Increase in Hydrogen Atom Transfer Reactivity for a Series of S = 1 Fe IV═O Complexes Over the S = 2 [(TQA)Fe IV═O] 2+ Complex via Entropic Lowering of Reaction Barriers by Secondary Sphere Cycloalkyl Substitution. J Am Chem Soc 2025; 147:292-304. [PMID: 39699233 DOI: 10.1021/jacs.4c10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Nonheme iron enzymes utilize S = 2 iron(IV)-oxo intermediates as oxidants in biological oxygenations. In contrast, corresponding synthetic nonheme FeIV═O complexes characterized to date favor the S = 1 ground state that generally shows much poorer oxidative reactivity than their S = 2 counterparts. However, one intriguing exception found by Nam a decade ago is the S = 1 [FeIV(O)(Me3NTB)]2+ complex (Me3NTB = [tris((N-methyl-benzimidazol-2-yl)methyl)amine], 1O) with a hydrogen atom transfer (HAT) reactivity that is 70% that of the S = 2 [FeIV(O)(TQA)]2+ complex (TQA = tris(2-quinolylmethyl)amine, 3O). In our efforts to further explore this direction, we have unexpectedly uncovered a family of new S = 1 complexes with HAT reaction rates beyond the currently reported limits in the tripodal ligand family, surpassing oxidation rates found for the S = 2 [FeIV(O)(TQA)]2+ complex by as much as an order of magnitude. This is achieved simply by replacing the secondary sphere methyl groups of the Me3NTB ligand with larger cycloalkyl-CH2 (R groups in 2OR) moieties ranging from c-propylmethyl to c-hexylmethyl. These 2OR complexes show Mössbauer data at 4 K and 1H NMR spectra at 193 and 233 K that reveal S = 1 ground states, in line with DFT calculations. Nevertheless, they give rise to the most reactive synthetic nonheme oxoiron(IV) complexes found to date within the tripodal ligand family. Our DFT study indicates transition state stabilization through entropy effects, similar to enzymatic catalysis.
Collapse
Affiliation(s)
- Abhishek Das
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nabhendu Pal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Victor G Young
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- IQCC and Department of Chemistry, University of Girona, Girona 17003, Spain
- ICREA, Barcelona 08010, Spain
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Ye D, Wu T, Puri A, Hebert DD, Siegler MA, Hendrich MP, Swart M, Garcia-Bosch I. Enhanced Proton-Coupled Electron-Transfer Reactivity by a Mononuclear Nickel(II) Hydroxide Radical Complex. Inorg Chem 2024; 63:24453-24465. [PMID: 39680075 PMCID: PMC11688665 DOI: 10.1021/acs.inorgchem.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
The synthesis, characterization, and reactivity of a NiOH core bearing a tridentate redox-active ligand capable of reaching three molecular oxidation states is presented in this paper. The reduced complex [LNiOH]2- was characterized by single-crystal X-ray diffraction analysis, depicting a square-planar NiOH core stabilized by intramolecular H-bonding interactions. Cyclic voltammetry measurements indicated that [LNiOH]2- can be reversibly oxidized to [LNiOH]- and [LNiOH] at very negative reduction potentials (-1.13 and -0.39 V vs ferrocene, respectively). The oxidation of [LNiOH]2- to [LNiOH]- and [LNiOH] was accomplished using 1 and 2 equiv of ferrocenium, respectively. Spectroscopic and computational characterization suggest that [LNiOH]2-, [LNiOH]-, and [LNiOH] are all NiII species in which the redox-active ligand adopts different oxidation states (catecholate-like, semiquinone-like, and quinone-like, respectively). The NiOH species were found to promote H-atom abstraction from organic substrates, with [LNiOH]- acting as a 1H+/1e- oxidant and [LNiOH] as a 2H+/2e- oxidant. Thermochemical analysis indicated that [LNiOH] was capable of abstracting H atoms from stronger O-H bonds than [LNiOH]-. However, the greater thermochemical tendency of [LNiOH] reactivity toward H atoms did not align with the kinetics of the PCET reaction, where [LNiOH]- reacted with H-atom donors much faster than [LNiOH]. The unique stereoelectronic structure of [LNiOH]- (radical character combined with a basic NiOH core) might account for its enhanced PCET reactivity.
Collapse
Affiliation(s)
- Daniel Ye
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Wu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ankita Puri
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David D. Hebert
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Michael P. Hendrich
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- University
of Girona, Campus Montilivi (Ciències), IQCC, 17004 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Isaac Garcia-Bosch
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Kametani Y, Shiota Y. Mechanistic studies of NO x reduction reactions involving copper complexes: encouragement of DFT calculations. Dalton Trans 2024; 53:19081-19087. [PMID: 39530191 DOI: 10.1039/d4dt02420f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The reduction of nitrogen oxides (NOx), which is mainly mediated by metalloenzymes and metal complexes, is a critical process in the nitrogen cycle and environmental remediation. This Frontier article highlights the importance of density functional theory (DFT) calculations to gain mechanistic insights into nitrite (NO2-) and nitric oxide (NO) reduction reactions facilitated by copper complexes by focusing on two key processes: the reduction of NO2- to NO by a monocopper complex, with special emphasis on the concerted proton-electron transfer, and the reduction of NO to N2O by a dicopper complex, which involves N-N bond formation, N2O2 isomerization, and N-O bond cleavage. These findings underscore the utility of DFT calculations in unraveling complicated reaction mechanisms and offer a foundation for future research aimed at improving the reactivity of transition metal complexes in NOx reduction reactions.
Collapse
Affiliation(s)
- Yohei Kametani
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Singh P, Lomax MJA, Opalade AA, Nguyen BB, Srnec M, Jackson TA. Basicity of Mn III-Hydroxo Complexes Controls the Thermodynamics of Proton-Coupled Electron Transfer Reactions. Inorg Chem 2024; 63:21941-21953. [PMID: 39498631 DOI: 10.1021/acs.inorgchem.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Several manganese-dependent enzymes utilize MnIII-hydroxo units in concerted proton-electron transfer (CPET) reactions. We recently demonstrated that hydrogen bonding to the hydroxo ligand in the synthetic [MnIII(OH)(PaPy2N)]+ complex increased rates of CPET reactions compared to the [MnIII(OH)(PaPy2Q)]+ complex that lacks a hydrogen bond. In this work, we determine the effect of hydrogen bonding on the basicity of the hydroxo ligand and evaluate the corresponding effect on CPET reactions. Both [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ react with strong acids to yield MnIII-aqua complexes [MnIII(OH2)(PaPy2Q)]2+ and [MnIII(OH2)(PaPy2N)]2+, for which we determined pKa values of 7.6 and 13.1, respectively. Reactions of the MnIII-aqua complexes with one-electron reductants yielded estimates of reduction potentials, which were combined with pKa values to give O-H bond dissociation free energies (BDFEs) of 77 and 85 kcal mol-1 for the MnII-aqua complexes [MnII(OH2)(PaPy2Q)]+ and [MnII(OH2)(PaPy2N)]+. Using these BDFEs, we performed an analysis of the thermodynamic driving force for phenol oxidation by these complexes and observed the unexpected result that slower rates are associated with more asynchronous CPET. In addition, reactions of acidic phenols with the MnIII-hydroxo complexes show rates that deviate from the thermodynamic trends, consistent with a change in mechanism from CPET to proton transfer.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Markell J A Lomax
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Adedamola A Opalade
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Brandon B Nguyen
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Son YJ, Kim D, Park JW, Ko K, Yu Y, Hwang SJ. Heteromultimetallic Platform for Enhanced C-H Bond Activation: Aluminum-Incorporated Dicopper Complex Mimicking Cu-ZSM-5 Structure and Oxidative Reactivity. J Am Chem Soc 2024; 146:29810-29823. [PMID: 39420644 DOI: 10.1021/jacs.4c11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bimetallic complexes have sparked interest across various chemical disciplines, driving advancements in research. Recent advancements in this field have shed light on complex reactions in metalloenzymes and unveiled new chemical transformations. Two primary types of bimetallic platforms have emerged: (1) systems where both metals actively participate in reactivity, and (2) systems where one metal mediates the reaction while the other regulates reactivity. This study introduces a novel multinucleating ligand platform capable of integrating both types of bimetallic systems. To demonstrate the significance of this platform, we synthesized a unique dicopper complex incorporating aluminum in its coordination environment. This complex serves as the first structural model for the active site in copper-based zeolites, highlighting the role of aluminum in hydrogen atom abstraction reactivity. Comparative studies of oxidative C-H bond activation revealed that the inclusion of aluminum significantly alters the thermodynamic driving force (by -11 kcal mol-1) for bond activation and modifies the proton-coupled electron-transfer reaction mechanism, resulting in a 14-fold rate increase. Both computational and experimental data support the high modularity of this multinucleating ligand platform, offering a new approach to fine-tune the reactivity of bimetallic complexes.
Collapse
Affiliation(s)
- Yeong Jun Son
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dongyoung Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Wan Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwangwook Ko
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeongjun Yu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Jun Hwang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Xiong J, Reed C, Lavina B, Hu MY, Zhao J, Alp EE, Agapie T, Guo Y. 57Fe nuclear resonance vibrational spectroscopic studies of tetranuclear iron clusters bearing terminal iron(iii)-oxido/hydroxido moieties. Chem Sci 2024; 15:d4sc03396e. [PMID: 39296996 PMCID: PMC11403573 DOI: 10.1039/d4sc03396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/21/2024] Open
Abstract
57Fe nuclear resonance vibrational spectroscopy (NRVS) has been applied to study a series of tetranuclear iron ([Fe4]) clusters based on a multidentate ligand platform (L3-) anchored by a 1,3,5-triarylbenzene linker and pyrazolate or (tertbutylamino)pyrazolate ligand (PzNH t Bu-). These clusters bear a terminal Fe(iii)-O/OH moiety at the apical position and three additional iron centers forming the basal positions. The three basal irons are connected with the apical iron center via a μ4-oxido ligand. Detailed vibrational analysis via density functional theory calculations revealed that strong NRVS spectral features below 400 cm-1 can be used as an oxidation state marker for the overall [Fe4] cluster core. The terminal Fe(iii)-O/OH stretching frequencies, which were observed in the range of 500-700 cm-1, can be strongly modulated (energy shifts of 20-40 cm-1 were observed) upon redox events at the three remote basal iron centers of the [Fe4] cluster without the change of the terminal Fe(iii) oxidation state and its coordination environment. Therefore, the current study provides a quantitative vibrational analysis of how the remote iron centers within the same iron cluster exert exquisite control of the chemical reactivities and thermodynamic properties of the specific iron site that is responsible for small molecule activation.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Christopher Reed
- Division of Chemistry and Chemical Engineering, California Institute of Technology CA 91125 USA
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
- Center for Advanced Radiation Source, University of Chicago Chicago Illinois 60439 USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology CA 91125 USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
10
|
Fu K, Yang X, Yu Z, Song L, Shi L. Revealing the nature of covalently tethered distonic radical anions in the generation of heteroatom-centered radicals: evidence for the polarity-matching PCET pathway. Chem Sci 2024; 15:12398-12409. [PMID: 39118625 PMCID: PMC11304808 DOI: 10.1039/d4sc02602k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Recognition of the intermediacy and regulation of reactivity patterns of radical intermediates in radical chemistry have profound impacts on harnessing and developing the full potential of open-shell species in synthetic settings. In this work, the possibility of in situ formation of O/N-X intermediates from Brønsted base covalently tethered carbonyl hypohalites (BCTCs) for the generation of heteroatom-centered radicals has certainly been excluded by NMR experiments and density functional theory calculations. Instead, the spectroscopic analyses reveal that the BCTCs serve as precursors of tether-tunable distonic radical anions (TDRAs) which have been unequivocally substantiated to be involved in the direct cleavage of O/N-H bonds to generate the corresponding heteroatom-centered radicals. Meanwhile, a deep insight into the properties and reactivities of the resulting TDRAs indicates that the introduction of a tethered Brønsted base on the parent open-shell species reinforces their stabilities and leads to a reversal of electrophilicity. Moreover, the dual descriptor values and electrophilicity indices are calculated based on eleven reported radical reactions involving various electrophilic/nucleophilic radical species, further confirming their validity in the prediction of the polar effect and the polarity-matching consistency between nucleophilic TDRAs and protic O/N-H bonds. The additional halogen-free experiments mediated by the combination of phthaloyl peroxide and TEMPO also prove the feasibility of the TDRA-assisted philicity-regulation approach. Lastly, detailed intrinsic bond orbital (IBO) and Hirschfeld spin population analyses are employed to elucidate that the H-atom abstraction processes are the polarity-matching proton-coupled electron transfer (PCET) pathways, with a degree of oxidative asynchronicity.
Collapse
Affiliation(s)
- Kang Fu
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Xihui Yang
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Zhiyou Yu
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Lijuan Song
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Lei Shi
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
11
|
Wojdyla Z, Maldonado-Domínguez M, Bharadwaz P, Culka M, Srnec M. Elucidation of factors shaping reactivity of 5'-deoxyadenosyl - a prominent organic radical in biology. Phys Chem Chem Phys 2024. [PMID: 39041228 DOI: 10.1039/d4cp01725k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
This study investigates the factors modulating the reactivity of 5'-deoxyadenosyl (5'dAdo˙) radical, a potent hydrogen atom abstractor that forms in the active sites of radical SAM enzymes and that otherwise undergoes a rapid self-decay in aqueous solution. Here, we compare hydrogen atom abstraction (HAA) reactions between native substrates of radical SAM enzymes and 5'dAdo˙ in aqueous solution and in two enzymatic microenvironments. With that we reveal that HAA efficiency of 5'dAdo˙ is due to (i) the in situ formation of 5'dAdo˙ in a pre-ordered complex with a substrate, which attenuates the unfavorable effect of substrate:5'dAdo˙ complex formation, and (ii) the prevention of the conformational changes associated with self-decay by a tight active-site cavity. The enzymatic cavity, however, does not have a strong effect on the HAA activity of 5'dAdo˙. Thus, we performed an analysis of in-water HAA performed by 5'dAdo˙ based on a three-component thermodynamic model incorporating the diagonal effect of the free energy of reaction, and the off-diagonal effect of asynchronicity and frustration. To this aim, we took advantage of the straightforward relationship between the off-diagonal thermodynamic effects and the electronic-structure descriptor - the redistribution of charge between the reactants during the reaction. It allows to access HAA-competent redox and acidobasic properties of 5'dAdo˙ that are otherwise unavailable due to its instability upon one-electron reduction and protonation. The results show that all reactions feature a favourable thermodynamic driving force and tunneling, the latter of which lowers systematically barriers by ∼2 kcal mol-1. In addition, most of the reactions experience a favourable off-diagonal thermodynamic contribution. In HAA reactions, 5'dAdo˙ acts as a weak oxidant as well as a base, also 5'dAdo˙-promoted HAA reactions proceed with a quite low degree of asynchronicity of proton and electron transfer. Finally, the study elucidates the crucial and dual role of asynchronicity. It directly lowers the barrier as a part of the off-diagonal thermodynamic contribution, but also indirectly increases the non-thermodynamic part of the barrier by presumably controlling the adiabatic coupling between proton and electron transfer. The latter signals that the reaction proceeds as a hydrogen atom transfer rather than a proton-coupled electron transfer.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18200 Prague, Czech Republic.
| | - Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18200 Prague, Czech Republic.
| | - Priyam Bharadwaz
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18200 Prague, Czech Republic.
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18200 Prague, Czech Republic.
| |
Collapse
|
12
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
13
|
Wojdyla Z, Srnec M. Radical ligand transfer: mechanism and reactivity governed by three-component thermodynamics. Chem Sci 2024; 15:8459-8471. [PMID: 38846394 PMCID: PMC11151871 DOI: 10.1039/d4sc01507j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
Here, we demonstrate that the relationship between reactivity and thermodynamics in radical ligand transfer chemistry can be understood if this chemistry is dissected as concerted ion-electron transfer (cIET). Namely, we investigate radical ligand transfer reactions from the perspective of thermodynamic contributions to the reaction barrier: the diagonal effect of the free energy of the reaction, and the off-diagonal effect resulting from asynchronicity and frustration, which we originally derived from the thermodynamic cycle for concerted proton-electron transfer (cPET). This study on the OH transfer reaction shows that the three-component thermodynamic model goes beyond cPET chemistry, successfully capturing the changes in radical ligand transfer reactivity in a series of model FeIII-OH⋯(diflouro)cyclohexadienyl systems. We also reveal the decisive role of the off-diagonal thermodynamics in determining the reaction mechanism. Two possible OH transfer mechanisms, in which electron transfer is coupled with either OH- and OH+ transfer, are associated with two competing thermodynamic cycles. Consequently, the operative mechanism is dictated by the cycle yielding a more favorable off-diagonal effect on the barrier. In line with this thermodynamic link to the mechanism, the transferred OH group in OH-/electron transfer retains its anionic character and slightly changes its volume in going from the reactant to the transition state. In contrast, OH+/electron transfer develops an electron deficiency on OH, which is evidenced by an increase in charge and a simultaneous decrease in volume. In addition, the observations in the study suggest that an OH+/electron transfer reaction can be classified as an adiabatic radical transfer, and the OH-/electron transfer reaction as a less adiabatic ion-coupled electron transfer.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| |
Collapse
|
14
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Jeong D, Lee Y, Lee Y, Kim K, Cho J. Synthesis, Characterization, and Reactivity of a Highly Oxidative Mononuclear Manganese(IV)-Bis(Fluoro) Complex. J Am Chem Soc 2024; 146:4172-4177. [PMID: 38311844 DOI: 10.1021/jacs.3c13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Recently, transition-metal terminal nonoxo complexes have shown a remarkable ability to activate and functionalize C-H bonds via proton-coupled electron transfer (PCET). Here we report the first example of a mononuclear manganese(IV) bis(fluoro) complex bearing a tetradentate pyridinophane ligand, [MnIV(TBDAP)(F)2]2+ (3), with an X-ray single crystal structure and physicochemical characterization. The manganese(IV) bis(fluoro) complex has a very high reduction potential of 1.61 V vs SCE, thereby enabling the four-electron oxidation of mesitylene to 3,5-dimethylbenzaldehyde. Kinetic studies, including the kinetic isotope effect and employment of other toluene derivatives, reveal the electron transfer (ET)-driven PCET in the C-H bond activation of mesitylene by 3. This novel metal halide intermediate would be prominently valuable for expanding transition-metal halide chemistry.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yujeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Levine DS, Jacobson LD, Bochevarov AD. Large Computational Survey of Intrinsic Reactivity of Aromatic Carbon Atoms with Respect to a Model Aldehyde Oxidase. J Chem Theory Comput 2023; 19:9302-9317. [PMID: 38085599 DOI: 10.1021/acs.jctc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Aldehyde oxidase (AOX) and other related molybdenum-containing enzymes are known to oxidize the C-H bonds of aromatic rings. This process contributes to the metabolism of pharmaceutical compounds and, therefore, is of vital importance to drug pharmacokinetics. The present work describes an automated computational workflow and its use for the prediction of intrinsic reactivity of small aromatic molecules toward a minimal model of the active site of AOX. The workflow is based on quantum chemical transition state searches for the underlying single-step oxidation reaction, where the automated protocol includes identification of unique aromatic C-H bonds, creation of three-dimensional reactant and product complex geometries via a templating approach, search for a transition state, and validation of reaction end points. Conformational search on the reactants, products, and the transition states is performed. The automated procedure has been validated on previously reported transition state barriers and was used to evaluate the intrinsic reactivity of nearly three hundred heterocycles commonly found in approved drug molecules. The intrinsic reactivity of more than 1000 individual aromatic carbon sites is reported. Stereochemical and conformational aspects of the oxidation reaction, which have not been discussed in previous studies, are shown to play important roles in accurate modeling of the oxidation reaction. Observations on structural trends that determine the reactivity are provided and rationalized.
Collapse
Affiliation(s)
- Daniel S Levine
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| | - Leif D Jacobson
- Schrödinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| | - Art D Bochevarov
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| |
Collapse
|
17
|
Reese MS, Bonanno MG, Bower JK, Moore CE, Zhang S. C-N Bond Formation at Discrete Cu III-Aryl Complexes. J Am Chem Soc 2023; 145:26810-26816. [PMID: 38050828 PMCID: PMC11019775 DOI: 10.1021/jacs.3c09260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Copper(III) aryl species are widely proposed as intermediates in Cu-catalyzed C-C and C-heteroatom bond formation reactions. Despite their wide utility, mechanistic aspects of C-heteroatom formation at CuIII centers as well as factors that lead to byproducts, e.g., Ar-H, Ar-Ar, remain elusive due to the rarity of discrete CuIII-Ar complexes. Herein, we report the synthesis and reactivity of a series of CuII and CuIII aryl complexes that closely mimic the intermediates in Cu-catalyzed C-N coupling reactions. Copper(II) aryl complexes [TBA][LCuII-ArR] were synthesized via the treatment of CuII with a range of aryl donors, such as ZnAr2R, TMS-ArR, and ArR-Bpin. Oxidation of [TBA][LCuII-ArR] produces formal copper(III) aryl complexes LCuIII-ArR. Treatment of copper(III) aryl complexes with neutral nitrogen nucleophiles produces the C-N coupling product in up to 64% yield, along with commonly observed byproducts, such as Ar-H and Ar-Ar. Hammett analysis of the C-N bond formation performed with various N-nucleophiles shows a ρ value of -1.66, consistent with the electrophilic character of LCuIII-ArR. We propose mechanisms for common side reactions in Cu-catalyzed coupling reactions that lead to the formation of Ar-Ar and Ar-H.
Collapse
Affiliation(s)
- Maxwell S Reese
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Mitchell G Bonanno
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jamey K Bower
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Moon HW, Wang F, Bhattacharyya K, Planas O, Leutzsch M, Nöthling N, Auer AA, Cornella J. Mechanistic Studies on the Bismuth-Catalyzed Transfer Hydrogenation of Azoarenes. Angew Chem Int Ed Engl 2023; 62:e202313578. [PMID: 37769154 DOI: 10.1002/anie.202313578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Organobismuth-catalyzed transfer hydrogenation has recently been disclosed as an example of low-valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi-catalyzed transfer hydrogenation of azoarenes using p-trifluoromethylphenol (4) and pinacolborane (5) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6-bis[N-(tert-butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4, an equilibrium between 1 a and 1 a ⋅ [OAr]2 (Ar=p-CF3 -C6 H4 ) is observed, and its thermodynamic parameters are established through variable-temperature NMR studies. Additionally, pKa -gated reactivity is observed, validating the proton-coupled nature of the transformation. The ensuing 1 a ⋅ [OAr]2 is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5. DFT calculations indicate a rate-limiting transition state in which the initial N-H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen-bonded adduct of azobenzene and 4. These studies guided the discovery of a second-generation Bi catalyst, the rate-limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.
Collapse
Affiliation(s)
- Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Feng Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Kalishankar Bhattacharyya
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Groff BD, Koronkiewicz B, Mayer JM. Polar Effects in Hydrogen Atom Transfer Reactions from a Proton-Coupled Electron Transfer (PCET) Perspective: Abstractions from Toluenes. J Org Chem 2023; 88:16259-16269. [PMID: 37978890 PMCID: PMC10841608 DOI: 10.1021/acs.joc.3c01748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Rate constants for hydrogen atom transfer (HAT) reactions of substituted toluenes with tert-butyl, tert-butoxy, and tert-butylperoxyl radicals are reanalyzed here using the free energies of related proton transfer (PT) and electron transfer (ET) reactions, calculated from an extensive set of compiled or estimated pKa and E° values. The Eyring activation energies ΔGHAT‡ do not correlate with the relatively constant ΔG°HAT, but do correlate close-to-linearly with ΔG°PT and ΔG°ET. The slopes of correlations are similar for the three radicals except that the tBu• barriers shift in the opposite direction from the oxyl radical barriers─a clear example of the qualitative "polar effect" in HAT reactions. When cast quantitatively in free energy terms (ΔGHAT‡ vs ΔG°PT/ET), this effect is very small, only 5-10% of the typical Bell-Evans-Polanyi (BEP) effect of changing ΔG°HAT. This analysis also highlights connections between polar effects and the concepts of "asynchronous" or "imbalanced" HAT reactions in which the PT and ET components of ΔG°HAT contribute differently to the barrier. Finally, these observations are discussed in light of the traditional explanations of polar effects and the potential for a rubric that could predict the extent to which contra-thermodynamic selectivity may be achieved in HAT reactions.
Collapse
Affiliation(s)
- Benjamin D. Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brian Koronkiewicz
- Current Address: Johns Hopkins University Applied Physics Laboratory, 11091 Johns Hopkins Rd, Laurel, MD 20723
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Sarkar A, Das S, Mondal P, Maiti B, Sen Gupta S. Synthesis, Characterization, and Reactivity of High-Valent Carbene Dicarboxamide-Based Nickel Pincer Complexes. Inorg Chem 2023. [PMID: 38001041 DOI: 10.1021/acs.inorgchem.3c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
High-valent metal-fluoride complexes are currently being explored for concerted proton-electron transfer (CPET) reactions, the driving force being the high bond dissociation energy of H-F (BDEH-F = 135 kcal/mol) that is formed after the reaction. Ni(III)-fluoride-based complexes on the pyridine dicarboxamide pincer ligand framework have been utilized for CPET reactions toward phenols and hydrocarbons. We have replaced the central pyridine ligand with an N-heterocyclic carbene carbene to probe its effect in both stabilizing the high-valent Ni(III) state and its ability to initiate CPET reactions. We report a monomeric carbene-diamide-based Ni(II)-fluoride pincer complex that was characterized through 1H/19F NMR, mass spectrometry, UV-vis, and X-ray crystallography analysis. Although carbenes and deprotonated carboxamides in the Ni(II)-fluoride complex are expected to stabilize the Ni(III) state upon oxidation, the Ni(III)/Ni(II) redox process occurred at very high potential (0.87 V vs Fc+/Fc, dichloromethane) and was irreversible. Structural studies indicate significant distortion in the imidazolium "NCN" carbene plane of Ni(II)-fluoride caused by the formation of six-membered metallacycles. The high-valent NiIII-fluoride analogue was synthesized by the addition of 1.0 equiv CTAN (ceric tetrabutylammonium nitrate) in dichloromethane at -20 °C which was characterized by UV-vis, mass spectrometry, and EPR spectroscopy. Density functional theory studies indicate that the Ni-carbene bond elongated, while the Ni-F bond shortened upon oxidation to the Ni(III) species. The high-valent Ni(III)-fluoride was found to react with the substituted phenols. Analysis of the KIE and linear free energy relationship correlates well with the CPET nature of the reaction. Preliminary analysis indicates that the CPET is asynchronous and is primarily driven by the E0' of the Ni(III)-fluoride complex.
Collapse
Affiliation(s)
- Aniruddha Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Prasenjit Mondal
- Department of Chemistry, Indian Institute of Technology Tirupati (IIT Tirupati), Tirupati, AP 517619, India
| | - Biswajit Maiti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
21
|
Singh P, Lee Y, Mayfield JR, Singh R, Denler MC, Jones SD, Day VW, Nordlander E, Jackson TA. Enhanced Understanding of Structure-Function Relationships for Oxomanganese(IV) Complexes. Inorg Chem 2023; 62:18357-18374. [PMID: 37314463 DOI: 10.1021/acs.inorgchem.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of manganese(II) and oxomanganese(IV) complexes supported by neutral, pentadentate ligands with varied equatorial ligand-field strength (N3pyQ, N2py2I, and N4pyMe2) were synthesized and then characterized using structural and spectroscopic methods. On the basis of electronic absorption spectroscopy, the [MnIV(O)(N4pyMe2)]2+ complex has the weakest equatorial ligand field among a set of similar MnIV-oxo species. In contrast, [MnIV(O)(N2py2I)]2+ shows the strongest equatorial ligand-field strength for this same series. We examined the influence of these changes in electronic structure on the reactivity of the oxomanganese(IV) complexes using hydrocarbons and thioanisole as substrates. The [MnIV(O)(N3pyQ)]2+ complex, which contains one quinoline and three pyridine donors in the equatorial plane, ranks among the fastest MnIV-oxo complexes in C-H bond and thioanisole oxidation. While a weak equatorial ligand field has been associated with high reactivity, the [MnIV(O)(N4pyMe2)]2+ complex is only a modest oxidant. Buried volume plots suggest that steric factors dampen the reactivity of this complex. Trends in reactivity were examined using density functional theory (DFT)-computed bond dissociation free energies (BDFEs) of the MnIIIO-H and MnIV ═ O bonds. We observe an excellent correlation between MnIV═O BDFEs and rates of thioanisole oxidation, but more scatter is observed between hydrocarbon oxidation rates and the MnIIIO-H BDFEs.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Yuri Lee
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Reena Singh
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Shannon D Jones
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ebbe Nordlander
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
22
|
Schneider JE, Anderson JS. Reconciling Imbalanced and Nonadiabatic Reactivity in Transition Metal-Oxo-Mediated Concerted Proton Electron Transfer (CPET). J Phys Chem Lett 2023; 14:9548-9555. [PMID: 37856336 DOI: 10.1021/acs.jpclett.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (ΔG°PT) or electron (ΔG°ET) transfer. Semiclassical structure-activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in ΔG°PT can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with ΔG°PT and ΔG°ET. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Follmer AH, Borovik AS. The role of basicity in selective C-H bond activation by transition metal-oxidos. Dalton Trans 2023; 52:11005-11016. [PMID: 37497779 PMCID: PMC10619463 DOI: 10.1039/d3dt01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of (bio)catalysts capable of selectively activating strong C-H bonds is a continuing challenge in modern chemistry. In both metalloenzymes and synthetic systems capable of activating C-H bonds, transition metal-oxido intermediates serve as the active species for reactivity whose thermodynamic properties influence the bond strengths they are capable of activating. In this Frontier article, we present current ideas of how the basicity of transition metal-oxidos impacts their reactivity with C-H bonds and present new opportunities within this field. We highlight recent insights into the role basicity plays in the activation process and its influence on mechanism, as well as the important role that secondary coordination sphere effects, such as hydrogen bonds, in tuning the basicity of the metal-oxido species is discussed.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
24
|
Groff BD, Cattaneo M, Coste SC, Pressley CA, Mercado BQ, Mayer JM. Independent Tuning of the p Ka or the E1/2 in a Family of Ruthenium Pyridine-Imidazole Complexes. Inorg Chem 2023; 62:10031-10038. [PMID: 37326619 PMCID: PMC10734561 DOI: 10.1021/acs.inorgchem.3c01241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two series of RuII(acac)2(py-imH) complexes have been prepared, one with changes to the acac ligands and the other with substitutions to the imidazole. The proton-coupled electron transfer (PCET) thermochemistry of the complexes has been studied in acetonitrile, revealing that the acac substitutions almost exclusively affect the redox potentials of the complex (|ΔE1/2| ≫ |ΔpKa|·0.059 V) while the changes to the imidazole primarily affect its acidity (|ΔpKa|·0.059 V ≫ |ΔE1/2|). This decoupling is supported by DFT calculations, which show that the acac substitutions primarily affect the Ru-centered t2g orbitals, while changes to the py-imH ligand primarily affect the ligand-centered π orbitals. More broadly, the decoupling stems from the physical separation of the electron and proton within the complex and highlights a clear design strategy to separately tune the redox and acid/base properties of H atom donor/acceptor molecules.
Collapse
Affiliation(s)
- Benjamin D Groff
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Mauricio Cattaneo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Chloe A Pressley
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Bleher K, Comba P, Kass D, Ray K, Wadepohl H. Reactivities of iron(IV)-oxido compounds with pentadentate bispidine ligands. J Inorg Biochem 2023; 241:112123. [PMID: 36701984 DOI: 10.1016/j.jinorgbio.2023.112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The FeIVO complexes of bispidines (3,7-diazabicyclo[3.3.1]nonane derivatives) are known to be highly reactive oxidants - with the tetradentate bispidine, the so far most reactive ferryl complex has been reported and two isomeric pentadentate ligands also lead to very reactive high-valent oxidants. With a series of 4 new bispidine derivatives we now try to address the question why the bispidine scaffold in general leads to very reactive oxidants and how this can be tuned by ligand modifications. The study is based on a full structural, spectroscopic and electrochemical analysis of the iron(II) precursors, spectroscopic data of the iron(IV)-oxido complexes, a kinetic analysis of the stoichiometric oxidation of thioanisole by five different bispidine‑iron(IV)-oxido complexes and on product analyses of reactions by the five ferryl oxidants with thioanisole, β-methylstyrene and cis-stilbene as substrates.
Collapse
Affiliation(s)
- Katharina Bleher
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany; Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Germany.
| | - Dustin Kass
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, D-12489 Berlin, Germany
| | - Kallol Ray
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, D-12489 Berlin, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Zhao N, Goetz MK, Schneider JE, Anderson JS. Testing the Limits of Imbalanced CPET Reactivity: Mechanistic Crossover in H-Atom Abstraction by Co(III)-Oxo Complexes. J Am Chem Soc 2023; 145:5664-5673. [PMID: 36867838 PMCID: PMC10023487 DOI: 10.1021/jacs.2c10553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Transition metal-oxo complexes are key intermediates in a variety of oxidative transformations, notably C-H bond activation. The relative rate of C-H bond activation mediated by transition metal-oxo complexes is typically predicated on substrate bond dissociation free energy in cases with a concerted proton-electron transfer (CPET). However, recent work has demonstrated that alternative stepwise thermodynamic contributions such as acidity/basicity or redox potentials of the substrate/metal-oxo may dominate in some cases. In this context, we have found basicity-governed concerted activation of C-H bonds with the terminal CoIII-oxo complex PhB(tBuIm)3CoIIIO. We have been interested in testing the limits of such basicity-dependent reactivity and have synthesized an analogous, more basic complex, PhB(AdIm)3CoIIIO, and studied its reactivity with H-atom donors. This complex displays a higher degree of imbalanced CPET reactivity than PhB(tBuIm)3CoIIIO with C-H substrates, and O-H activation of phenol substrates displays mechanistic crossover to stepwise proton transfer-electron transfer (PTET) reactivity. Analysis of the thermodynamics of proton transfer (PT) and electron transfer (ET) reveals a distinct thermodynamic crossing point between concerted and stepwise reactivity. Furthermore, the relative rates of stepwise and concerted reactivity suggest that maximally imbalanced systems provide the fastest CPET rates up to the point of mechanistic crossover, which results in slower product formation.
Collapse
Affiliation(s)
- Norman Zhao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Joseph E. Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Xiong J, Liu Q, Lavina B, Hu MY, Zhao J, Alp EE, Deng L, Ye S, Guo Y. Spin polarization assisted facile C-H activation by an S = 1 iron(iv)-bisimido complex: a comprehensive spectroscopic and theoretical investigation. Chem Sci 2023; 14:2808-2820. [PMID: 36937578 PMCID: PMC10016330 DOI: 10.1039/d2sc06273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
High valent iron terminal imido species (Fe[double bond, length as m-dash]NR) have been shown to be key reactive intermediates in C-H functionalization. However, the detailed structure-reactivity relationship in Fe[double bond, length as m-dash]NR species derived from studies of structurally well-characterized high-valent Fe[double bond, length as m-dash]NR complexes are still scarce, and the impact of imido N-substituents (electron-donating vs. electron-withdrawing) on their electronic structures and reactivities has not been thoroughly explored. In this study, we report spectroscopic and computational studies on a rare S = 1 iron(iv)-bisimido complex featuring trifluoromethyl groups on the imido N-substituents, [(IPr)Fe(NC(CF3)2Ph)2] (2), and two closely related S = 0 congeners bearing alkyl and aryl substituents, [(IPr)Fe(NC(CMe3)2Ph)2] (3) and [(IPr)Fe(NDipp)2] (1), respectively. Compared with 1 and 3, 2 exhibits a decreased Fe[double bond, length as m-dash]NR bond covalency due to the electron-withdrawing and the steric effect of the N-substituents, which further leads to a pseudo doubly degenerate ground electronic structure and spin polarization induced β spin density on the imido nitrogens. This unique electronic structure, which differs from those of the well-studied Fe(iv)-oxido complexes and many previously reported Fe(iv)-imido complexes, provides both kinetic and thermodynamic advantages for facile C-H activation, compared to the S = 0 counterparts.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Qing Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
- Center for Advanced Radiation Sources, University of Chicago Chicago Illinois 60439 USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
28
|
Bower JK, Reese MS, Mazin IM, Zarnitsa LM, Cypcar AD, Moore CE, Sokolov AY, Zhang S. C(sp 3)-H cyanation by a formal copper(iii) cyanide complex. Chem Sci 2023; 14:1301-1307. [PMID: 36756315 PMCID: PMC9891353 DOI: 10.1039/d2sc06573h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
High-valent metal oxo complexes are prototypical intermediates for the activation and hydroxylation of alkyl C-H bonds. Substituting the oxo ligand with other functional groups offers the opportunity for additional C-H functionalization beyond C-O bond formation. However, few species aside from metal oxo complexes have been reported to both activate and functionalize alkyl C-H bonds. We herein report the first example of an isolated copper(iii) cyanide complex (LCuIIICN) and its C-H cyanation reactivity. We found that the redox potential (E ox) of substrates, instead of C-H bond dissociation energy, is a key determinant of the rate of PCET, suggesting an oxidative asynchronous CPET or ETPT mechanism. Among substrates with the same BDEs, those with low redox potentials transfer H atoms up to a million-fold faster. Capitalizing on this mechanistic insight, we found that LCuIIICN is highly selective for cyanation of amines, which is predisposed to oxidative asynchronous or stepwise transfer of H+/e-. Our study demonstrates that the asynchronous effect of PCET is an appealing tool for controlling the selectivity of C-H functionalization.
Collapse
Affiliation(s)
- Jamey K. Bower
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Maxwell S. Reese
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Ilia M. Mazin
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Lina M. Zarnitsa
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Andrew D. Cypcar
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
29
|
Maldonado-Domínguez M, Srnec M. Quantifiable polarity match effect on C-H bond cleavage reactivity and its limits in reaction design. Dalton Trans 2023; 52:1399-1412. [PMID: 36644790 DOI: 10.1039/d2dt04018b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When oxidants favour cleaving a strong C-H bond at the expense of weaker ones, which are otherwise inherently preferred due to their favourable reaction energy, reactivity factors such as the polarity match effect are often invoked. Polarity match follows the intuition of electrophilic (nucleophilic) oxidants reacting faster with nucleophilic (electrophilic) C-H bonds. Nevertheless, this concept is purely qualitative and is best suited for a posteriori rationalization of experimental observations. Here, we propose and inspect two methods to quantify polar effects in C-H cleavage reactions, one by computation via the difference of atomic charges (Δq) of reacting atoms, and one amenable to experimental measurement through asynchronicity factors, η. By their application to three case studies, we observe that both Δq and η faithfully capture the notion of polarity match. The polarity match model, however, proves insufficient as a predictor of H-atom abstraction reactivity and we discourage its use as a standalone variable in reaction design. Besides this caveat, η and Δq (through its mapping on η) allow the implementation of polarity match into a Marcus-type model of reactivity, alleviating its shortcomings and making reaction planning feasible.
Collapse
Affiliation(s)
- Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic.
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic.
| |
Collapse
|
30
|
Czaikowski ME, Anderson JS. Electrocatalytic C-H activation and fluorination using high-valent Cu. CHEM CATALYSIS 2023; 3:100495. [PMID: 37711227 PMCID: PMC10501530 DOI: 10.1016/j.checat.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In this issue of Chem Catalysis, Zhang and co-workers demonstrate the utility of electrochemical methods to enable catalytic turnover, employing high-valent Cu for C-H bond fluorination with selectivity for more hydridic bonds. Corresponding mechanistic investigations offer a rare catalytic example of oxidation driven C-H activation.
Collapse
Affiliation(s)
- Maia E. Czaikowski
- University of Chicago Department of Chemistry, 929 E 57th St. Chicago, IL, 60637
| | - John S. Anderson
- University of Chicago Department of Chemistry, 929 E 57th St. Chicago, IL, 60637
| |
Collapse
|
31
|
Hintz H, Bower J, Tang J, LaLama M, Sevov C, Zhang S. Copper-Catalyzed Electrochemical C-H Fluorination. CHEM CATALYSIS 2023; 3:100491. [PMID: 36743279 PMCID: PMC9894310 DOI: 10.1016/j.checat.2022.100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable CuIII fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive CuIII species were addressed by the judicious selection of electrolyte, F- source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds. The selectivity is driven by an oxidative asynchronous proton-coupled elelctron transfer (PCET) at an electrophilic CuIII-F complex. We further demonstrate that the asynchronicity factor of hydrogen atom transfer η can be used as a guideline to rationalize the selectivity of C-H fluorination.
Collapse
Affiliation(s)
- Heather Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jamey Bower
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Matthew LaLama
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Christo Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
32
|
Dantignana V, Pérez‐Segura MC, Besalú‐Sala P, Delgado‐Pinar E, Martínez‐Camarena Á, Serrano‐Plana J, Álvarez‐Núñez A, Castillo CE, García‐España E, Luis JM, Basallote MG, Costas M, Company A. Characterization of a Ferryl Flip in Electronically Tuned Nonheme Complexes. Consequences in Hydrogen Atom Transfer Reactivity. Angew Chem Int Ed Engl 2023; 62:e202211361. [PMID: 36305539 PMCID: PMC10107328 DOI: 10.1002/anie.202211361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/04/2022]
Abstract
Two oxoiron(IV) isomers (R 2a and R 2b) of general formula [FeIV (O)(R PyNMe3 )(CH3 CN)]2+ are obtained by reaction of their iron(II) precursor with NBu4 IO4 . The two isomers differ in the position of the oxo ligand, cis and trans to the pyridine donor. The mechanism of isomerization between R 2a and R 2b has been determined by kinetic and computational analyses uncovering an unprecedented path for interconversion of geometrical oxoiron(IV) isomers. The activity of the two oxoiron(IV) isomers in hydrogen atom transfer (HAT) reactions shows that R 2a reacts one order of magnitude faster than R 2b, which is explained by a repulsive noncovalent interaction between the ligand and the substrate in R 2b. Interestingly, the electronic properties of the R substituent in the ligand pyridine ring do not have a significant effect on reaction rates. Overall, the intrinsic structural aspects of each isomer define their relative HAT reactivity, overcoming changes in electronic properties of the ligand.
Collapse
Affiliation(s)
- Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - M. Carmen Pérez‐Segura
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de Ciencias, Instituto de Biomoléculas (INBIO)Universidad de CádizPuerto Real11510CádizSpain
| | - Pau Besalú‐Sala
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Estefanía Delgado‐Pinar
- Departamento de Química InorgánicaInstituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, Paterna46980Valencia 2Spain
| | - Álvaro Martínez‐Camarena
- Departamento de Química InorgánicaInstituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, Paterna46980Valencia 2Spain
| | - Joan Serrano‐Plana
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Andrea Álvarez‐Núñez
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Carmen E. Castillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de Ciencias, Instituto de Biomoléculas (INBIO)Universidad de CádizPuerto Real11510CádizSpain
| | - Enrique García‐España
- Departamento de Química InorgánicaInstituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, Paterna46980Valencia 2Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Manuel G. Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de Ciencias, Instituto de Biomoléculas (INBIO)Universidad de CádizPuerto Real11510CádizSpain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC)Departament de Química, Universitat de GironaC/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| |
Collapse
|
33
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
34
|
Maldonado-Domínguez M, Srnec M. H-Atom Abstraction Reactivity through the Lens of Asynchronicity and Frustration with Their Counteracting Effects on Barriers. Inorg Chem 2022; 61:18811-18822. [DOI: 10.1021/acs.inorgchem.2c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| |
Collapse
|
35
|
Agarwal RG, Mayer JM. Coverage-Dependent Rate-Driving Force Relationships: Hydrogen Transfer from Cerium Oxide Nanoparticle Colloids. J Am Chem Soc 2022; 144:20699-20709. [DOI: 10.1021/jacs.2c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rishi G. Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| |
Collapse
|
36
|
Jenner LP, Crack JC, Kurth JM, Soldánová Z, Brandt L, Sokol KP, Reisner E, Bradley JM, Dahl C, Cheesman MR, Butt JN. Reaction of Thiosulfate Dehydrogenase with a Substrate Mimic Induces Dissociation of the Cysteine Heme Ligand Giving Insights into the Mechanism of Oxidative Catalysis. J Am Chem Soc 2022; 144:18296-18304. [PMID: 36173876 PMCID: PMC9562282 DOI: 10.1021/jacs.2c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.
Collapse
Affiliation(s)
- Leon P. Jenner
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julia M. Kurth
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Zuzana Soldánová
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Linda Brandt
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Katarzyna P. Sokol
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Justin M. Bradley
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Christiane Dahl
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Myles R. Cheesman
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| |
Collapse
|
37
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Barrales-Martínez C, Jaque P. A deeper analysis of the role of synchronicity on the Bell-Evans-Polanyi plot in multibond chemical reactions: a path-dependent reaction force constant. Phys Chem Chem Phys 2022; 24:14772-14779. [PMID: 35686531 DOI: 10.1039/d2cp01460b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of the degree of synchronicity in the formation of the new single-bonds in a large set of 1,3-dipolar cycloadditions and its relation in the fulfilment of the classical Bell-Evans-Polanyi principle and Hammond-Leffler postulate are deeply investigated. Our results confirm that asynchronicity is an important path-dependent factor to be taken into account: (i) the Bell-Evans-Polanyi is fulfilled as the degree of (a)synchronicity is quite the same, and a linear relationship between reorganisation energy and asynchronicity is found; (ii) the asynchronicity is the origin of deviations of this classical principle of chemical reactivity since any decrease of the energy barrier is due to an increase of asynchronicity at the same exothermicity; and (iii) the less exothermic the reaction is, the more asynchronous the mechanism is, at the same energy barrier. Thus, this implies that TS imbalance decreases the reorganisation energy, consequently affecting the reaction exothermicity as well.
Collapse
Affiliation(s)
- César Barrales-Martínez
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile. .,Centro de Modelamiento Molecular, Biofísica y Bioinformática, CM2B2, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile. .,Centro de Modelamiento Molecular, Biofísica y Bioinformática, CM2B2, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| |
Collapse
|
39
|
Beagan DM, Cabelof AC. Recent advances in metal-mediated nitrogen oxyanion reduction using reductively borylated and silylated N-heterocycles. Dalton Trans 2022; 51:2203-2213. [PMID: 35044399 DOI: 10.1039/d1dt03740d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of nitrogen oxyanions is critical for the remediation of eutrophication caused by anthropogenic perturbations to the natural nitrogen cycle. There are many approaches to nitrogen oxyanion reduction, and here we report our advances in reductive deoxygenation using pre-reduced N-heterocycles. We show examples of nitrogen oxyanion reduction using Cr, Fe, Co, Ni, and Zn, and we evaluate the role of metal choice, number of coordinated oxyanions, and ancillary ligands on the reductive transformations. We report the experimental challenges faced and provide an outlook on new directions to repurpose nitrogen oxyanions into value-added products.
Collapse
Affiliation(s)
- Daniel M Beagan
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Alyssa C Cabelof
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
40
|
Tyburski R, Hammarström L. Strategies for switching the mechanism of proton-coupled electron transfer reactions illustrated by mechanistic zone diagrams. Chem Sci 2022; 13:290-301. [PMID: 35059179 PMCID: PMC8694376 DOI: 10.1039/d1sc05230f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis. However, determination and tuning of the PCET mechanism is often non-trivial. Here, we apply mechanistic zone diagrams to illustrate the competition between concerted and stepwise PCET-mechanisms in the oxidation of 4-methoxyphenol by Ru(bpy)33+-derivatives in the presence of substituted pyridine bases. These diagrams show the dominating mechanism as a function of driving force for electron and proton transfer (ΔG0ET and ΔG0PT) respectively [Tyburski et al., J. Am. Chem. Soc., 2021, 143, 560]. Within this framework, we demonstrate strategies for mechanistic tuning, namely balancing of ΔG0ET and ΔG0PT, steric hindrance of the proton-transfer coordinate, and isotope substitution. Sterically hindered pyridine bases gave larger reorganization energy for concerted PCET, resulting in a shift towards a step-wise electron first-mechanism in the zone diagrams. For cases when sufficiently strong oxidants are used, substitution of protons for deuterons leads to a switch from concerted electron–proton transfer (CEPT) to an electron transfer limited (ETPTlim) mechanism. We thereby, for the first time, provide direct experimental evidence, that the vibronic coupling strength affects the switching point between CEPT and ETPTlim, i.e. at what driving force one or the other mechanism starts dominating. Implications for solar fuel catalysis are discussed. The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis.![]()
Collapse
Affiliation(s)
- Robin Tyburski
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| |
Collapse
|
41
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
42
|
Cook EN, Machan CW. Bioinspired mononuclear Mn complexes for O 2 activation and biologically relevant reactions. Dalton Trans 2021; 50:16871-16886. [PMID: 34730590 DOI: 10.1039/d1dt03178c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A general interest in harnessing the oxidizing power of dioxygen (O2) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O2-dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective, we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
43
|
Coste SC, Brezny AC, Koronkiewicz B, Mayer JM. C-H oxidation in fluorenyl benzoates does not proceed through a stepwise pathway: revisiting asynchronous proton-coupled electron transfer. Chem Sci 2021; 12:13127-13136. [PMID: 34745543 PMCID: PMC8513817 DOI: 10.1039/d1sc03344a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant. Kinetic analysis revealed unusual rate-driving force relationships. Our analysis indicated a mechanism of multi-site concerted proton–electron transfer (MS-CPET) for all of these reactions. More recently, an alternative interpretation of the kinetic data was proposed to explain the unusual rate-driving force relationships, invoking a crossover from CPET to a stepwise mechanism with an initial intramolecular proton transfer (PT) (Costentin, Savéant, Chem. Sci., 2020, 11, 1006). Here, we show that this proposed alternative pathway is untenable based on prior and new experimental assessments of the intramolecular PT equilibrium constant and rates. Measurement of the fluorenyl 9-C–H pKa, H/D exchange experiments, and kinetic modelling with COPASI eliminate the possibility of a stepwise mechanism for C–H oxidation in the fluorenyl benzoate series. Implications for asynchronous (imbalanced) MS-CPET mechanisms are discussed with respect to classical Marcus theory and the quantum-mechanical treatment of concerted proton–electron transfer. 2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant.![]()
Collapse
Affiliation(s)
- Scott C Coste
- Department of Chemistry, Yale University New Haven CT 06520-8107 USA
| | - Anna C Brezny
- Department of Chemistry, Skidmore College Saratoga Springs New York 12866 USA
| | | | - James M Mayer
- Department of Chemistry, Yale University New Haven CT 06520-8107 USA
| |
Collapse
|
44
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
45
|
Barman SK, Yang MY, Parsell TH, Green MT, Borovik AS. Semiempirical method for examining asynchronicity in metal-oxido-mediated C-H bond activation. Proc Natl Acad Sci U S A 2021; 118:e2108648118. [PMID: 34465626 PMCID: PMC8433561 DOI: 10.1073/pnas.2108648118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The oxidation of substrates via the cleavage of thermodynamically strong C-H bonds is an essential part of mammalian metabolism. These reactions are predominantly carried out by enzymes that produce high-valent metal-oxido species, which are directly responsible for cleaving the C-H bonds. While much is known about the identity of these transient intermediates, the mechanistic factors that enable metal-oxido species to accomplish such difficult reactions are still incomplete. For synthetic metal-oxido species, C-H bond cleavage is often mechanistically described as synchronous, proton-coupled electron transfer (PCET). However, data have emerged that suggest that the basicity of the M-oxido unit is the key determinant in achieving enzymatic function, thus requiring alternative mechanisms whereby proton transfer (PT) has a more dominant role than electron transfer (ET). To bridge this knowledge gap, the reactivity of a monomeric MnIV-oxido complex with a series of external substrates was studied, resulting in a spread of over 104 in their second-order rate constants that tracked with the acidity of the C-H bonds. Mechanisms that included either synchronous PCET or rate-limiting PT, followed by ET, did not explain our results, which led to a proposed PCET mechanism with asynchronous transition states that are dominated by PT. To support this premise, we report a semiempirical free energy analysis that can predict the relative contributions of PT and ET for a given set of substrates. These findings underscore why the basicity of M-oxido units needs to be considered in C-H functionalization.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry, University of California Irvine, CA 92697;
| | - Meng-Yin Yang
- Department of Chemistry, University of California Irvine, CA 92697
| | | | - Michael T Green
- Department of Chemistry, University of California Irvine, CA 92697;
- Department of Molecular Biosciences and Biochemistry, University of California Irvine, CA 92697
| | - A S Borovik
- Department of Chemistry, University of California Irvine, CA 92697;
| |
Collapse
|
46
|
Salamone M, Galeotti M, Romero-Montalvo E, van Santen JA, Groff BD, Mayer JM, DiLabio GA, Bietti M. Bimodal Evans-Polanyi Relationships in Hydrogen Atom Transfer from C(sp 3)-H Bonds to the Cumyloxyl Radical. A Combined Time-Resolved Kinetic and Computational Study. J Am Chem Soc 2021; 143:11759-11776. [PMID: 34309387 PMCID: PMC8343544 DOI: 10.1021/jacs.1c05566] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/11/2022]
Abstract
The applicability of the Evans-Polanyi (EP) relationship to HAT reactions from C(sp3)-H bonds to the cumyloxyl radical (CumO•) has been investigated. A consistent set of rate constants, kH, for HAT from the C-H bonds of 56 substrates to CumO•, spanning a range of more than 4 orders of magnitude, has been measured under identical experimental conditions. A corresponding set of consistent gas-phase C-H bond dissociation enthalpies (BDEs) spanning 27 kcal mol-1 has been calculated using the (RO)CBS-QB3 method. The log kH' vs C-H BDE plot shows two distinct EP relationships, one for substrates bearing benzylic and allylic C-H bonds (unsaturated group) and the other one, with a steeper slope, for saturated hydrocarbons, alcohols, ethers, diols, amines, and carbamates (saturated group), in line with the bimodal behavior observed previously in theoretical studies of reactions promoted by other HAT reagents. The parallel use of BDFEs instead of BDEs allows the transformation of this correlation into a linear free energy relationship, analyzed within the framework of the Marcus theory. The ΔG⧧HAT vs ΔG°HAT plot shows again distinct behaviors for the two groups. A good fit to the Marcus equation is observed only for the saturated group, with λ = 58 kcal mol-1, indicating that with the unsaturated group λ must increase with increasing driving force. Taken together these results provide a qualitative connection between Bernasconi's principle of nonperfect synchronization and Marcus theory and suggest that the observed bimodal behavior is a general feature in the reactions of oxygen-based HAT reagents with C(sp3)-H donors.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Eduardo Romero-Montalvo
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Jeffrey A. van Santen
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Benjamin D. Groff
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Gino A. DiLabio
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
47
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Bím D, Alexandrova AN. Local Electric Fields as a Natural Switch of Heme-Iron Protein Reactivity. ACS Catal 2021; 11:6534-6546. [PMID: 34413991 DOI: 10.1021/acscatal.1c00687] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heme-iron oxidoreductases operating through the high-valent FeIVO intermediates perform crucial and complicated transformations, such as oxidations of unreactive saturated hydrocarbons. These enzymes share the same Fe coordination, only differing by the axial ligation, e.g., Cys in P450 oxygenases, Tyr in catalases, and His in peroxidases. By examining ~200 heme-iron proteins, we show that the protein hosts exert highly specific intramolecular electric fields on the active sites, and there is a strong correlation between the direction and magnitude of this field and the protein function. In all heme proteins, the field is preferentially aligned with the Fe-O bond ( Fz ). The Cys-ligated P450 oxygenases have the highest average Fz of 28.5 MV cm-1, i.e., most enhancing the oxyl-radical character of the oxo group, and consistent with the ability of these proteins to activate strong C-H bonds. In contrast, in Tyr-ligated proteins, the average Fz is only 3.0 MV cm-1, apparently suppressing single-electron off-pathway oxidations, and in His-ligated proteins, Fz is -8.7 MV cm-1. The operational field range is given by the trade-off between the low reactivity of the FeIVO Compound I at the more negative Fz , and the low selectivity at the more positive Fz . Consequently, a heme-iron site placed in the field characteristic of another heme-iron protein class loses its canonical function, and gains an adverse one. Thus, electric fields produced by the protein scaffolds, together with the nature of the axial ligand, control all heme-iron chemistry.
Collapse
Affiliation(s)
- Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
49
|
Kushch OV, Hordieieva IO, Kompanets MO, Zosenko OO, Opeida IA, Shendrik AN. Hydrogen Atom Transfer from Benzyl Alcohols to N-Oxyl Radicals. Reactivity Parameters. J Org Chem 2021; 86:3792-3799. [PMID: 33573371 DOI: 10.1021/acs.joc.0c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A model for predicting the rate constants of hydrogen atom transfer (HAT) from the α-C-H bond of p-substituted benzyl alcohols to N-oxyl radicals was proposed. To quantify the factors governing the reactivity of both N-oxyl radicals and benzyl alcohols, multivariate regression analysis was performed using various combinations of reactivity parameters. The analysis was based on a 2D array of 35 HAT reactions, the rate constants of which span 4 orders of magnitude. The proposed polyparameter equation approximates the experimental rate constants of reactions with high accuracy using three independent parameters: Brown and Okamoto's substituent constants σ+ in alcohol molecules and the spin population on O and N atoms in the N-O• fragment of N-oxyl radicals [calculated by DFT/B3LYP/6-31G(d,p)]. The rate constants of HAT reactions from p-substituted benzyl alcohols to a series of aryl-substituted phthalimide-N-oxyl radicals containing either electron-withdrawing or electron-donating substituents (4-Cl, 4-HOOC, 4-CH3O), quinolinimide-N-oxyl, benzotriazole-N-oxyl, and violuric acid radicals were experimentally determined at 30 °C in acetonitrile.
Collapse
Affiliation(s)
- Olga V Kushch
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine.,Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Iryna O Hordieieva
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Mykhailo O Kompanets
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv 03056, Ukraine
| | - Olha O Zosenko
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Iosip A Opeida
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, Lviv 79053, Ukraine
| | - Alexander N Shendrik
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| |
Collapse
|
50
|
Schneider JE, Goetz MK, Anderson JS. Statistical analysis of C-H activation by oxo complexes supports diverse thermodynamic control over reactivity. Chem Sci 2021; 12:4173-4183. [PMID: 34163690 PMCID: PMC8179456 DOI: 10.1039/d0sc06058e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 01/29/2023] Open
Abstract
Transition metal oxo species are key intermediates for the activation of strong C-H bonds. As such, there has been interest in understanding which structural or electronic parameters of metal oxo complexes determine their reactivity. Factors such as ground state thermodynamics, spin state, steric environment, oxygen radical character, and asynchronicity have all been cited as key contributors, yet there is no consensus on when each of these parameters is significant or the relative magnitude of their effects. Herein, we present a thorough statistical analysis of parameters that have been proposed to influence transition metal oxo mediated C-H activation. We used density functional theory (DFT) to compute parameters for transition metal oxo complexes and analyzed their ability to explain and predict an extensive data set of experimentally determined reaction barriers. We found that, in general, only thermodynamic parameters play a statistically significant role. Notably, however, there are independent and significant contributions from the oxidation potential and basicity of the oxo complexes which suggest a more complicated thermodynamic picture than what has been shown previously.
Collapse
Affiliation(s)
| | - McKenna K Goetz
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| |
Collapse
|