1
|
López CA, Alam SM, Derdeyn CA, Haynes BF, Gnanakaran S. Influence of membrane on the antigen presentation of the HIV-1 envelope membrane proximal external region (MPER). Curr Opin Struct Biol 2024; 88:102897. [PMID: 39173417 DOI: 10.1016/j.sbi.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The membrane proximal external region (MPER) of the HIV envelope glycoproteins has generated renewed interest after a recent phase I vaccine trial that presented MPER lipid-peptide epitopes demonstrated promise to elicit a broad neutralization response. The antigenicity of MPER is intimately associated with the membrane, and its presentation relies significantly on the lipid composition. This review brings together recent findings on the influence of membranes on the conformation of MPER and its recognition by broadly neutralizing antibodies. Specifically, the review highlights the importance of properly accounting for the balance between protein-protein and membrane-protein interactions in vaccine design.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cynthia A Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
2
|
Calcraft T, Stanke-Scheffler N, Nans A, Lindemann D, Taylor IA, Rosenthal PB. Integrated cryoEM structure of a spumaretrovirus reveals cross-kingdom evolutionary relationships and the molecular basis for assembly and virus entry. Cell 2024; 187:4213-4230.e19. [PMID: 39013471 DOI: 10.1016/j.cell.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicole Stanke-Scheffler
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
3
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
4
|
Ninyio N, Schmitt K, Sergon G, Nilsson C, Andersson S, Scherbak N. Stable expression of HIV-1 MPER extended epitope on the surface of the recombinant probiotic bacteria Escherichia Coli Nissle 1917 using CRISPR/Cas9. Microb Cell Fact 2024; 23:39. [PMID: 38311724 PMCID: PMC10840157 DOI: 10.1186/s12934-023-02290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Mucosal vaccines have the potential to induce protective immune responses at the sites of infection. Applying CRISPR/Cas9 editing, we aimed to develop a probiotic-based vaccine candidate expressing the HIV-1 envelope membrane-proximal external region (MPER) on the surface of E. coli Nissle 1917. RESULTS The HIV-1 MPER epitope was successfully introduced in the porin OmpF of the E. coli Nissle 1917 (EcN-MPER) and the modification was stable over 30 passages of the recombinant bacteria on the DNA and protein level. Furthermore, the introduced epitope was recognized by a human anti-HIV-1 gp41 (2F5) antibody using both live and heat-killed EcN-MPER, and this antigenicity was also retained over 30 passages. Whole-cell dot blot suggested a stronger binding of anti-HIV-1 gp41 (2F5) to heat-killed EcN-MPER than their live counterpart. An outer membrane vesicle (OMV) - rich extract from EcN-MPER culture supernatant was equally antigenic to anti-HIV-1 gp41 antibody which suggests that the MPER antigen could be harboured in EcN-MPER OMVs. Using quantitative ELISA, we determined the amount of MPER produced by the modified EcN to be 14.3 µg/108 cfu. CONCLUSIONS The CRISPR/Cas9 technology was an effective method for establishment of recombinant EcN-MPER bacteria that was stable over many passages. The developed EcN-MPER clone was devoid of extraneous plasmids and antibiotic resistance genes which eliminates the risk of plasmid transfer to animal hosts, should this clone be used as a vaccine. Also, the EcN-MPER clone was recognised by anti-HIV-1 gp41 (2F5) both as live and heat-killed bacteria making it suitable for pre-clinical evaluation. Expression of OmpF on bacterial surfaces and released OMVs identifies it as a compelling candidate for recombinant epitope modification, enabling surface epitope presentation on both bacteria and OMVs. By applying the methods described in this study, we present a potential platform for cost-effective and rational vaccine antigen expression and administration, offering promising prospects for further research in the field of vaccine development.
Collapse
Affiliation(s)
- Nathaniel Ninyio
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Katharina Schmitt
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
- Institute of Virology, Saarland University Medical Center, 66421, Homburg, Germany
| | - Gladys Sergon
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sören Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Public Health Analysis and Data Management, Unit for Vaccination Programmes, Public Health Agency of Sweden, Solna, Sweden
| | - Nikolai Scherbak
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden.
| |
Collapse
|
5
|
Liu DJ, Liu CC, Zhong XQ, Wu X, Zhang HH, Lu SW, Shen ZL, Song WW, Zhao SL, Peng YS, Zheng HP, Wan MY, Chen YQ, Deng L. Boost immunizations with NA-derived peptide conjugates achieve induction of NA inhibition antibodies and heterologous influenza protections. Cell Rep 2023; 42:112766. [PMID: 37421618 DOI: 10.1016/j.celrep.2023.112766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Neuraminidase is suggested as an important component for developing a universal influenza vaccine. Targeted induction of neuraminidase-specific broadly protective antibodies by vaccinations is challenging. To overcome this, we rationally select the highly conserved peptides from the consensus amino acid sequence of the globular head domains of neuraminidase. Inspired by the B cell receptor evolution process, a reliable sequential immunization regimen is designed to result in immuno-focusing by steering bulk immune responses to a selected region where broadly protective B lymphocyte epitopes reside. After priming neuraminidase protein-specific antibody responses in C57BL/6 or BALB/c inbred mice strains by immunization or pre-infection, boost immunizations with certain neuraminidase-derived peptide-keyhole limpet hemocyanin conjugates significantly strengthened serum neuraminidase inhibition activities and cross-protections. Overall, this study provides proof of concept for a peptide-based sequential immunization strategy for achieving targeted induction of cross-protective antibody response, which provides references for designing universal vaccines against other highly variable pathogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - Shang-Wen Lu
- Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - Zhuo-Ling Shen
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Wen-Wen Song
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - You-Song Peng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - He-Ping Zheng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China; Beijing Weimiao Biotechnology Co., Ltd., Haidian District, Beijing 100000, China.
| |
Collapse
|
6
|
Rokonujjaman M, Sahyouni A, Wolfe R, Jia L, Ghosh U, Weliky DP. A large HIV gp41 construct with trimer-of-hairpins structure exhibits V2E mutation-dominant attenuation of vesicle fusion and helicity very similar to V2E attenuation of HIV fusion and infection and supports: (1) hairpin stabilization of membrane apposition with larger distance for V2E; and (2) V2E dominance by an antiparallel β sheet with interleaved fusion peptide strands from two gp41 trimers. Biophys Chem 2023; 293:106933. [PMID: 36508984 PMCID: PMC9879285 DOI: 10.1016/j.bpc.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel β sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.
Collapse
Affiliation(s)
- Md Rokonujjaman
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abdulrazak Sahyouni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Wolfe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
7
|
Enhancing HIV-1 Neutralization by Increasing the Local Concentration of Membrane-Proximal External Region-Directed Broadly Neutralizing Antibodies. J Virol 2023; 97:e0164722. [PMID: 36541800 PMCID: PMC9888200 DOI: 10.1128/jvi.01647-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.
Collapse
|
8
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Yang S, Hiotis G, Wang Y, Chen J, Wang JH, Kim M, Reinherz EL, Walz T. Dynamic HIV-1 spike motion creates vulnerability for its membrane-bound tripod to antibody attack. Nat Commun 2022; 13:6393. [PMID: 36302771 PMCID: PMC9610346 DOI: 10.1038/s41467-022-34008-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Vaccines targeting HIV-1's gp160 spike protein are stymied by high viral mutation rates and structural chicanery. gp160's membrane-proximal external region (MPER) is the target of naturally arising broadly neutralizing antibodies (bnAbs), yet MPER-based vaccines fail to generate bnAbs. Here, nanodisc-embedded spike protein was investigated by cryo-electron microscopy and molecular-dynamics simulations, revealing spontaneous ectodomain tilting that creates vulnerability for HIV-1. While each MPER protomer radiates centrally towards the three-fold axis contributing to a membrane-associated tripod structure that is occluded in the upright spike, tilting provides access to the opposing MPER. Structures of spike proteins with bound 4E10 bnAb Fabs reveal that the antibody binds exposed MPER, thereby altering MPER dynamics, modifying average ectodomain tilt, and imposing strain on the viral membrane and the spike's transmembrane segments, resulting in the abrogation of membrane fusion and informing future vaccine development.
Collapse
Affiliation(s)
- Shuang Yang
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY USA
| | - Giorgos Hiotis
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY USA ,grid.134907.80000 0001 2166 1519Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY USA
| | - Yi Wang
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Junjian Chen
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Jia-huai Wang
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Mikyung Kim
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Dermatology, Harvard Medical School, Boston, MA USA
| | - Ellis L. Reinherz
- grid.65499.370000 0001 2106 9910Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Thomas Walz
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY USA
| |
Collapse
|
10
|
Rojas Chávez RA, Boyt D, Schwery N, Han C, Wu L, Haim H. Commonly Elicited Antibodies against the Base of the HIV-1 Env Trimer Guide the Population-Level Evolution of a Structure-Regulating Region in gp41. J Virol 2022; 96:e0040622. [PMID: 35658529 PMCID: PMC9278142 DOI: 10.1128/jvi.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.
Collapse
Affiliation(s)
- Roberth Anthony Rojas Chávez
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Devlin Boyt
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nathan Schwery
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Global Increases in Human Immunodeficiency Virus Neutralization Sensitivity Due to Alterations in the Membrane-Proximal External Region of the Envelope Glycoprotein Can Be Minimized by Distant State 1-Stabilizing Changes. J Virol 2022; 96:e0187821. [PMID: 35289647 DOI: 10.1128/jvi.01878-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ([gp120/gp41]3) into more "open" conformations. HIV-1 Env on the viral membrane is maintained in a State-1 conformation that resists binding and neutralization by commonly elicited antibodies. Premature triggering of Env before the virus engages a target cell typically leads to increased susceptibility to spontaneous inactivation or ligand-induced neutralization. Here, we showed that single amino acid substitutions in the gp41 membrane-proximal external region (MPER) of a primary HIV-1 strain resulted in viral phenotypes indicative of premature triggering of Env to downstream conformations. Specifically, the MPER changes reduced viral infectivity and globally increased virus sensitivity to poorly neutralizing antibodies, soluble CD4, a CD4-mimetic compound, and exposure to cold. In contrast, the MPER mutants exhibited decreased sensitivity to the State 1-preferring inhibitor, BMS-806, and to the PGT151 broadly neutralizing antibody. Depletion of cholesterol from virus particles did not produce the same State 1-destabilizing phenotypes as MPER alterations. Notably, State 1-stabilizing changes in Env distant from the MPER could minimize the phenotypic effects of MPER alteration but did not affect virus sensitivity to cholesterol depletion. Thus, membrane-proximal gp41 elements contribute to the maintenance of the pretriggered Env conformation. The conformationally disruptive effects of MPER changes can be minimized by distant State 1-stabilizing Env modifications, a strategy that may be useful in preserving the native pretriggered state of Env. IMPORTANCE The pretriggered shape of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) is a major target for antibodies that can neutralize many strains of the virus. An effective HIV-1 vaccine may need to raise these types of antibodies, but this goal has proven difficult. One reason is that the pretriggered shape of Env is unstable and dependent on interactions near the viral membrane. Here, we showed that the membrane-proximal external region (MPER) of Env plays an important role in maintaining Env in a pretriggered shape. Alterations in the MPER resulted in global changes in Env conformation that disrupted its pretriggered shape. We also found that these disruptive effects of MPER changes could be minimized by distant Env modifications that stabilized the pretriggered shape. These modifications may be useful for preserving the native shape of Env for structural and vaccine studies.
Collapse
|
12
|
Mangala Prasad V, Leaman DP, Lovendahl KN, Croft JT, Benhaim MA, Hodge EA, Zwick MB, Lee KK. Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag lattice. Cell 2022; 185:641-653.e17. [PMID: 35123651 PMCID: PMC9000915 DOI: 10.1016/j.cell.2022.01.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus N Lovendahl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jacob T Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark A Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Tran N, Oh Y, Sutherland M, Cui Q, Hong M. Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers. J Mol Biol 2021; 434:167345. [PMID: 34762895 DOI: 10.1016/j.jmb.2021.167345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022]
Abstract
The envelope glycoprotein (Env) of the human immunodeficient virus (HIV-1) is known to cluster on the viral membrane surface to attach to target cells and cause membrane fusion for HIV-1 infection. However, the molecular structural mechanisms that drive Env clustering remain opaque. Here, we use solid-state NMR spectroscopy and molecular dynamics (MD) simulations to investigate nanometer-scale clustering of the membrane-proximal external region (MPER) and transmembrane domain (TMD) of gp41, the fusion protein component of Env. Using 19F solid-state NMR experiments of mixed fluorinated peptides, we show that MPER-TMD trimers form clusters with interdigitated MPER helices in cholesterol-containing membranes. Inter-trimer 19F-19F cross peaks, which are indicative of spatial contacts within ∼2 nm, are observed in cholesterol-rich virus-mimetic membranes but are suppressed in cholesterol-free model membranes. Water-peptide and lipid-peptide cross peaks in 2D 1H-19F correlation spectra indicate that the MPER is well embedded in model phosphocholine membranes but is more exposed to the surface of the virus-mimetic membrane. These experimental results are reproduced in coarse-grained and atomistic molecular dynamics simulations, which suggest that the effects of cholesterol on gp41 clustering is likely via indirect modulation of the MPER orientation. Cholesterol binding to the helix-turn-helix region of the MPER-TMD causes a parallel orientation of the MPER with the membrane surface, thus allowing MPERs of neighboring trimers to interact with each other to cause clustering. These solid-state NMR data and molecular dynamics simulations suggest that MPER and cholesterol cooperatively govern the clustering of gp41 trimers during virus-cell membrane fusion.
Collapse
Affiliation(s)
- Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Younghoon Oh
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States
| | - Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States.
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States. https://twitter.com/MeiHongLab
| |
Collapse
|
14
|
Bozdaganyan ME, Orekhov PS, Litvinov DS, Novoseletsky VN. Molecular Modeling of the HR2 and Transmembrane Domains of the SARS-CoV-2 S Protein in the Prefusion State. MOSCOW UNIVERSITY BIOLOGICAL SCIENCES BULLETIN 2021; 76:130-136. [PMID: 34667336 PMCID: PMC8517943 DOI: 10.3103/s0096392521030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, remains the focus of research worldwide. SARS-CoV-2 entry into the cell starts with its S protein binding to the angiotensin-converting enzyme-2 (ACE2) expressed on the cell surface. The knowledge of the S protein’s spatial structure is indispensable for understanding the molecular principles of its work. The S protein structure has been almost fully described using experimental approaches with the only exception for the protein’s endodomain, the transmembrane domain, and the ectodomain parts adjacent to the latter. The paper reports molecular modelling of the S protein fragment corresponding to its coiled coil HR2 domain and fully palmitoylated transmembrane domain. Model stability in lipid bilayer was confirmed by all-atom and coarse-grained molecular dynamics simulations. It has been demonstrated that palmitoylation leads to a significant decrease in transmembrane domain mobility and local bilayer thickening, which may be relevant for protein trimerization.
Collapse
Affiliation(s)
- M E Bozdaganyan
- Biology Department, Moscow State University, 119234 Moscow, Russia.,Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - P S Orekhov
- Biology Department, Moscow State University, 119234 Moscow, Russia.,Institute of Personalized Medicine, Sechenov University, 119435 Moscow, Russia
| | - D S Litvinov
- Biology Department, Moscow State University, 119234 Moscow, Russia
| | - V N Novoseletsky
- Biology Department, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
15
|
Chiliveri SC, Louis JM, Ghirlando R, Bax A. Transient lipid-bound states of spike protein heptad repeats provide insights into SARS-CoV-2 membrane fusion. SCIENCE ADVANCES 2021; 7:eabk2226. [PMID: 34623907 PMCID: PMC8500521 DOI: 10.1126/sciadv.abk2226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Entry of SARS-CoV-2 into a host cell is mediated by spike, a class I viral fusion protein responsible for merging the viral and host cell membranes. Recent studies have revealed atomic-resolution models for both the postfusion 6-helix bundle (6HB) and the prefusion state of spike. However, a mechanistic understanding of the molecular basis for the intervening structural transition, important for the design of fusion inhibitors, has remained elusive. Using nuclear magnetic resonance spectroscopy and other biophysical methods, we demonstrate the presence of α-helical, membrane-bound, intermediate states of spike’s heptad repeat (HR1 and HR2) domains that are embedded at the lipid-water interface while in a slow dynamic equilibrium with the postfusion 6HB state. These results support a model where the HR domains lower the large energy barrier associated with membrane fusion by destabilizing the host and viral membranes, while 6HB formation actively drives their fusion by forcing physical proximity.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.C.C.); (A.B.)
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.C.C.); (A.B.)
| |
Collapse
|
16
|
Abstract
Viral fusion glycoproteins catalyze membrane fusion during viral entry. Unlike most enzymes, however, they lack a conventional active site in which formation or scission of a specific covalent bond is catalyzed. Instead, they drive the membrane fusion reaction by cojoining highly regulated changes in conformation to membrane deformation. Despite the challenges in applying inhibitor design approaches to these proteins, recent advances in knowledge of the structures and mechanisms of viral fusogens have enabled the development of small-molecule inhibitors of both class I and class II viral fusion proteins. Here, we review well-validated inhibitors, including their discovery, targets, and mechanism(s) of action, while highlighting mechanistic similarities and differences. Together, these examples make a compelling case for small-molecule inhibitors as tools for probing the mechanisms of viral glycoprotein-mediated fusion and for viral glycoproteins as druggable targets.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| |
Collapse
|
17
|
van Dorsten RT, Wagh K, Moore PL, Morris L. Combinations of Single Chain Variable Fragments From HIV Broadly Neutralizing Antibodies Demonstrate High Potency and Breadth. Front Immunol 2021; 12:734110. [PMID: 34603312 PMCID: PMC8481832 DOI: 10.3389/fimmu.2021.734110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are currently being assessed in clinical trials for their ability to prevent HIV infection. Single chain variable fragments (scFv) of bNAbs have advantages over full antibodies as their smaller size permits improved diffusion into mucosal tissues and facilitates vector-driven gene expression. We have previously shown that scFv of bNAbs individually retain significant breadth and potency. Here we tested combinations of five scFv derived from bNAbs CAP256-VRC26.25 (V2-apex), PGT121 (N332-supersite), 3BNC117 (CD4bs), 8ANC195 (gp120-gp41 interface) and 10E8v4 (MPER). Either two or three scFv were combined in equimolar amounts and tested in the TZM-bl neutralization assay against a multiclade panel of 17 viruses. Experimental IC50 and IC80 data were compared to predicted neutralization titers based on single scFv titers using the Loewe additive and the Bliss-Hill model. Like full-sized antibodies, combinations of scFv showed significantly improved potency and breadth compared to single scFv. Combinations of two or three scFv generally followed an independent action model for breadth and potency with no significant synergy or antagonism observed overall although some exceptions were noted. The Loewe model underestimated potency for some dual and triple combinations while the Bliss-Hill model was better at predicting IC80 titers of triple combinations. Given this, we used the Bliss-Hill model to predict the coverage of scFv against a 45-virus panel at concentrations that correlated with protection in the AMP trials. Using IC80 titers and concentrations of 1μg/mL, there was 93% coverage for one dual scFv combination (3BNC117+10E8v4), and 96% coverage for two of the triple combinations (CAP256.25+3BNC117+10E8v4 and PGT121+3BNC117+10E8v4). Combinations of scFv, therefore, show significantly improved breadth and potency over individual scFv and given their size advantage, have potential for use in passive immunization.
Collapse
Affiliation(s)
- Rebecca T. van Dorsten
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kshitij Wagh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Penny L. Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
McIlwain BC, Erwin AL, Davis AR, Ben Koff B, Chang L, Bylund T, Chuang GY, Kwong PD, Ohi MD, Lai YT, Stockbridge RB. N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of Small Membrane Proteins. J Mol Biol 2021; 433:166909. [PMID: 33676924 PMCID: PMC8292168 DOI: 10.1016/j.jmb.2021.166909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Amanda L Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States
| | - Alexander R Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - B Ben Koff
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States.
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, United States.
| | - Randy B Stockbridge
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
19
|
Sutherland M, Kwon B, Hong M. Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183723. [PMID: 34352242 DOI: 10.1016/j.bbamem.2021.183723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
HIV-1 entry into cells requires coordinated changes of the conformation and dynamics of both the fusion protein, gp41, and the lipids in the cell membrane and virus envelope. Commonly proposed features of membrane deformation during fusion include high membrane curvature, lipid disorder, and membrane surface dehydration. The virus envelope and target cell membrane contain a diverse set of phospholipids and cholesterol. To dissect how different lipids interact with gp41 to contribute to membrane fusion, here we use 31P solid-state NMR spectroscopy to investigate the curvature, dynamics, and hydration of POPE, POPC and POPS membranes, with and without cholesterol, in the presence of a peptide comprising the membrane proximal external region (MPER) and transmembrane domain (TMD) of gp41. Static 31P NMR spectra indicate that the MPER-TMD induces strong negative Gaussian curvature (NGC) to the POPE membrane but little curvature to POPC and POPC:POPS membranes. The NGC manifests as an isotropic peak in the static NMR spectra, whose intensity increases with the peptide concentration. Cholesterol inhibits the NGC formation and stabilizes the lamellar phase. Relative intensities of magic-angle spinning 31P cross-polarization and direct-polarization spectra indicate that all three phospholipids become more mobile upon peptide binding. Finally, 2D 1H-31P correlation spectra show that the MPER-TMD enhances water 1H polarization transfer to the lipids, indicating that the membrane surfaces become more hydrated. These results suggest that POPE is an essential component of the high-curvature fusion site, and lipid dynamic disorder is a general feature of membrane restructuring during fusion.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Challenging the Existing Model of the Hexameric HIV-1 Gag Lattice and MA Shell Superstructure: Implications for Viral Entry. Viruses 2021; 13:v13081515. [PMID: 34452379 PMCID: PMC8402665 DOI: 10.3390/v13081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Despite type 1 human immunodeficiency virus (HIV-1) being discovered in the early 1980s, significant knowledge gaps remain in our understanding of the superstructure of the HIV-1 matrix (MA) shell. Current viral assembly models assume that the MA shell originates via recruitment of group-specific antigen (Gag) polyproteins into a hexagonal lattice but fails to resolve and explain lattice overlapping that occurs when the membrane is folded into a spherical/ellipsoidal shape. It further fails to address how the shell recruits, interacts with and encompasses the viral spike envelope (Env) glycoproteins. These Env glycoproteins are crucial as they facilitate viral entry by interacting with receptors and coreceptors located on T-cells. In our previous publication, we proposed a six-lune hosohedral structure, snowflake-like model for the MA shell of HIV-1. In this article, we improve upon the six-lune hosohedral structure by incorporating into our algorithm the recruitment of complete Env glycoproteins. We generated the Env glycoprotein assembly using a combination of predetermined Env glycoprotein domains from X-ray crystallography, nuclear magnetic resonance (NMR), cryoelectron tomography, and three-dimensional prediction tools. Our novel MA shell model comprises 1028 MA trimers and 14 Env glycoproteins. Our model demonstrates the movement of Env glycoproteins in the interlunar spaces, with effective clustering at the fusion hub, where multiple Env complexes bind to T-cell receptors during the process of viral entry. Elucidating the HIV-1 MA shell structure and its interaction with the Env glycoproteins is a key step toward understanding the mechanism of HIV-1 entry.
Collapse
|
21
|
Martí-Marí O, Martínez-Gualda B, de la Puente-Secades S, Mills A, Quesada E, Abdelnabi R, Sun L, Boonen A, Noppen S, Neyts J, Schols D, Camarasa MJ, Gago F, San-Félix A. Double Arylation of the Indole Side Chain of Tri- and Tetrapodal Tryptophan Derivatives Renders Highly Potent HIV-1 and EV-A71 Entry Inhibitors†. J Med Chem 2021; 64:10027-10046. [PMID: 34229438 PMCID: PMC8389807 DOI: 10.1021/acs.jmedchem.1c00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
We have recently
described a new generation of potent human immunodeficiency
virus (HIV) and EV-A71 entry inhibitors. The prototypes contain three
or four tryptophan (Trp) residues bearing an isophthalic acid moiety
at the C2 position of each side-chain indole ring. This work is now
extended by both shifting the position of the isophthalic acid to
C7 and synthesizing doubly arylated C2/C7 derivatives. The most potent
derivative (50% effective concentration (EC50) HIV-1, 6
nM; EC50 EV-A71, 40 nM), 33 (AL-518), is a C2/C7 doubly arylated tetrapodal compound. Its superior anti-HIV
potency with respect to the previous C2-arylated prototype is in consonance
with its higher affinity for the viral gp120. 33 (AL-518) showed comparable antiviral activities against X4
and R5 HIV-1 strains and seems to interact with the tip and base of
the gp120 V3 loop. Taken together, these findings support the interest
in 33 (AL-518) as a useful new prototype
for anti-HIV/EV71 drug development.
Collapse
Affiliation(s)
- Olaia Martí-Marí
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Belén Martínez-Gualda
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Alberto Mills
- Área de Farmacología, Departamento de Ciencias Biomédicas y Unidad Asociada IQM-UAH, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Ernesto Quesada
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Liang Sun
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Arnaud Boonen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | - María-José Camarasa
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas y Unidad Asociada IQM-UAH, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Ana San-Félix
- Instituto de Química Médica (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
22
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
23
|
Ang CG, Carter E, Haftl A, Zhang S, Rashad AA, Kutzler M, Abrams CF, Chaiken IM. Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus-Cell Entry. Microorganisms 2021; 9:1286. [PMID: 34204725 PMCID: PMC8231586 DOI: 10.3390/microorganisms9061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
KR13, a peptide triazole thiol previously established to inhibit HIV-1 infection and cause virus lysis, was evaluated by flow cytometry against JRFL Env-presenting cells to characterize induced Env and membrane transformations leading to irreversible inactivation. Transiently transfected HEK293T cells were preloaded with calcein dye, treated with KR13 or its thiol-blocked analogue KR13b, fixed, and stained for gp120 (35O22), MPER (10E8), 6-helix-bundle (NC-1), immunodominant loop (50-69), and fusion peptide (VRC34.01). KR13 induced dose-dependent transformations of Env and membrane characterized by transient poration, MPER exposure, and 6-helix-bundle formation (analogous to native fusion events), but also reduced immunodominant loop and fusion peptide exposure. Using a fusion peptide mutant (V504E), we found that KR13 transformation does not require functional fusion peptide for poration. In contrast, simultaneous treatment with fusion inhibitor T20 alongside KR13 prevented membrane poration and MPER exposure, showing that these events require 6-helix-bundle formation. Based on these results, we formulated a model for PTT-induced Env transformation portraying how, in the absence of CD4/co-receptor signaling, PTT may provide alternate means of perturbing the metastable Env-membrane complex, and inducing fusion-like transformation. In turn, the results show that such transformations are intrinsic to Env and can be diverted for irreversible inactivation of the protein complex.
Collapse
Affiliation(s)
- Charles Gotuaco Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Erik Carter
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Ann Haftl
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, PA 19102, USA
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| | - Michele Kutzler
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, College of Engineering, Drexel University, Philadelphia, PA 19102, USA;
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| |
Collapse
|
24
|
Marcelino R, Gramacho F, Martin F, Brogueira P, Janeiro N, Afonso C, Badura R, Valadas E, Mansinho K, Caldeira L, Taveira N, Marcelino JM. Antibody response against selected epitopes in the HIV-1 envelope gp41 ectodomain contributes to reduce viral burden in HIV-1 infected patients. Sci Rep 2021; 11:8993. [PMID: 33903642 PMCID: PMC8076315 DOI: 10.1038/s41598-021-88274-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/09/2021] [Indexed: 01/26/2023] Open
Abstract
The ectodomain of gp41 is the target of potent binding and neutralizing antibodies (NAbs) and is being explored in new strategies for antibody-based HIV vaccines. Previous studies have suggested that the W164A-3S (3S) and EC26-2A4 (EC26) peptides located in the gp41 ectodomain may be potential HIV vaccine candidates. We assessed 3S- and EC26-specific binding antibody responses and related neutralizing activity in a large panel of chronic HIV-1-infected Portuguese individuals on ART. A similar proportion of participants had antibodies binding to 3S (9.6%) and EC26 (9.9%) peptides but the level of reactivity against 3S was significantly higher compared to EC26, except in the rare patients with double peptide reactivity. The higher antigenicity of 3S was unrelated with disease stage, as assessed by CD4+ T cell counts, but it was directly related with plasma viral load. Most patients that were tested (89.9%, N = 268) showed tier 1 neutralizing activity, the potency being inversely associated with plasma viral load. In the subset of patients that were tested for neutralization of tier 2 isolates, neutralization breadth was inversely correlated with plasma viral load and directly correlated with CD4+ T cell counts. These results are consistent with a role for neutralizing antibodies in controlling viral replication and preventing the decline of CD4+ T lymphocytes. Importantly, in patients with 3S-specific antibodies, neutralizing titers were inversely correlated with viral RNA levels and proviral DNA levels. Moreover, patients with 3S and/or EC26-specific antibodies showed a 1.9-fold higher tier 2 neutralization score than patients without antibodies suggesting that 3S and/or EC26-specific antibodies contribute to neutralization breadth and potency in HIV-1 infected patients. Overall, these results suggest that antibodies targeting the S3 and EC26 epitopes may contribute to reduce viral burden and provide further support for the inclusion of 3S and EC26 epitopes in HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Rute Marcelino
- Global Health and Tropical Medicine-GHTM, Instituto de Higiene e Medicina Tropical-IHMT, Universidade Nova de Lisboa-UNL, 1349-008, Lisboa, Portugal.,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal
| | - Filipa Gramacho
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal
| | - Pedro Brogueira
- Serviço de Doenças Infeciosas, Hospital Egas Moniz-HEM, Centro Hospitalar Lisboa Ocidental-CHLO, E.P.E., Lisboa, 1349-019, Lisboa, Portugal
| | - Nuno Janeiro
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Claudia Afonso
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Robert Badura
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Emília Valadas
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Kamal Mansinho
- Serviço de Doenças Infeciosas, Hospital Egas Moniz-HEM, Centro Hospitalar Lisboa Ocidental-CHLO, E.P.E., Lisboa, 1349-019, Lisboa, Portugal
| | - Luís Caldeira
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal
| | - José M Marcelino
- Global Health and Tropical Medicine-GHTM, Instituto de Higiene e Medicina Tropical-IHMT, Universidade Nova de Lisboa-UNL, 1349-008, Lisboa, Portugal. .,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal. .,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal.
| |
Collapse
|
25
|
HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021; 13:v13050735. [PMID: 33922579 PMCID: PMC8146413 DOI: 10.3390/v13050735] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.
Collapse
|
26
|
Piai A, Fu Q, Sharp AK, Bighi B, Brown AM, Chou JJ. NMR Model of the Entire Membrane-Interacting Region of the HIV-1 Fusion Protein and Its Perturbation of Membrane Morphology. J Am Chem Soc 2021; 143:6609-6615. [PMID: 33882664 DOI: 10.1021/jacs.1c01762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 envelope glycoprotein (Env) is a transmembrane protein that mediates membrane fusion and viral entry. The membrane-interacting regions of the Env, including the membrane-proximal external region (MPER), the transmembrane domain (TMD), and the cytoplasmic tail (CT), not only are essential for fusion and Env incorporation but also can strongly influence the antigenicity of the Env. Previous studies have incrementally revealed the structures of the MPER, the TMD, and the KS-LLP2 regions of the CT. Here, we determined the NMR structure of the full-length CT using a protein fragment comprising the TMD and the CT in bicelles that mimic a lipid bilayer, and by integrating the new NMR data and those acquired previously on other gp41 fragments, we derived a model of the entire membrane-interacting region of the Env. The structure shows that the CT forms a large trimeric baseplate around the TMD trimer, and by residing in the headgroup region of the lipid bilayer, the baseplate causes severe exclusion of lipid in the cytoleaflet of the bilayer. All-atom molecular dynamics simulations showed that the overall structure of the MPER-TMD-CT can be stable in a viral membrane and that a concerted movement of the KS-LLP2 region compensates for the lipid exclusion in order to maintain both structure and membrane integrity. Our structural and simulation results provide a framework for future research to manipulate the membrane structure to modulate the antigenicity of the Env for vaccine development and for mutagenesis studies for investigating membrane fusion and Env interaction with the matrix proteins.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Beatrice Bighi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Chiliveri SC, Louis JM, Bax A. Concentration‐Dependent Structural Transition of the HIV‐1 gp41 MPER Peptide into α‐Helical Trimers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| | - John M. Louis
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| | - Ad Bax
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| |
Collapse
|
28
|
Gorai B, Sahoo AK, Srivastava A, Dixit NM, Maiti PK. Concerted Interactions between Multiple gp41 Trimers and the Target Cell Lipidome May Be Required for HIV-1 Entry. J Chem Inf Model 2020; 61:444-454. [PMID: 33373521 DOI: 10.1021/acs.jcim.0c01291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The HIV-1 envelope glycoprotein gp41 mediates the fusion between viral and host cell membranes leading to virus entry and target cell infection. Despite years of research, important aspects of this process such as the number of gp41 trimers involved and how they orchestrate the rearrangement of the lipids in the apposed membranes along the fusion pathway remain obscure. To elucidate these molecular underpinnings, we performed coarse-grained molecular dynamics simulations of HIV-1 virions pinned to the CD4 T cell membrane by different numbers of gp41 trimers. We built realistic cell and viral membranes by mimicking their respective lipid compositions. We found that a single gp41 was inadequate for mediating fusion. Lipid mixing between membranes, indicating the onset of fusion, was efficient when three or more gp41 trimers pinned the membranes. The gp41 trimers interacted strongly with many different lipids in the host cell membrane, triggering lipid configurational rearrangements, exchange, and mixing. Simpler membranes, comprising fewer lipid types, displayed strong resistance to fusion, revealing the crucial role of the lipidomes in HIV-1 entry. Performing simulations at different temperatures, we estimated the free energy barrier to lipid mixing, and hence membrane stalk formation, with three and four tethering gp41 trimers to be ∼6.2 kcal/mol, a >4-fold reduction over estimates without gp41. Together, these findings present molecular-level, quantitative insights into the early stages of gp41-mediated HIV-1 entry. Preventing the requisite gp41 molecules from tethering the membranes or altering membrane lipid compositions may be potential intervention strategies.
Collapse
Affiliation(s)
- Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore-560012, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
29
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
30
|
Aisenbrey C, Rifi O, Bechinger B. Structure, membrane topology and influence of cholesterol of the membrane proximal region: transmembrane helical anchor sequence of gp41 from HIV. Sci Rep 2020; 10:22278. [PMID: 33335248 PMCID: PMC7746737 DOI: 10.1038/s41598-020-79327-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
During the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence. These observations are suggestive of a strong coupling between the transmembrane and the membrane proximal region of gp41 possibly enforced by oligomerization of the transmembrane helical region.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Omar Rifi
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
31
|
Parajuli B, Acharya K, Nangarlia A, Zhang S, Parajuli B, Dick A, Ngo B, Abrams CF, Chaiken I. Identification of a glycan cluster in gp120 essential for irreversible HIV-1 lytic inactivation by a lectin-based recombinantly engineered protein conjugate. Biochem J 2020; 477:4263-4280. [PMID: 33057580 DOI: 10.1042/bcj20200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
We previously discovered a class of recombinant lectin conjugates, denoted lectin DLIs ('dual-acting lytic inhibitors') that bind to the HIV-1 envelope (Env) protein trimer and cause both lytic inactivation of HIV-1 virions and cytotoxicity of Env-expressing cells. To facilitate mechanistic investigation of DLI function, we derived the simplified prototype microvirin (MVN)-DLI, containing an MVN domain that binds high-mannose glycans in Env, connected to a DKWASLWNW sequence (denoted 'Trp3') derived from the membrane-associated region of gp41. The relatively much stronger affinity of the lectin component than Trp3 argues that the lectin functions to capture Env to enable Trp3 engagement and consequent Env membrane disruption and virolysis. The relatively simplified engagement pattern of MVN with Env opened up the opportunity, pursued here, to use recombinant glycan knockout gp120 variants to identify the precise Env binding site for MVN that drives DLI engagement and lysis. Using mutagenesis combined with a series of biophysical and virological experiments, we identified a restricted set of residues, N262, N332 and N448, all localized in a cluster on the outer domain of gp120, as the essential epitope for MVN binding. By generating these mutations in the corresponding HIV-1 virus, we established that the engagement of this glycan cluster with the lectin domain of MVN*-DLI is the trigger for DLI-derived virus and cell inactivation. Beyond defining the initial encounter step for lytic inactivation, this study provides a guide to further elucidate DLI mechanism, including the stoichiometry of Env trimer required for function, and downstream DLI optimization.
Collapse
Affiliation(s)
- Bibek Parajuli
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Bijay Parajuli
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Brendon Ngo
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, U.S.A
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| |
Collapse
|
32
|
Chiliveri SC, Louis JM, Bax A. Concentration-Dependent Structural Transition of the HIV-1 gp41 MPER Peptide into α-Helical Trimers. Angew Chem Int Ed Engl 2020; 60:166-170. [PMID: 32916024 DOI: 10.1002/anie.202008804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/20/2020] [Indexed: 11/12/2022]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 contains epitopes for at least four broadly neutralizing antibodies. Depending on solution conditions and construct design, different structures have been reported for this segment. We show that in aqueous solution the MPER fragment (gp160660-674 ) exists in a monomer-trimer equilibrium with an association constant in the micromolar range. Thermodynamic analysis reveals that the association is exothermic, more favorable in D2 O than H2 O, and increases with ionic strength, indicating hydrophobically driven intermolecular interactions. Circular dichroism, 13 Cα chemical shifts, NOE, and hydrogen exchange rates reveal that MPER undergoes a structural transition from predominately unfolded monomer at low concentrations to an α-helical trimer at high concentrations. This result has implications for antibody recognition of MPER prior to and during the process where gp41 switches from a pre-hairpin intermediate to its post-fusion 6-helical bundle state.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| |
Collapse
|
33
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
34
|
Zhao L, Fu Q, Pan L, Piai A, Chou JJ. The Diversity and Similarity of Transmembrane Trimerization of TNF Receptors. Front Cell Dev Biol 2020; 8:569684. [PMID: 33163490 PMCID: PMC7591462 DOI: 10.3389/fcell.2020.569684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
Receptors in the tumor necrosis factor receptor superfamily (TNFRSF) regulate proliferation of immune cells or induce programmed cell death, and many of them are candidates for antibody-based immunotherapy. Previous studies on several death receptors in the TNFRSF including Fas, p75NTR, and DR5 showed that the transmembrane helix (TMH) of these receptors can specifically oligomerize and their oligomeric states have direct consequences on receptor activation, suggesting a much more active role of TMH in receptor signaling than previously appreciated. Here, we report the structure of the TMH of TNFR1, another well studied member of the TNFRSF, in neutral bicelles that mimic a lipid bilayer. We find that TNFR1 TMH forms a defined trimeric complex in bicelles, and no evidences of higher-order clustering of trimers have been detected. Unexpectedly, a conserved proline, which is critical for Fas TMH trimerization, does not appear to play an important role in TNFR1 TMH trimerization, which is instead mediated by a glycine near the middle of the TMH. Further, TNFR1 TMH trimer shows a larger hydrophobic core than that of Fas or DR5, with four layers of hydrophobic interaction along the threefold axis. Comparison of the TNFR1 TMH structure with that of Fas and DR5 reveals reassuring similarities that have functional implications but also significant structural diversity that warrants systematic investigation of TMH oligomerization property for other members of the TNFRSF.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Liqiang Pan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Serris A, Stass R, Bignon EA, Muena NA, Manuguerra JC, Jangra RK, Li S, Chandran K, Tischler ND, Huiskonen JT, Rey FA, Guardado-Calvo P. The Hantavirus Surface Glycoprotein Lattice and Its Fusion Control Mechanism. Cell 2020; 183:442-456.e16. [PMID: 32937107 DOI: 10.1016/j.cell.2020.08.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Hantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Here we describe the high-resolution X-ray structures of the heterodimer of Gc and the Gn head and of the homotetrameric Gn base. Docking them into an 11.4-Å-resolution cryoelectron tomography map of the hantavirus surface accounted for the complete extramembrane portion of the viral glycoprotein shell and allowed a detailed description of the surface organization of these pleomorphic virions. Our results, which further revealed a built-in mechanism controlling Gc membrane insertion for fusion, pave the way for immunogen design to protect against pathogenic hantaviruses.
Collapse
Affiliation(s)
- Alexandra Serris
- Institut Pasteur, Structural Virology Unit, and CNRS UMR 3569, Paris, France
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eduardo A Bignon
- Fundación Ciencia & Vida, Molecular Virology Laboratory, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Nicolás A Muena
- Fundación Ciencia & Vida, Molecular Virology Laboratory, Santiago, Chile
| | - Jean-Claude Manuguerra
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sai Li
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nicole D Tischler
- Fundación Ciencia & Vida, Molecular Virology Laboratory, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Helsinki Institute of Life Science HiLIFE, Viikinkaari 1, 00014 University of Helsinki, Finland; Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, Viikinkaari 1, 00014 University of Helsinki, Finland
| | - Felix A Rey
- Institut Pasteur, Structural Virology Unit, and CNRS UMR 3569, Paris, France.
| | | |
Collapse
|
36
|
Lim RM, Rong L, Zhen A, Xie J. A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chem Biol 2020; 15:2299-2310. [PMID: 32667183 DOI: 10.1021/acschembio.0c00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering T cells and natural killer (NK) cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to eradicate HIV-infected cells. However, current anti-HIV CARs are limited by targeting a single epitope of the HIV envelope glycoprotein gp160, which cannot counter the enormous diversity and mutability of viruses. Here, we report the development of a universal CAR-NK cell, which recognizes 2,4-dinitrophenyl (DNP) and can subsequently be redirected to target various epitopes of gp160 using DNP-conjugated antibodies as adaptor molecules. We show that this CAR-NK cell can recognize and kill mimic HIV-infected cell lines expressing subtypes B and C gp160. We additionally find that anti-gp160 antibodies targeting membrane-distal epitopes (including V1/V2, V3, and CD4bs) are more likely to activate universal CAR-NK cells against gp160+ target cells, compared with those targeting membrane-proximal epitopes located in the gp41 MPER. Finally, we confirm that HIV-infected primary human CD4+ T cells can be effectively killed using the same approach. Given that numerous anti-gp160 antibodies with different antigen specificities are readily available, this modular universal CAR-NK cell platform can potentially overcome HIV diversity, thus providing a promising strategy to eradicate HIV-infected cells.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Liang Rong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095, United States
| | - Jianming Xie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
37
|
Torralba J, de la Arada I, Carravilla P, Insausti S, Rujas E, Largo E, Eggeling C, Arrondo JLR, Apellániz B, Nieva JL. Cholesterol Constrains the Antigenic Configuration of the Membrane-Proximal Neutralizing HIV-1 Epitope. ACS Infect Dis 2020; 6:2155-2168. [PMID: 32584020 DOI: 10.1021/acsinfecdis.0c00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The envelope glycoprotein (Env) enables HIV-1 cell entry through fusion of host-cell and viral membranes induced by the transmembrane subunit gp41. Antibodies targeting the C-terminal sequence of the membrane-proximal external region (C-MPER) block the fusogenic activity of gp41 and achieve neutralization of divergent HIV-1 strains and isolates. Thus, recreating the structure that generates broadly neutralizing C-MPER antibodies during infection is a major goal in HIV vaccine development. Here, we have reconstituted a peptide termed CpreTM-TMD in a membrane environment. This peptide contains the C-MPER epitope and the minimum TMD residues required for the anchorage of the Env glycoprotein to the viral membrane. In addition, we have used antibody 10E8 variants to gauge the antigenic configuration attained by CpreTM-TMD as a function of the membrane cholesterol content, a functional determinant of the HIV envelope and liposome-based vaccines. Differential binding of the 10E8 variants and the trend of the IgG responses recovered from rabbits immunized with liposome-peptide formulations, suggested that cholesterol may restrict 10E8 accessibility to the C-MPER epitope. Our data ruled out the destabilization of the lipid bilayer architecture in CpreTM-TMD-containing membranes, and pointed to the perturbation of the helical conformation by lipid packing as the cause of the antigenic configuration loss induced by cholesterol. Overall, our results provide additional insights into the structural basis of the Env complex anchoring to membranes, and suggest new approaches to the design of effective immunogens directed against the near pan-neutralizing HIV-1 epitope C-MPER.
Collapse
Affiliation(s)
- Johana Torralba
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Igor de la Arada
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Pablo Carravilla
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Sara Insausti
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, Medicine and Odontology Faculty, University of Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, U.K
| | - José L R Arrondo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Beatriz Apellániz
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| |
Collapse
|
38
|
Structure, interactions and membrane topology of HIV gp41 ectodomain sequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183274. [DOI: 10.1016/j.bbamem.2020.183274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
|
39
|
Abstract
During the last three decades or so, many efforts have been made to study the protein cleavage
sites by some disease-causing enzyme, such as HIV (Human Immunodeficiency Virus) protease
and SARS (Severe Acute Respiratory Syndrome) coronavirus main proteinase. It has become increasingly
clear <i>via</i> this mini-review that the motivation driving the aforementioned studies is quite wise,
and that the results acquired through these studies are very rewarding, particularly for developing peptide
drugs.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
40
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
41
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
42
|
Piai A, Fu Q, Cai Y, Ghantous F, Xiao T, Shaik MM, Peng H, Rits-Volloch S, Chen W, Seaman MS, Chen B, Chou JJ. Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nat Commun 2020; 11:2317. [PMID: 32385256 PMCID: PMC7210310 DOI: 10.1038/s41467-020-16165-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The prefusion conformation of HIV-1 envelope protein (Env) is recognized by most broadly neutralizing antibodies (bnAbs). Studies showed that alterations of its membrane-related components, including the transmembrane domain (TMD) and cytoplasmic tail (CT), can reshape the antigenic structure of the Env ectodomain. Using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of an Env segment encompassing the TMD and a large portion of the CT in bicelles. The structure reveals that the CT folds into amphipathic helices that wrap around the C-terminal end of the TMD, thereby forming a support baseplate for the rest of Env. NMR dynamics measurements provide evidences of dynamic coupling across the TMD between the ectodomain and CT. Pseudovirus-based neutralization assays suggest that CT-TMD interaction preferentially affects antigenic structure near the apex of the Env trimer. These results explain why the CT can modulate the Env antigenic properties and may facilitate HIV-1 Env-based vaccine design.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Md Munan Shaik
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Rantalainen K, Berndsen ZT, Antanasijevic A, Schiffner T, Zhang X, Lee WH, Torres JL, Zhang L, Irimia A, Copps J, Zhou KH, Kwon YD, Law WH, Schramm CA, Verardi R, Krebs SJ, Kwong PD, Doria-Rose NA, Wilson IA, Zwick MB, Yates JR, Schief WR, Ward AB. HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Rep 2020; 31:107583. [PMID: 32348769 PMCID: PMC7196886 DOI: 10.1016/j.celrep.2020.107583] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Structural and functional studies of HIV envelope glycoprotein (Env) as a transmembrane protein have long been complicated by challenges associated with inherent flexibility of the molecule and the membrane-embedded hydrophobic regions. Here, we present approaches for incorporating full-length, wild-type HIV-1 Env, as well as C-terminally truncated and stabilized versions, into lipid assemblies, providing a modular platform for Env structural studies by single particle electron microscopy. We reconstitute a full-length Env clone into a nanodisc, complex it with a membrane-proximal external region (MPER) targeting antibody 10E8, and structurally define the full quaternary epitope of 10E8 consisting of lipid, MPER, and ectodomain contacts. By aligning this and other Env-MPER antibody complex reconstructions with the lipid bilayer, we observe evidence of Env tilting as part of the neutralization mechanism for MPER-targeting antibodies. We also adapt the platform toward vaccine design purposes by introducing stabilizing mutations that allow purification of unliganded Env with a peptidisc scaffold.
Collapse
Affiliation(s)
- Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Torben Schiffner
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xi Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lei Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adriana Irimia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth H Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - William H Law
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
NMR Structure of the FIV gp36 C-Terminal Heptad Repeat and Membrane-Proximal External Region. Int J Mol Sci 2020; 21:ijms21062037. [PMID: 32188158 PMCID: PMC7139756 DOI: 10.3390/ijms21062037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Feline immunodeficiency virus (FIV), a lentivirus causing an immunodeficiency syndrome in cats, represents a relevant model of pre-screening therapies for human immunodeficiency virus (HIV). The envelope glycoproteins gp36 in FIV and gp41 in HIV mediate the fusion of the virus with the host cell membrane. They have a common structural framework in the C-terminal region that includes a Trp-rich membrane-proximal external region (MPER) and a C-terminal heptad repeat (CHR). MPER is essential for the correct positioning of gp36 on the lipid membrane, whereas CHR is essential for the stabilization of the low-energy six-helical bundle (6HB) that is necessary for the fusion of the virus envelope with the cell membrane. Conformational data for gp36 are missing, and several aspects of the MPER structure of different lentiviruses are still debated. In the present work, we report the structural investigation of a gp36 construct that includes the MPER and part of the CHR domain (737-786gp36 CHR–MPER). Using 2D and 3D homo and heteronuclear NMR spectra on 15N and 13C double-labelled samples, we solved the NMR structure in micelles composed of dodecyl phosphocholine (DPC) and sodium dodecyl sulfate (SDS) 90/10 M: M. The structure of 737-786gp36 CHR–MPER is characterized by a helix–turn–helix motif, with a regular α-helix and a moderately flexible 310 helix, characterizing the CHR and the MPER domains, respectively. The two helices are linked by a flexible loop regulating their orientation at a ~43° angle. We investigated the positioning of 737-786gp36 CHR–MPER on the lipid membrane using spin label-enhanced NMR and ESR spectroscopies. On a different scale, using confocal microscopy imaging, we studied the effect of 737-786gp36 CHR–MPER on 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPC/DOPG) multilamellar vesicles (MLVs). This effect results in membrane budding and tubulation that is reminiscent of a membrane-plasticizing role that is typical of MPER domains during the event in which the virus envelope merges with the host cell membrane.
Collapse
|
45
|
Xiao T, Frey G, Fu Q, Lavine CL, Scott DA, Seaman MS, Chou JJ, Chen B. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat Chem Biol 2020; 16:529-537. [PMID: 32152540 PMCID: PMC7723321 DOI: 10.1038/s41589-020-0496-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target-the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.
Collapse
Affiliation(s)
- Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gary Frey
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Ang CG, Hossain MA, Rajpara M, Bach H, Acharya K, Dick A, Rashad AA, Kutzler M, Abrams CF, Chaiken I. Metastable HIV-1 Surface Protein Env Sensitizes Cell Membranes to Transformation and Poration by Dual-Acting Virucidal Entry Inhibitors. Biochemistry 2020; 59:818-828. [PMID: 31942789 PMCID: PMC7362902 DOI: 10.1021/acs.biochem.9b01008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dual-acting virucidal entry inhibitors (DAVEIs) have previously been shown to cause irreversible inactivation of HIV-1 Env-presenting pseudovirus by lytic membrane transformation. This study examined whether this transformation could be generalized to include membranes of Env-presenting cells. Flow cytometry was used to analyze HEK293T cells transiently transfected with increasing amounts of DNA encoding JRFL Env, loaded with calcein dye, and treated with serial dilutions of microvirin (Q831K/M83R)-DAVEI. Comparing calcein retention against intact Env expression (via Ab 35O22) on individual cells revealed effects proportional to Env expression. "Low-Env" cells experienced transient poration and calcein leakage, while "high-Env" cells were killed. The cell-killing effect was confirmed with an independent mitochondrial activity-based cell viability assay, showing dose-dependent cytotoxicity in response to DAVEI treatment. Transfection with increasing quantities of Env DNA showed further shifts toward "High-Env" expression and cytotoxicity, further reinforcing the Env dependence of the observed effect. Controls with unlinked DAVEI components showed no effect on calcein leakage or cell viability, confirming a requirement for covalently linked DAVEI compounds to achieve Env transformation. These data demonstrate that the metastability of Env is an intrinsic property of the transmembrane protein complex and can be perturbed to cause membrane disruption in both virus and cell contexts.
Collapse
Affiliation(s)
- Charles G Ang
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Marg Rajpara
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Harry Bach
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Michele Kutzler
- Department of Microbiology and Immunology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, College of Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| |
Collapse
|
47
|
Zhou GP, Liao SM, Chen D, Huang RB. The Cooperative Effect between Polybasic Region (PBR) and Polysialyltransferase Domain (PSTD) within Tumor-Target Polysialyltranseferase ST8Sia II. Curr Top Med Chem 2020; 19:2831-2841. [PMID: 31755393 DOI: 10.2174/1568026619666191121145924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/29/2022]
Abstract
ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity. In addition, the conformational changes of the PSTD domain due to point mutations in the PBR or PSTD domain verified an intramolecular interaction between the PBR and the PSTD. These findings have been incorporated into Zhou's NCAM polysialylation/cell migration model, which will provide new perspectives on drug research and development related to the tumor-target ST8Sia II.
Collapse
Affiliation(s)
- Guo-Ping Zhou
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.,Gordon Life Science Institute, NC 27804, United States
| | - Si-Ming Liao
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Ri-Bo Huang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| |
Collapse
|
48
|
Pan J, Peng H, Chen B, Harrison SC. Cryo-EM Structure of Full-length HIV-1 Env Bound With the Fab of Antibody PG16. J Mol Biol 2020; 432:1158-1168. [PMID: 31931014 DOI: 10.1016/j.jmb.2019.11.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/29/2022]
Abstract
The HIV-1 envelope protein (Env) is the target of neutralizing antibodies and the template for vaccine immunogen design. The dynamic conformational equilibrium of trimeric Env influences its antigenicity and potential immunogenicity. Antibodies that bind at the trimer apex stabilize a "closed" conformation characteristic of the most difficult to neutralize isolates. A goal of vaccine development is therefore to mimic the closed conformation in a designed immunogen. A disulfide-stabilized, trimeric Env ectodomain-the "SOSIP" construct-has many of the relevant properties; it is also particularly suitable for structure determination. Some single-molecule studies have, however, suggested that the SOSIP trimer is not a good representation of Env on the surface of a virion or an infected cell. We isolated Env (fully cleaved to gp120 and gp41) from the surface of expressing cells using tagged, apex-binding Fab PG16 and determined the structure of the PG16-Env complex by cryo-EM to an overall resolution of 4.6 Å. Placing the only purification tag on the Fab ensured that the isolated Env was continuously stabilized in its closed, native conformation. The Env structure in this complex corresponds closely to the SOSIP structures determined by both x-ray crystallography and cryo-EM. Although the membrane-interacting elements are not resolved in our reconstruction, we can make inferences about the connection between ectodomain and membrane-proximal external region (MPER) by reference to the published cryo-tomography structure of an Env "spike" and the NMR structure of the MPER-transmembrane segment. We discuss these results in view of the conflicting interpretations in the literature.
Collapse
Affiliation(s)
- Junhua Pan
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Hanqin Peng
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Bing Chen
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Pye VE, Rosa A, Bertelli C, Struwe WB, Maslen SL, Corey R, Liko I, Hassall M, Mattiuzzo G, Ballandras-Colas A, Nans A, Takeuchi Y, Stansfeld PJ, Skehel JM, Robinson CV, Pizzato M, Cherepanov P. A bipartite structural organization defines the SERINC family of HIV-1 restriction factors. Nat Struct Mol Biol 2020; 27:78-83. [PMID: 31907454 PMCID: PMC6956856 DOI: 10.1038/s41594-019-0357-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
The human integral membrane protein SERINC5 potently restricts HIV-1 infectivity and sensitizes the virus to antibody-mediated neutralization. Here, using cryo-EM, we determine the structures of human SERINC5 and its orthologue from Drosophila melanogaster at subnanometer and near-atomic resolution, respectively. The structures reveal a novel fold comprised of ten transmembrane helices organized into two subdomains and bisected by a long diagonal helix. A lipid binding groove and clusters of conserved residues highlight potential functional sites. A structure-based mutagenesis scan identified surface-exposed regions and the interface between the subdomains of SERINC5 as critical for HIV-1-restriction activity. The same regions are also important for viral sensitization to neutralizing antibodies, directly linking the antiviral activity of SERINC5 with remodeling of the HIV-1 envelope glycoprotein.
Collapse
Affiliation(s)
- Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, UK
| | - Cinzia Bertelli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, Italy
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, UK
| | - Sarah L Maslen
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Robin Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, UK
| | - Mark Hassall
- National Institute for Biological Standards and Control, Hertfordshire, UK
| | - Giada Mattiuzzo
- National Institute for Biological Standards and Control, Hertfordshire, UK
| | | | - Andrea Nans
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - Yasuhiro Takeuchi
- National Institute for Biological Standards and Control, Hertfordshire, UK
- UCL Division of Infection and Immunity, The Rayne Building, London, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Warwick, UK
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, UK
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, Italy.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, UK.
- Department of Infectious Disease, Imperial College London, St Mary's Campus, Norfolk Place, London, UK.
| |
Collapse
|
50
|
Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state. Proc Natl Acad Sci U S A 2019; 116:22556-22566. [PMID: 31624123 DOI: 10.1073/pnas.1912427116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.
Collapse
|