1
|
Dufour L, Garczarek L, Gouriou B, Clairet J, Ratin M, Partensky F. Differential acclimation kinetics of the two forms of type IV chromatic acclimaters occurring in marine Synechococcus cyanobacteria. Front Microbiol 2024; 15:1349322. [PMID: 38435691 PMCID: PMC10904595 DOI: 10.3389/fmicb.2024.1349322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Synechococcus, the second most abundant marine phytoplanktonic organism, displays the widest variety of pigment content of all marine oxyphototrophs, explaining its ability to colonize all spectral niches occurring in the upper lit layer of oceans. Seven Synechococcus pigment types (PTs) have been described so far based on the phycobiliprotein composition and chromophorylation of their light-harvesting complexes, called phycobilisomes. The most elaborate and abundant PT (3d) in the open ocean consists of cells capable of type IV chromatic acclimation (CA4), i.e., to reversibly modify the ratio of the blue light-absorbing phycourobilin (PUB) to the green light-absorbing phycoerythrobilin (PEB) in phycobilisome rods to match the ambient light color. Two genetically distinct types of chromatic acclimaters, so-called PTs 3dA and 3dB, occur at similar global abundance in the ocean, but the precise physiological differences between these two types and the reasons for their complementary niche partitioning in the field remain obscure. Here, photoacclimation experiments in different mixes of blue and green light of representatives of these two PTs demonstrated that they differ by the ratio of blue-to-green light required to trigger the CA4 process. Furthermore, shift experiments between 100% blue and 100% green light, and vice-versa, revealed significant discrepancies between the acclimation pace of the two types of chromatic acclimaters. This study provides novel insights into the finely tuned adaptation mechanisms used by Synechococcus cells to colonize the whole underwater light field.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
2
|
Dodson EJ, Ma J, Suissa Szlejf M, Maroudas-Sklare N, Paltiel Y, Adir N, Sun S, Sui SF, Keren N. The structural basis for light acclimation in phycobilisome light harvesting systems systems in Porphyridium purpureum. Commun Biol 2023; 6:1210. [PMID: 38012412 PMCID: PMC10682464 DOI: 10.1038/s42003-023-05586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Photosynthetic organisms adapt to changing light conditions by manipulating their light harvesting complexes. Biophysical, biochemical, physiological and genetic aspects of these processes are studied extensively. The structural basis for these studies is lacking. In this study we address this gap in knowledge by focusing on phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. In this study we focus on the phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. Specifically, we examine red algae (Porphyridium purpureum) grown under a low light intensity (LL) and a medium light intensity (ML). Using cryo-electron microscopy, we resolve the structure of ML-PBS and compare it to the LL-PBS structure. The ML-PBS is 13.6 MDa, while the LL-PBS is larger (14.7 MDa). The LL-PBS structure have a higher number of closely coupled chromophore pairs, potentially the source of the red shifted fluorescence emission from LL-PBS. Interestingly, these differences do not significantly affect fluorescence kinetics parameters. This indicates that PBS systems can maintain similar fluorescence quantum yields despite an increase in LL-PBS chromophore numbers. These findings provide a structural basis to the processes by which photosynthetic organisms adapt to changing light conditions.
Collapse
Affiliation(s)
- Emma Joy Dodson
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maayan Suissa Szlejf
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Naama Maroudas-Sklare
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Maurya PK, Kumar V, Mondal S, Singh SP. Photoautotrophic black-colored cyanobacterial soil crust biosynthesizes photoprotective compounds and is capable of using blue, green, and red wavelengths of light for its growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16756-16769. [PMID: 36576619 DOI: 10.1007/s11356-022-24993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Several cyanobacteria can adjust their light-harvesting machinery in response to existing light signals in a process called chromatic acclimation (CA) which permits the utilization of available light resources for photosynthesis. CA involves alteration in the pigment composition of a major light-harvesting complex called phycobilisome (PBS) and allows some cyanobacteria to utilize green light (GL) to drive photosynthesis. However, cyanobacteria, in contrast with eukaryotic algae and higher plants, can not utilize blue light (BL) for photosynthesis due to their dependency on PBS. Here, we studied a black-colored soil crust that was composed of a single cyanobacterium identified and named Oscillatoria sp. Malviya-1 after phenotypic and phylogenetic analyses. The black-colored crust can absorb light from almost all parts of photosynthetically active radiation (400-700 nm) and ultraviolet radiation (280-400 nm) due to the presence of photosynthetic pigments and microbial sunscreens such as chlorophyll ɑ, carotenoids, phycoerythrin, phycocyanin, allophycocyanin, mycosporine-like amino acids, and scytonemin. Unlike other cyanobacteria, Oscillatoria sp. Malviya-1 can grow using GL, BL, and red light (RL) in addition to white light (WL) which was accompanied by the different colors of the mat under different light conditions. The presence of CA and sunscreens compounds can maximize the fitness of soil crust under a dynamic light environment, UVR, and desiccation. Detailed study of Oscillatoria sp. Malviya-1 will provide information on the mechanism of CA in cyanobacterial soil crust and its unique ability to use both GL and BL.
Collapse
Affiliation(s)
- Pankaj K Maurya
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Institute of Forest Biodiversity (ICFRE), Ministry of Environment Forests and Climate Change, Hyderabad-500100, India
| | - Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shailendra P Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Carrigee LA, Frick JP, Liu X, Karty JA, Trinidad JC, Tom IP, Yang X, Dufour L, Partensky F, Schluchter WM. The phycoerythrobilin isomerization activity of MpeV in Synechococcus sp. WH8020 is prevented by the presence of a histidine at position 141 within its phycoerythrin-I β-subunit substrate. Front Microbiol 2022; 13:1011189. [PMID: 36458192 PMCID: PMC9705338 DOI: 10.3389/fmicb.2022.1011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Marine Synechococcus efficiently harvest available light for photosynthesis using complex antenna systems, called phycobilisomes, composed of an allophycocyanin core surrounded by rods, which in the open ocean are always constituted of phycocyanin and two phycoerythrin (PE) types: PEI and PEII. These cyanobacteria display a wide pigment diversity primarily resulting from differences in the ratio of the two chromophores bound to PEs, the green-light absorbing phycoerythrobilin and the blue-light absorbing phycourobilin. Prior to phycobiliprotein assembly, bilin lyases post-translationally catalyze the ligation of phycoerythrobilin to conserved cysteine residues on α- or β-subunits, whereas the closely related lyase-isomerases isomerize phycoerythrobilin to phycourobilin during the attachment reaction. MpeV was recently shown in Synechococcus sp. RS9916 to be a lyase-isomerase which doubly links phycourobilin to two cysteine residues (C50 and C61; hereafter C50, 61) on the β-subunit of both PEI and PEII. Here we show that Synechococcus sp. WH8020, which belongs to the same pigment type as RS9916, contains MpeV that demonstrates lyase-isomerase activity on the PEII β-subunit but only lyase activity on the PEI β-subunit. We also demonstrate that occurrence of a histidine at position 141 of the PEI β-subunit from WH8020, instead of a leucine in its counterpart from RS9916, prevents the isomerization activity by WH8020 MpeV, showing for the first time that both the substrate and the enzyme play a role in the isomerization reaction. We propose a structural-based mechanism for the role of H141 in blocking isomerization. More generally, the knowledge of the amino acid present at position 141 of the β-subunits may be used to predict which phycobilin is bound at C50, 61 of both PEI and PEII from marine Synechococcus strains.
Collapse
Affiliation(s)
- Lyndsay A. Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
- Environmental Laboratory, Engineering and Research Development Center, US Army Corps of Engineers, Vicksburg, MS, United States
| | - Jacob P. Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Xindi Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Jonathan A. Karty
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | | | - Irin P. Tom
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Louison Dufour
- Ecology of Marine Plankton Team, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université, CNRS, Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton Team, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université, CNRS, Roscoff, France
| | - Wendy M. Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
- *Correspondence: Wendy M. Schluchter,
| |
Collapse
|
5
|
Multiple Photolyases Protect the Marine Cyanobacterium Synechococcus from Ultraviolet Radiation. mBio 2022; 13:e0151122. [PMID: 35856560 PMCID: PMC9426592 DOI: 10.1128/mbio.01511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine cyanobacteria depend on light for photosynthesis, restricting their growth to the photic zone. The upper part of this layer is exposed to strong UV radiation (UVR), a DNA mutagen that can harm these microorganisms. To thrive in UVR-rich waters, marine cyanobacteria employ photoprotection strategies that are still not well defined. Among these are photolyases, light-activated enzymes that repair DNA dimers generated by UVR. Our analysis of genomes of 81 strains of Synechococcus, Cyanobium, and Prochlorococcus isolated from the world’s oceans shows that they possess up to five genes encoding different members of the photolyase/cryptochrome family, including a photolyase with a novel domain arrangement encoded by either one or two separate genes. We disrupted the putative photolyase-encoding genes in Synechococcus sp. strain RS9916 and discovered that each gene contributes to the overall capacity of this organism to survive UVR. Additionally, each conferred increased survival after UVR exposure when transformed into Escherichia coli lacking its photolyase and SOS response. Our results provide the first evidence that this large set of photolyases endows Synechococcus with UVR resistance that is far superior to that of E. coli, but that, unlike for E. coli, these photolyases provide Synechococcus with the vast majority of its UVR tolerance.
Collapse
|
6
|
Wang T, Li J, Jing H, Qin S. Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105622. [PMID: 35429822 DOI: 10.1016/j.marenvres.2022.105622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Marine Synechococcus, a main group of picocyanobacteria, has been ubiquitously observed across the global oceans. Synechococcus exhibits high phylogenetical and phenotypical diversity, and horizontal gene transfer makes its genetic evolution much more intricate. With the development of measurement technologies and analysis methods, the genomic information and niche partition of each Synechococcus lineage tend to be precisely described, but the global analysis is still lacking. Therefore, it is necessary to summarize existing studies and integrate published data to gain a comprehensive understanding of Synechococcus on genetic variation, niche division, and potential functions. In this review, the maximum likelihood trees are constructed based on existing sequence data, including both phylogenetic and pigmentary gene markers. The global distribution characteristics of abundance, lineages, and pigment types are concluded through pooled analysis of more than 700 samples obtained from approximately 50 scientific research cruises. The potential functions of Synechococcus are explored in element cycles and biological interactions. Future work on Synechococcus is suggested to focus on not only elucidating the nature of Synechococcus biodiversity but also demonstrating its interactions with the ecosystem by combining bioinformatics and macroscopic isotope-labeled environmental parameters.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Li
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Grébert T, Garczarek L, Daubin V, Humily F, Marie D, Ratin M, Devailly A, Farrant GK, Mary I, Mella-Flores D, Tanguy G, Labadie K, Wincker P, Kehoe DM, Partensky F. Diversity and Evolution of Pigment Types in Marine Synechococcus Cyanobacteria. Genome Biol Evol 2022; 14:evac035. [PMID: 35276007 PMCID: PMC8995045 DOI: 10.1093/gbe/evac035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Synechococcus cyanobacteria are ubiquitous and abundant in the marine environment and contribute to an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core, from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus cells to optimally exploit the wide variety of spectral niches existing in marine ecosystems. Seven distinct pigment types or subtypes have been identified so far in this taxon based on the phycobiliprotein composition and/or the proportion of the different chromophores in PBS rods. Most genes involved in their biosynthesis and regulation are located in a dedicated genomic region called the PBS rod region. Here, we examine the variability of gene content and organization of this genomic region in a large set of sequenced isolates and natural populations of Synechococcus representative of all known pigment types. All regions start with a tRNA-PheGAA and some possess mobile elements for DNA integration and site-specific recombination, suggesting that their genomic variability relies in part on a "tycheposon"-like mechanism. Comparison of the phylogenies obtained for PBS and core genes revealed that the evolutionary history of PBS rod genes differs from the core genome and is characterized by the co-existence of different alleles and frequent allelic exchange. We propose a scenario for the evolution of the different pigment types and highlight the importance of incomplete lineage sorting in maintaining a wide diversity of pigment types in different Synechococcus lineages despite multiple speciation events.
Collapse
Affiliation(s)
- Théophile Grébert
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Laurence Garczarek
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Vincent Daubin
- UMR 5558 Biometry and Evolutionary Biology, Université Lyon 1, Villeurbanne 69622, France
| | - Florian Humily
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Dominique Marie
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Alban Devailly
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Gregory K Farrant
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Isabelle Mary
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Daniella Mella-Flores
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Gwenn Tanguy
- Centre National de la Recherche Scientifique, FR 2424, Station Biologique, Roscoff 29680, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, Evry, France
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Frédéric Partensky
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| |
Collapse
|
8
|
Kumarapperuma I, Joseph KL, Wang C, Biju LM, Tom IP, Weaver KD, Grébert T, Partensky F, Schluchter WM, Yang X. Crystal structure and molecular mechanism of an E/F type bilin lyase-isomerase. Structure 2022; 30:564-574.e3. [PMID: 35148828 PMCID: PMC8995348 DOI: 10.1016/j.str.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Chromophore attachment of the light-harvesting apparatus represents one of the most important post-translational modifications in photosynthetic cyanobacteria. Extensive pigment diversity of cyanobacteria critically depends on bilin lyases that covalently attach chemically distinct chromophores to phycobiliproteins. However, how bilin lyases catalyze bilin ligation reactions and how some lyases acquire additional isomerase abilities remain elusive at the molecular level. Here, we report the crystal structure of a representative bilin lyase-isomerase MpeQ. This structure has revealed a "question-mark" protein architecture that unambiguously establishes the active site conserved among the E/F-type bilin lyases. Based on structural, mutational, and modeling data, we demonstrate that stereoselectivity of the active site plays a critical role in conferring the isomerase activity of MpeQ. We further advance a tyrosine-mediated reaction scheme unifying different types of bilin lyases. These results suggest that lyases and isomerase actions of bilin lyases arise from two coupled molecular events of distinct origin.
Collapse
Affiliation(s)
| | - Kes Lynn Joseph
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Cong Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Linta M Biju
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Irin P Tom
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Kourtney D Weaver
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Théophile Grébert
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université, CNRS, 29680 Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université, CNRS, 29680 Roscoff, France
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
9
|
Zhang X, Cheung S, Wang J, Zhang G, Wei Y, Liu H, Sun J, Liu H. Highly Diverse Synechococcus Pigment Types in the Eastern Indian Ocean. Front Microbiol 2022; 13:806390. [PMID: 35283844 PMCID: PMC8914260 DOI: 10.3389/fmicb.2022.806390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Marine picocyanobacteria Synechococcus exhibit highly diverse pigment types (PTs) and hence possess great advantage to utilize different spectrum of light effectively and to occupy a wide range of light niches. In this study, we explored the diversity of Synechococcus PTs in the eastern Indian Ocean (EIO), surface water of Strait of Malacca (SSM), and coastal waters of Sri Lanka (SSL). All the detected PTs were phycourobilin (PUB) containing PT 3 and showed distinct distribution patterns. Low PUB PT 3a and partial chromatic acclimater PT 3eA dominated in coastal and shallow waters (SSM and SSL). In contrast, high PUB and chromatic acclimaters PT 3dA and PT 3c/3dB were mainly distributed in open ocean (EIO). PT 3dA and PT 3c/3dB occurred at similar depths of the lower euphotic layers but showed distinct distribution pattern that are partially exclusive, indicating that they compete with each other for the same light niche. Interestingly, the newly described PT 3f was detected with high relative abundances at all stations and particularly dominated in the upper euphotic layer in EIO, which was confirmed with PT-specific quantitative polymerase chain reaction (qPCR). The relative abundance of PT 3f was negatively correlated with nutrient level, implying that PT 3f is adapted to oligotrophic waters. Pronounced niche partition of different PTs was observed in the upper and lower layers of euphotic zone in EIO and SSM/SSL. Light, nutrients, and strong stratification may play important roles in the niche partition of different PTs. Further analysis about ecologically significant taxonomic units revealed high diversity within each PT at different locations, which provided insights for understanding specific PT with wide range of niches.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Shunyan Cheung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jing Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Yuqiu Wei
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Phylogenomics of SAR116 Clade Reveals Two Subclades with Different Evolutionary Trajectories and an Important Role in the Ocean Sulfur Cycle. mSystems 2021; 6:e0094421. [PMID: 34609172 PMCID: PMC8547437 DOI: 10.1128/msystems.00944-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SAR116 clade within the class Alphaproteobacteria represents one of the most abundant groups of heterotrophic bacteria inhabiting the surface of the ocean. The small number of cultured representatives of SAR116 (only two to date) is a major bottleneck that has prevented an in-depth study at the genomic level to understand the relationship between genome diversity and its role in the marine environment. In this study, we use all publicly available genomes to provide a genomic overview of the phylogeny, metabolism, and biogeography within the SAR116 clade. This increased genomic diversity has led to the discovery of two subclades that, despite coexisting in the same environment, display different properties in their genomic makeup. One represents a novel subclade for which no pure cultures have been isolated and is composed mainly of single-amplified genomes (SAGs). Genomes within this subclade showed convergent evolutionary trajectories with more streamlined features, such as low GC content (ca. 30%), short intergenic spacers (<22 bp), and strong purifying selection (low ratio of nonsynonymous to synonymous polymorphisms [dN/dS]). Besides, they were more abundant in metagenomic databases recruiting at the deep chlorophyll maximum. Less abundant and restricted to the upper photic layers of the global ocean, the other subclade of SAR116, enriched in metagenome-assembled genomes (MAGs), included the only two pure cultures. Genomic analysis suggested that both clades have a significant role in the sulfur cycle with differences in the way both clades can metabolize dimethylsulfoniopropionate (DMSP). IMPORTANCE The SAR116 clade of Alphaproteobacteria is a ubiquitous group of heterotrophic bacteria inhabiting the surface of the ocean, but the information about their ecology and population genomic diversity is scarce due to the difficulty of getting pure culture isolates. The combination of single-cell genomics and metagenomics has become an alternative approach to study these kinds of microbes. Our results expand the understanding of the genomic diversity, distribution, and lifestyles within this clade and provide evidence of different evolutionary trajectories in the genomic makeup of the two subclades that could serve to illustrate how evolutionary pressure can drive different adaptations to the same environment. Therefore, the SAR116 clade represents an ideal model organism for the study of the evolutionary streamlining of genomes in microbes that have relatively close relatedness to each other.
Collapse
|
11
|
Molecular bases of an alternative dual-enzyme system for light color acclimation of marine Synechococcus cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2019715118. [PMID: 33627406 DOI: 10.1073/pnas.2019715118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.
Collapse
|
12
|
Carrigee LA, Frick JP, Karty JA, Garczarek L, Partensky F, Schluchter WM. MpeV is a lyase isomerase that ligates a doubly linked phycourobilin on the β-subunit of phycoerythrin I and II in marine Synechococcus. J Biol Chem 2021; 296:100031. [PMID: 33154169 PMCID: PMC7948978 DOI: 10.1074/jbc.ra120.015289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the β-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into β-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases.
Collapse
Affiliation(s)
- Lyndsay A Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Laurence Garczarek
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université & CNRS, UMR 7144, Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université & CNRS, UMR 7144, Roscoff, France
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA.
| |
Collapse
|
13
|
Holtrop T, Huisman J, Stomp M, Biersteker L, Aerts J, Grébert T, Partensky F, Garczarek L, Woerd HJVD. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nat Ecol Evol 2020; 5:55-66. [PMID: 33168993 DOI: 10.1038/s41559-020-01330-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Stretching and bending vibrations of water molecules absorb photons of specific wavelengths, a phenomenon that constrains light energy available for aquatic photosynthesis. Previous work suggested that these absorption properties of water create a series of spectral niches but the theory was still too simplified to enable prediction of the spectral niches in real aquatic ecosystems. Here, we show with a state-of-the-art radiative transfer model that the vibrational modes of the water molecule delineate five spectral niches, in the violet, blue, green, orange and red parts of the spectrum. These five niches are effectively captured by chlorophylls and phycobilin pigments of cyanobacteria and their eukaryotic descendants. Global distributions of the spectral niches are predicted by satellite remote sensing and validated with observed large-scale distribution patterns of cyanobacterial pigment types. Our findings provide an elegant explanation for the biogeographical distributions of photosynthetic pigments across the lakes and oceans of our planet.
Collapse
Affiliation(s)
- Tadzio Holtrop
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands.,Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Maayke Stomp
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Levi Biersteker
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands.,Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Aerts
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands
| | - Théophile Grébert
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Frédéric Partensky
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Laurence Garczarek
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Hendrik Jan van der Woerd
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
15
|
Investigations of the Energy Transfer in the Phycobilisome Antenna of Arthrospira platensis Using Femtosecond Spectroscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10114045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the energy transfer in phycobilisomes extracted from cyanobacteria can be used for building biomimetic hybrid systems for optimized solar energy collection and photocurrent amplification. In this paper, we applied time-resolved absorption and fluorescence spectroscopy to investigate the ultrafast dynamics in a hemidiscoidal phycobilisome obtained from Arthrospira platensis. We obtained the steady-state and time-resolved optical properties and identified the possible pathways of the excitation energy transfer in the phycobilisome and its components, phycocyanin and allophycocyanin. The transient absorption data were studied using global analysis and revealed the existence of ultrafast kinetics down to 850 fs in the phycobilisome. The fluorescence lifetimes in the nanosecond time-scale assigned to the final emitters in each sample were obtained from the time-correlated single photon counting fluorescence experiments.
Collapse
|
16
|
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu Rev Microbiol 2020; 73:407-433. [PMID: 31500538 DOI: 10.1146/annurev-micro-020518-115738] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.
Collapse
Affiliation(s)
- Joseph E Sanfilippo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA;
| | - Laurence Garczarek
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - Frédéric Partensky
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
17
|
Hu PP, Hou JY, Xu YL, Niu NN, Zhao C, Lu L, Zhou M, Scheer H, Zhao KH. The role of lyases, NblA and NblB proteins and bilin chromophore transfer in restructuring the cyanobacterial light-harvesting complex ‡. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:529-540. [PMID: 31820831 DOI: 10.1111/tpj.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the β-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.
Collapse
Affiliation(s)
- Ping-Ping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Yun Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
18
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2019; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Chen H, Zheng C, Jiang P, Ji G. Biosynthesis of a Phycocyanin Beta Subunit with Two Noncognate Chromophores in Escherichia coli. Appl Biochem Biotechnol 2019; 191:763-771. [PMID: 31853878 DOI: 10.1007/s12010-019-03219-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
Recombinant phycobiliprotein can be used as fluorescent label in immunofluorescence assay. In this study, pathway for phycocyanin beta subunit (CpcB) carrying noncognate chromophore phycoerythrobilin (PEB) and phycourobilin (PUB) was constructed in Escherichia coli. Lyase CpcS and CpcT could catalyze attachment of PEB to Cys84-CpcB and Cys155-CpcB, respectively. However, PEB was attached only to Cys84-CpcB when both CpcS and CpcT were present in E. coli. A dual plasmid expression system was used to control the expression of lyases and the attachment order of PEB to CpcB. The production of PEB-Cys155-CpcB was achieved by L-arabinose-induced expression of CpcS, CpcB, Ho1, and PebS, and then the attachment of PEB to Cys84-CpcB was achieved by IPTG-induced expression of CpcS. The doubly chromophorylated CpcB absorbed light maximally at 497.5 nm and 557.0 nm and fluoresced maximally at 507.5 nm and 566.5 nm. An amount of light energy absorbed by PUB-Cys155-CpcB is transferred to PEB-Cys84-CpcB in doubly chromophorylated CpcB, conferring a large stokes shift of 69 nm for this fluorescent protein. There are interactions between chromophores of CpcB which possibly together with the help of lyases lead to isomerization of PEB-Cys155-CpcB to PUB-Cys155-CpcB.
Collapse
Affiliation(s)
- Huaxin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Caiyun Zheng
- College of Biotechnology Sericultural Research Institute, Jiangsu University of Science and Technology, Jiangsu, China
| | - Peng Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Gengsheng Ji
- College of Biotechnology Sericultural Research Institute, Jiangsu University of Science and Technology, Jiangsu, China
| |
Collapse
|
20
|
Adir N, Bar-Zvi S, Harris D. The amazing phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148047. [PMID: 31306623 DOI: 10.1016/j.bbabio.2019.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.
Collapse
Affiliation(s)
- Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Shira Bar-Zvi
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dvir Harris
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|